Microfluidic-Integrated, Ring-Resonator-Assisted Mach–Zehnder Interferometer (μFRA-MZI) as a Label-Free Nanophotonic Sensor
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Fabrication
2.2. SEM Imaging
2.3. Fiber Array and Photonic Chip Alignment
2.4. Photonic Characterization Setup
3. Results and Discussion
3.1. Design Principles
3.2. Fabrication and Dimensional Characterization
3.3. Optical Characterization and Extinction Ratio Analysis
3.4. Evaluation of Optical Sensitivity of the µFRA-MZI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BARC | Bottom Anti-Reflective Coating |
| DC | Directional Coupler |
| DUV | Deep Ultraviolet |
| ER | Extinction Ratio |
| FE-SEM | Field Emission Scanning Electron Microscope |
| FIB-SEM | Focused Ion Beam–Scanning Electron Microscope |
| FRA-MZI | Microfluidic-Integrated, Ring-Resonator-Assisted Mach–Zehnder Interferometer |
| Ga+ | Gallium Ion |
| Gring | Ring–Bus Waveguide Gap Distance |
| ICP-RIE | Inductively Coupled Plasma Reactive Ion Etching |
| LDC | Directional Coupler Length |
| LMMI | Multimode Interferometer Length |
| LPCVD | Low-Pressure Chemical Vapor Deposition |
| MMI | Multimode Interferometer |
| MZI | Mach–Zehnder Interferometer |
| NaCl | Sodium Chloride |
| Oref | Reference Output Port |
| Osen | Sensing Output Port |
| PDMS | Polydimethylsiloxane |
| RA-MZI | Ring-Assisted Mach–Zehnder Interferometer |
| RI | Refractive Index |
| RIU | Refractive Index Unit |
| SE | Secondary Electron |
| Si3N4 | Silicon Nitride |
| SiO2 | Silicon Dioxide |
| UV | Ultraviolet |
| VFL | Visual Fault Locator |
| µFRA-MZI | Microfluidic-Integrated RA-MZI (same as FRA-MZI) |
Appendix A



References
- Luchansky, M.S.; Washburn, A.L.; McClellan, M.S.; Bailey, R.C. Sensitive on-chip detection of a protein biomarker in human serum and plasma over an extended dynamic range using silicon photonic microring resonators and sub-micron beads. Lab Chip 2011, 11, 2042. [Google Scholar] [CrossRef] [PubMed]
- Claes, T.; Bogaerts, W.; Bienstman, P. Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 2010, 18, 22747. [Google Scholar] [CrossRef]
- Youplao, P.; Pornsuwancharoen, N.; Amiri, I.S.; Jalil, M.A.; Aziz, M.S.; Ali, J.; Singh, G.; Yupapin, P.; Grattan, K.T.V. Microring stereo sensor model using Kerr–Vernier effect for bio-cell sensor and communication. Nano Commun. Netw. 2018, 17, 30–35. [Google Scholar] [CrossRef]
- De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R. Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt. Express 2007, 15, 7610. [Google Scholar] [CrossRef]
- Matsko, A.B.; Ilchenko, V.S. Optical resonators with whispering-gallery modes-part I: Basics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 3–14. [Google Scholar] [CrossRef]
- Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Kumar Selvaraja, S.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73. [Google Scholar] [CrossRef]
- Flueckiger, J.; Schmidt, S.; Donzella, V.; Sherwali, A.; Ratner, D.M.; Chrostowski, L.; Cheung, K.C. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 2016, 24, 15672. [Google Scholar] [CrossRef]
- Barrios, C.A.; Bañuls, M.J.; González-Pedro, V.; Gylfason, K.B.; Sánchez, B.; Griol, A.; Maquieira, A.; Sohlström, H.; Holgado, M.; Casquel, R. Label-free optical biosensing with slot-waveguides. Opt. Lett. 2008, 33, 708. [Google Scholar] [CrossRef]
- Barrios, C.A. Analysis and modeling of a silicon nitride slot-waveguide microring resonator biochemical sensor. In Proceedings of the SPIE Europe Optics + Optoelectronics, Prague, Czech Republic, 20–23 April 2009; Baldini, F., Homola, J., Lieberman, R.A., Eds.; SPIE: Bellingham, WA, USA, 2009; p. 735605. [Google Scholar] [CrossRef]
- Toma, A.D.; Brunetti, G.; Colapietro, P.; Ciminelli, C. High-Resolved Near-Field Sensing by Means of Dielectric Grating With a Box-Like Resonance Shape. IEEE Sens. J. 2024, 24, 6045–6053. [Google Scholar] [CrossRef]
- Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 2002, 14, 483–485. [Google Scholar] [CrossRef]
- Padmaraju, K.; Bergman, K. Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 2014, 3, 269–281. [Google Scholar] [CrossRef]
- Schmidt, S.; Flueckiger, J.; Wu, W.; Grist, S.M.; Talebi Fard, S.; Donzella, V.; Khumwan, P.; Thompson, E.R.; Wang, Q.; Kulik, P.; et al. Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing. In Proceedings of the SPIE NanoScience + Engineering, San Diego, CA, USA, 17–21 August 2014; Mohseni, H., Agahi, M.H., Razeghi, M., Eds.; SPIE: Bellingham, WA, USA, 2014; p. 91660M. [Google Scholar] [CrossRef]
- Arbabi, A.; Goddard, L.L. Measurements of the refractive indices and thermo-optic coefficients of Si_3N_4 and SiO_x using microring resonances. Opt. Lett. 2013, 38, 3878. [Google Scholar] [CrossRef]
- Marsh, O.A.; Xiong, Y.; Ye, W.N. Slot Waveguide Ring-Assisted Mach–Zehnder Interferometer for Sensing Applications. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 440–443. [Google Scholar] [CrossRef]
- Terrel, M.; Digonnet, M.J.F.; Fan, S. Ring-coupled Mach-Zehnder interferometer optimized for sensing. Appl. Opt. 2009, 48, 4874. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Zhang, Y.; Hsu, W.-L.; Veilleux, S.; Dagenais, M. On-chip broadband Mach-Zehnder interferometer based on a broadband taper-section phase shifter. Opt. Express 2024, 32, 35551. [Google Scholar] [CrossRef]
- Wang, J.; Dai, D. Highly sensitive Si nanowire-based optical sensor using a Mach–Zehnder interferometer coupled microring. Opt. Lett. 2010, 35, 4229. [Google Scholar] [CrossRef]
- Heideman, R.G.; Lambeck, P.V. Remote opto-chemical sensing with extreme sensitivity: Design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach–Zehnder interferometer system. Sens. Actuators B Chem. 1999, 61, 100–127. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Y.; Yu, F.; Tang, L.; Li, M.; He, J.-J. High-sensitivity optical biosensor based on cascaded Mach–Zehnder interferometer and ring resonator using Vernier effect. Opt. Lett. 2014, 39, 6363. [Google Scholar] [CrossRef]
- Jiang, X.; Tang, L.; Song, J.; Li, M.; He, J.-J. Optical waveguide biosensor based on cascaded Mach-Zehnder interferometer and ring resonator with Vernier effect. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 7–12 February 2015; Miller, B.L., Fauchet, P.M., Cunningham, B.T., Eds.; SPIE: Bellingham, WA, USA, 2015; p. 931003. [Google Scholar] [CrossRef]
- Nitkowski, A.; Baeumner, A.; Lipson, M. On-chip spectrophotometry for bioanalysis using microring resonators. Biomed. Opt. Express 2011, 2, 271. [Google Scholar] [CrossRef]
- Narang, R.; Mohammadi, S.; Ashani, M.M.; Sadabadi, H.; Hejazi, H.; Zarifi, M.H.; Sanati-Nezhad, A. Sensitive, Real-time and Non-Intrusive Detection of Concentration and Growth of Pathogenic Bacteria using Microfluidic-Microwave Ring Resonator Biosensor. Sci. Rep. 2018, 8, 15807. [Google Scholar] [CrossRef]
- Li, Z.; Zou, J.; Zhu, H.; Nguyen, B.T.T.; Shi, Y.; Liu, P.Y.; Bailey, R.C.; Zhou, J.; Wang, H.; Yang, Z.; et al. Biotoxoid Photonic Sensors with Temperature Insensitivity Using a Cascade of Ring Resonator and Mach–Zehnder Interferometer. ACS Sens. 2020, 5, 2448–2456. [Google Scholar] [CrossRef]
- Saunders, J.E.; Sanders, C.; Chen, H.; Loock, H.-P. Refractive indices of common solvents and solutions at 1550 nm. Appl. Opt. 2016, 55, 947. [Google Scholar] [CrossRef]
- Zhang, X.; Halvorsen, K.; Zhang, C.-Z.; Wong, W.P.; Springer, T.A. Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor. Science 2009, 324, 1330–1334. [Google Scholar] [CrossRef]
- Soldano, L.B.; Pennings, E.C.M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Light. Technol. 1995, 13, 615–627. [Google Scholar] [CrossRef]
- Hobbs, P.C.D. Ultrasensitive laser measurements without tears. Appl. Opt. 1997, 36, 903. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. SOFT LITHOGRAPHY. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Laerme, F.; Schilp, A.; Funk, K.; Offenberg, M. Bosch deep silicon etching: Improving uniformity and etch rate for advanced MEMS applications. In Proceedings of the Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291), Orlando, FL, USA, 21 January 1999; IEEE: Orlando, FL, USA, 1999; pp. 211–216. [Google Scholar] [CrossRef]
- Xu, Q.; Lipson, M. All-optical logic based on silicon micro-ring resonators. Opt. Express 2007, 15, 924. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, F.; Yang, C.; Song, J.; Tang, L.; Li, M.; He, J.-J. Label-free biosensing using cascaded double-microring resonators integrated with microfluidic channels. Opt. Commun. 2015, 344, 129–133. [Google Scholar] [CrossRef]
- Johnson, K.; Alshamrani, N.; Almutairi, D.; Grieco, A.; Horvath, C.; Westwood-Bachman, J.N.; McKinlay, A.; Fainman, Y. Determination of the nonlinear thermo-optic coefficient of silicon nitride and oxide using an effective index method. Opt. Express 2022, 30, 46134. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sun, Y.; Chen, S. Silicon nitride/titanium oxide hybrid waveguide design enabling broadband athermal operation. Appl. Opt. 2019, 58, 5267. [Google Scholar] [CrossRef]
- Teng, J.; Dumon, P.; Bogaerts, W.; Zhang, H.; Jian, X.; Han, X.; Zhao, M.; Morthier, G.; Baets, R. Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express 2009, 17, 14627. [Google Scholar] [CrossRef]
- Shi, Y.; Cheng, L.; Yi, Y.; Wu, Q.; Liang, Z.; Hu, C. High-sensitivity on-chip temperature sensor based on cascaded microring resonators. Open Phys. 2023, 21, 20230138. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Seutter, E.G.; Wang, Z.; Wan, J. Microfluidic-Integrated, Ring-Resonator-Assisted Mach–Zehnder Interferometer (μFRA-MZI) as a Label-Free Nanophotonic Sensor. Biosensors 2025, 15, 741. https://doi.org/10.3390/bios15110741
Chang Y, Seutter EG, Wang Z, Wan J. Microfluidic-Integrated, Ring-Resonator-Assisted Mach–Zehnder Interferometer (μFRA-MZI) as a Label-Free Nanophotonic Sensor. Biosensors. 2025; 15(11):741. https://doi.org/10.3390/bios15110741
Chicago/Turabian StyleChang, Yunju, Ethan Glenn Seutter, Zihao Wang, and Jiandi Wan. 2025. "Microfluidic-Integrated, Ring-Resonator-Assisted Mach–Zehnder Interferometer (μFRA-MZI) as a Label-Free Nanophotonic Sensor" Biosensors 15, no. 11: 741. https://doi.org/10.3390/bios15110741
APA StyleChang, Y., Seutter, E. G., Wang, Z., & Wan, J. (2025). Microfluidic-Integrated, Ring-Resonator-Assisted Mach–Zehnder Interferometer (μFRA-MZI) as a Label-Free Nanophotonic Sensor. Biosensors, 15(11), 741. https://doi.org/10.3390/bios15110741

