ZnS-Based Electrode Materials for Electrochemical Sensing (Environmental Monitoring and Food Samples) and Energy Storage Applications
Abstract
1. Introduction
2. Synthetic Methods
2.1. Hydrothermal Method
2.2. Microwave Method
2.3. Sol–Gel Method
2.4. Electrochemical Synthesis Method
2.5. Ultrasonication Method
3. ZnS in Electrochemical Sensors
4. ZnS-Based Materials in SCs
5. Conclusions and Future Perspectives
- The long-term stability of ZnS-based materials is limited for practical applications.
- The exact mechanism for the SCs and sensors needs to be studied in detail.
- The ZnS/MXene may be a suitable material, but preparation of MXene requires harsh conditions. Thus, environmentally friendly methods should be developed.
- DPV-based studies may suffers from low selectivity due to the presence of similar isomers or interfering substances.
- The long-term cyclic stability of the SCs is still limited.
- ZnS can be integrated with high surface area and conducting materials for SC applications.
- Future research may explore electrochemical sensors for portable, miniaturized devices, flexible and wearable or smartphone-controlled devices for environmental monitoring and healthcare systems.
Author Contributions
Funding
Conflicts of Interest
References
- Fatima, S.; Hossain, M.E.; Alnour, M.; Kanwal, S.; Rehman, M.Z.; Esquivias, M.A. Assessing the damage to environmental pollution: Discerning the impact of environmental technology, energy efficiency, green energy and natural resources. Sustainability 2024, 16, 9307. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R.; Nagaj, R.; Žuromskaitė-Nagaj, B.; Grebski, W.W. The influence of the global energy crisis on energy efficiency: A comprehensive analysis. Energies 2024, 17, 947. [Google Scholar] [CrossRef]
- Tal, A. The environmental impacts of overpopulation. Encyclopedia 2025, 5, 45. [Google Scholar] [CrossRef]
- Nsair, R.; Alzubi, A.B. Globalization, financial risk, and environmental degradation in China: The role of human capital and renewable energy use. Sustainability 2025, 17, 6810. [Google Scholar] [CrossRef]
- Munzhelele, E.P.; Mudzielwana, R.; Ayinde, W.B.; Gitari, W.M. Pharmaceutical contaminants in wastewater and receiving water bodies of South Africa: A review of sources, pathways, occurrence, effects, and geographical distribution. Water 2024, 16, 796. [Google Scholar] [CrossRef]
- Estrada-Almeida, A.G.; Castrejón-Godínez, M.L.; Mussali-Galante, P.; Tovar-Sánchez, E.; Rodríguez, A. Pharmaceutical pollutants: Ecotoxicological impacts and the use of agro-industrial waste for their removal from aquatic environments. J. Xenobiot. 2024, 14, 1465–1518. [Google Scholar] [CrossRef]
- Aib, H.; Parvez, M.S.; Czédli, H.M. Pharmaceuticals and microplastics in aquatic environments: A comprehensive review of pathways and distribution, toxicological and ecological effects. Int. J. Environ. Res. Public Health 2025, 22, 799. [Google Scholar] [CrossRef]
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human health risks due to exposure to water pollution: A review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- Piscopo, M.; Marinaro, C.; Lettieri, G. The multifaceted impact of environmental pollutants on health and ecosystems. Biomolecules 2024, 14, 1021. [Google Scholar] [CrossRef] [PubMed]
- Noh, D.; Oh, E. Estimation of environmental effects and response time in gas-phase explosives detection using photoluminescence quenching method. Polymers 2024, 16, 908. [Google Scholar] [CrossRef] [PubMed]
- Hameedat, F.; Hawamdeh, S.; Alnabulsi, S.; Zayed, A. High performance liquid chromatography (HPLC) with fluorescence detection for quantification of steroids in clinical, pharmaceutical, and environmental samples: A review. Molecules 2022, 27, 1807. [Google Scholar] [CrossRef]
- Chun, S.; Muthu, M.; Gopal, J. Mass spectrometry as an analytical tool for detection of microplastics in the environment. Chemosensors 2022, 10, 530. [Google Scholar] [CrossRef]
- Li, X.; Jin, Y.; Zhu, N.; Yin, J.; Jin, L.Y. Recent developments of fluorescence sensors constructed from pillar[n]arene-based supramolecular architectures containing metal coordination sites. Sensors 2024, 24, 1530. [Google Scholar] [CrossRef]
- Ojeda, C.B.; Rojas, F.S. Recent development in optical chemical sensors coupling with flow injection analysis. Sensors 2006, 6, 1245–1307. [Google Scholar] [CrossRef]
- Elmorsi, E.T.; Lai, E.P.C. Optimization of capillary electrophoresis by central composite design for separation of pharmaceutical contaminants in water quality testing. Environments 2025, 12, 22. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Ahmad, K.; Karmegam, D.; Oh, T.H. Progress in Bi2WO6-based materials for electrochemical sensing and supercapacitor applications. Molecules 2025, 30, 3149. [Google Scholar] [CrossRef]
- Zhu, H.; Li, M.; Cheng, C.; Han, Y.; Fu, S.; Li, R.; Cao, G.; Liu, M.; Cui, C.; Liu, J.; et al. Recent advances in and applications of electrochemical sensors based on covalent organic frameworks for food safety analysis. Foods 2023, 12, 4274. [Google Scholar] [CrossRef] [PubMed]
- Panneer Selvam, S.; Chinnadayyala, S.R.; Cho, S.; Yun, K. Differential pulse voltammetric electrochemical sensor for the detection of etidronic acid in pharmaceutical samples by using rGO-Ag@SiO2/Au PCB. Nanomaterials 2020, 10, 1368. [Google Scholar] [CrossRef]
- Pogăcean, F.; Măgeruşan, L.; Turza, A.; Pruneanu, S. Graphene-modified electrode for linear sweep voltammetric sensing of catechol. Chemosensors 2025, 13, 43. [Google Scholar] [CrossRef]
- Kavieva, L.; Ziyatdinova, G. Voltammetric sensor based on SeO2 nanoparticles and surfactants for indigo carmine determination. Sensors 2022, 22, 3224. [Google Scholar] [CrossRef] [PubMed]
- Lazaro, A.; Villarino, R.; Girbau, D.; Haji-Hashemi, H.; Prieto-Simon, B. Low-cost wireless device for DNA sensing using square wave voltammetry. Chemosensors 2025, 13, 119. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, G.; Liu, G. Coupling square wave anodic stripping voltammetry with support vector regression to detect the concentration of lead in soil under the interference of copper accurately. Sensors 2020, 20, 6792. [Google Scholar] [CrossRef]
- Liu, C.; Chen, D.; Zhu, C.; Liu, X.; Wang, Y.; Lu, Y.; Zheng, D.; Fu, B. Fabrication of a disposable amperometric sensor for the determination of nitrite in food. Micromachines 2023, 14, 687. [Google Scholar] [CrossRef]
- Farina, R.; Scalese, S.; Corso, D.; Capuano, G.E.; Screpis, G.A.; Coniglio, M.A.; Condorelli, G.G.; Libertino, S. Chronoamperometric ammonium ion detection in water via conductive polymers and gold nanoparticles. Molecules 2024, 29, 3028. [Google Scholar] [CrossRef]
- Wang, X.L.; Jin, E.M.; Sahoo, G.; Jeong, S.M. High-entropy metal oxide (NiMnCrCoFe)3O4 anode materials with controlled morphology for high-performance lithium-ion batteries. Batteries 2023, 9, 147. [Google Scholar] [CrossRef]
- Saleem, S.; Khalid, S.; Malik, M.A.; Nazir, A. Review and outlook of zinc sulfide nanostructures for supercapacitors. Energy Fuels 2024, 38, 9153–9185. [Google Scholar] [CrossRef]
- Subasinghage, K.; Gunawardane, K. Supercapacitor-assisted energy harvesting systems. Energies 2024, 17, 3853. [Google Scholar] [CrossRef]
- Czagany, M.; Hompoth, S.; Keshri, A.K.; Pandit, N.; Galambos, I.; Gacsi, Z.; Baumli, P. Supercapacitors: An efficient way for energy storage application. Materials 2024, 17, 702. [Google Scholar] [CrossRef]
- Saba, S.; Alsharari, A.M.; Aldaleeli, N.Y.; Aljohani, M.M.; Hamdalla, T.A. Structural, electrochemical, and supercapacitor characterization of double metal oxides doped within ZIF-8 composites. Processes 2025, 13, 859. [Google Scholar] [CrossRef]
- Tadesse, M.G.; Ahmmed, A.S.; Lübben, J.F. Review on conductive polymer composites for supercapacitor applications. J. Compos. Sci. 2024, 8, 53. [Google Scholar] [CrossRef]
- Nandeesh, K.N.; Prashantha, K. Recent advances on metal sulfides as next-generation electrodes for supercapacitor energy storage: A holistic review. Next Mater. 2025, 9, 101103. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Abdelkareem, M.A.; Alami, A.H.; Mirzaeian, M.; Sayed, E.T. Carbon-based materials for supercapacitors: Recent progress, challenges and barriers. Batteries 2023, 9, 19. [Google Scholar] [CrossRef]
- Otgonbayar, Z.; Yang, S.; Kim, I.-J.; Oh, W.-C. Recent advances in two-dimensional MXene for supercapacitor applications: Progress, challenges, and perspectives. Nanomaterials 2023, 13, 919. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, L.; Li, R.; Zhou, Y. One-step synthesis of Fe-based metal–organic framework (MOF) nanosheet array as efficient cathode for hybrid supercapacitors. Inorganics 2023, 11, 169. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Alessandri, E. Syntheses, properties, and applications of ZnS-based nanomaterials. Appl. Nano 2024, 5, 116–142. [Google Scholar] [CrossRef]
- Alhassan, S.; Alshammari, A.H.; Alotibi, S.; Alshammari, K.; Mohamed, W.S.; Hadia, N.M.A. Structural and optical properties of nickel-doped zinc sulfide. Nanomaterials 2024, 14, 1599. [Google Scholar] [CrossRef]
- Mane, S.M.; Wagh, K.S.; Teli, A.M.; Beknalkar, S.A.; Shin, J.C.; Lee, J. One-pot facile synthesis of a cluster of ZnS low-dimensional nanoparticles for high-performance supercapacitor electrodes. Micromachines 2024, 15, 251. [Google Scholar] [CrossRef]
- Alam, M.W.; Al Qahtani, H.S.; Albalawi, H.; Aamir, M.; Bilal, M.; Mir, T.A.; Souayeh, B.; Zaidi, N. Enhanced electrodes for supercapacitor applications prepared by hydrothermal-assisted nanosheet-shaped MgCo2O4@ZnS. Crystals 2022, 12, 822. [Google Scholar] [CrossRef]
- Xu, S.-D.; Wu, L.-C.; Adil, M.; Sheng, L.-F.; Zhao, Z.-Y.; Xu, K.; Chen, X. Developing a CeS2/ZnS quantum dot composite nanomaterial as a high-performance cathode material for supercapacitor. Batteries 2025, 11, 289. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Khun, K.; Liu, X.; Willander, M. Hydrothermal synthesis of nanoclusters of ZnS comprised on nanowires. Nanomaterials 2013, 3, 564–571. [Google Scholar] [CrossRef]
- Gao, S.; Lu, Y.; Ma, T.; Liu, H.; Zhang, J. Preparation and photocatalytic hydrogen production of pink ZnS. Inorganics 2025, 13, 166. [Google Scholar] [CrossRef]
- Bailón-Ruiz, S.J.; Cedeño-Mattei, Y.; Núñez-Colón, A.M.; Torres-Torres, K. Fast one-step microwave-assisted synthesis of iron-doped ZnS for photocatalytic applications. Crystals 2024, 14, 699. [Google Scholar] [CrossRef]
- Wang, W.; Lee, G.-J.; Wang, P.; Qiao, Z.; Liu, N.; Wu, J.J. Microwave synthesis of metal-doped ZnS photocatalysts and applications on degrading 4-chlorophenol using heterogeneous photocatalytic ozonation process. Sep. Purif. Technol. 2020, 237, 116469. [Google Scholar] [CrossRef]
- Stanić, V.; Etsell, T.H.; Pierre, A.C.; Mikula, R.J. Sol–gel processing of ZnS. Mater. Lett. 1997, 31, 35–38. [Google Scholar] [CrossRef]
- Yang, K.; Guo, Q.; Li, H.; Hao, X.; Ma, Y.; Yang, M.; Zhai, T.; Savilov, S.V.; Lunin, V.V.; Xia, H. Highly efficient sol–gel synthesis for ZnS@N,S co-doped carbon nanosheets with embedded heterostructure for sodium ion batteries. J. Power Sources 2018, 402, 340–344. [Google Scholar] [CrossRef]
- Hamla, M.; Benaicha, M.; Chetbani, Y.; Dilmi, O. Electrochemical synthesis and characterization of zinc sulfide (ZnS) semiconducting thin films from citrate-based plating bath. J. Appl. Electrochem. 2024, 54, 1299–1307. [Google Scholar] [CrossRef]
- Samskruthi, K.P.; Ananda, S.; Alnaggar, G. Electrochemical synthesis of ZnS/In2S3 nanocomposite for photocatalytic oxidation of acetic acid and its substituents: Efficiency compared with ZnS, In2S3 and TiO2. Chem. Data Collect. 2021, 33, 100682. [Google Scholar] [CrossRef]
- Xu, J.; Ji, W.; Lin, J.; Tang, S.; Du, Y. Preparation of ZnS nanoparticles by ultrasonic radiation method. Appl. Phys. A 1998, 66, 639–641. [Google Scholar] [CrossRef]
- Annalakshmi, M.; Kumaravel, S.; Chen, S.-M.; Balasubramanian, P.; Balamurugan, T.S.T. A straightforward ultrasonic-assisted synthesis of zinc sulfide for supersensitive detection of carcinogenic nitrite ions in water samples. Sens. Actuators B Chem. 2020, 305, 127387. [Google Scholar] [CrossRef]
- Elnouby, M.S.; El-Shazly, O.; El-Wahidy, E.F.; Ramadan, M.; Farag, A.A.M.; Roushdy, N. Optimized synthesis, structural and electrical enhancement of zinc sulfide nanoparticles for electrochemical sensor applications. Optik 2023, 287, 171070. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, X.; Peng, N.; Wang, J.; Jiang, Z. Study of ZnS nanostructures-based electrochemical and photoelectrochemical biosensors for uric acid detection. Sensors 2017, 17, 1235. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Mukundan, G.; Badhulika, S. ZnS/MnO2 metal–organic framework-based conductive hydrogel for highly selective and sensitive detection of glutathione in serum samples. Microchem. J. 2024, 197, 109727. [Google Scholar] [CrossRef]
- Arif, N.; Gul, S.; Sohail, M.; Rizwan, S.; Iqbal, M. Synthesis and characterization of layered Nb2C MXene/ZnS nanocomposites for highly selective electrochemical sensing of dopamine. Ceram. Int. 2021, 47, 2388–2396. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, D.; Shi, Y.; Wang, Z.; Liu, G.; Lin, S.; Zhou, H.; Wang, Q. ZnS/MXene/CdS heterostructure modified electrode for ultrasensitive miRNA-21 assay with signal amplified photoelectrochemical strategy. Sens. Actuators B Chem. 2024, 419, 136435. [Google Scholar] [CrossRef]
- Kim, Y.; Giribabu, K.; Kim, J.G.; Lee, J.B.; Hong, W.G.; Huh, Y.S.; Kim, H.J. Electrochemical sensors based on Au–ZnS hybrid nanorods with Au-mediated efficient electron relay. ACS Sustain. Chem. Eng. 2019, 7, 4094–4102. [Google Scholar] [CrossRef]
- Krinitsyn, D.O.; Romanchenko, A.S.; Vorob’ev, S.A.; Likhatskii, M.N.; Karacharov, A.A.; Krylov, A.S.; Volochaev, M.N.; Mikhlin, Y.L. Synthesizing zinc sulfide films on the gold surface as the sensor for electrochemical quartz crystal microbalance. Russ. J. Electrochem. 2021, 57, 1157–1163. [Google Scholar] [CrossRef]
- Yue, H.Y.; Wu, P.F.; Huang, S.; Gao, X.; Song, S.S.; Wang, W.Q.; Guo, X.R. Simultaneous electrochemical determination of levodopa and uric acid based on ZnS nanoparticles/3D graphene foam electrode. Microchem. J. 2019, 149, 103977. [Google Scholar] [CrossRef]
- Alkahtani, S.A.; Mahmoud, A.M.; Mahnashi, M.H.; AlQarni, A.O.; Alqahtani, Y.S.A.; El-Wekil, M.M. Facile one-pot sonochemical synthesis of layered nanostructure of ZnS NPs/rGO nanosheets for simultaneous analysis of daclatasvir and hydroxychloroquine. Microchem. J. 2021, 164, 105972. [Google Scholar] [CrossRef]
- Zheng, W.; Sui, J.; Chen, T.; Qi, Q.; Lv, Y. Synthesis and application of nanocomposite of ZnS, Ni2P and reduced graphene oxide as electrochemical sensor for determination of chlorpyrifos in farmland water. Int. J. Electrochem. Sci. 2021, 16, 211227. [Google Scholar] [CrossRef]
- Erçarıkcı, E.; Aksu, Z.; Topçu, E.; Dağcı Kıranşan, K. ZnS nanoparticles-decorated composite graphene paper: A novel flexible electrochemical sensor for detection of dopamine. Electroanalysis 2022, 34, 91–102. [Google Scholar] [CrossRef]
- Disouza, F.P.D.; Ruspika, S.; Chen, S.-M.; Balaji, R.; Meena Devi, J.; Peng, J.-Y.; Jothi, A.I. Synergetic effect of ZnS:SnS2/reduced graphene oxide heterostructures for electrochemical detection of carcinogenic pollutant maleic hydrazide. Microchem. J. 2023, 193, 109087. [Google Scholar] [CrossRef]
- Sarwar, S.; Lin, M.C.; Amezaga, C.; Wei, Z.; Iyayi, E.; Polk, H.; Wang, R.; Wang, H.; Zhang, X. Ultrasensitive electrochemical biosensors based on zinc sulfide/graphene hybrid for rapid detection of SARS-CoV-2. Adv. Compos. Hybrid Mater. 2023, 6, 49. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, N.; Gao, W.; Hu, F.; Zhang, C.; Wei, X. ZnS and reduced graphene oxide nanocomposite-based non-enzymatic biosensor for the photoelectrochemical detection of uric acid. Biosensors 2024, 14, 488. [Google Scholar] [CrossRef] [PubMed]
- Arab, N.; Fotouhi, L.; Salis, A. Electrosynthesised CdS@ZnS quantum dots decorated multiwalled carbon nanotubes for analysis of propranolol in biological fluids and pharmaceutical samples. Microchem. J. 2021, 168, 106453. [Google Scholar] [CrossRef]
- Naik, S.S.; Lee, S.J.; Theerthagiri, J.; Yu, Y.; Choi, M.Y. Rapid and highly selective electrochemical sensor based on ZnS/Au-decorated functionalized multiwalled carbon nanotube nanocomposites produced via pulsed laser technique for detection of toxic nitro compounds. J. Hazard. Mater. 2021, 418, 126269. [Google Scholar] [CrossRef]
- Amini, N.; Gholivand, M.B.; Shamsipur, M.; Maleki, A.; Naderi, K.; Marzban, N.; Lee, S.-M.; Jeon, C. Modification of glassy carbon surface using L-cysteine-capped Mn-doped ZnS quantum dots and multiwall carbon nanotube nanocomposite: Application to determine hydrazine in water samples. Desalin. Water Treat. 2022, 248, 268–276. [Google Scholar] [CrossRef]
- Wang, Z.; Wan, Y.; Zhang, Y.; Zhang, B.; Li, M.; Jin, X.; Yang, T.; Meng, G. 3D porous conductive matrix based on phase-transited BSA and covalent coupling-stabilized transition ZnS–CNT for antifouling and on-site detection of nitrite in soil. J. Hazard. Mater. 2024, 472, 134492. [Google Scholar] [CrossRef]
- Sabbaghan, M.; Ghalkhani, M.; Hosseini, M.; Ghanbari, M. Mn-doped ZnS synthesis in DABCO-based ionic liquid: Morphology and electrochemical sensing performance for isoprenaline analysis. J. Ind. Eng. Chem. 2021, 95, 367–375. [Google Scholar] [CrossRef]
- Othmani, A.; Maddouri, A.; Derbali, M.; Touati, F.; Dhaouadi, H. A 1D/0D CdS@ZnS nanocomposite as an electrochemical sensor for hydrogen peroxide detection. J. Mater. Sci. Mater. Electron. 2022, 33, 7048–7057. [Google Scholar] [CrossRef]
- Shantiaei, H.; Roushani, M.; Mohammadi, F. Electrospinning ZnS:Ni quantum dots into carbon nanofibrous structure as a base for the electrochemical aptasensor for detection of trypsin. Sens. Actuators Rep. 2025, 9, 100272. [Google Scholar] [CrossRef]
- Tithito, T.; Traiwatcharanon, P.; Kondee, S.; Seekaew, Y.; Chaloeipote, G.; Seesaard, T.; Reunchan, P.; Pon-On, W.; Wongchoosuk, C. Thermal decomposition synthesis of Sr-modified ZnS quantum dots for hydrogen peroxide electrochemical sensing. Electrochim. Acta 2025, 525, 146124. [Google Scholar] [CrossRef]
- Akrami, Z.; Sohouli, E. Preparation of an ultra-sensitive electrochemical sensor for morphine measurement using the ZnS/MIL-125 nanocomposite. J. Alloys Compd. 2025, 1010, 178042. [Google Scholar] [CrossRef]
- Li, H.; Tian, L.; Yang, S.; Li, C.; Song, Y.; Li, R.; Guo, Y.; Lu, J. A signal-on electrochemiluminescence sensor based on luminol@carbon nanotubes and CdTe–ZnS@hydroxyapatite for the detection of paclitaxel. Microchem. J. 2024, 204, 111102. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Reddy, T.K.; Rajaji, U.; Alothman, A.A.; Govindasamy, M. Optimization of electrochemical sensitivity in anticancer drug quantification through ZnS@CNS nanosheets: Synthesis via accelerated sonochemical methodology. Ultrason. Sonochem. 2024, 105, 106858. [Google Scholar] [CrossRef] [PubMed]
- Patil, Y.N.; Megalamani, M.B.; Nandibewoor, S.T. Graphitic carbon nitride infused with PVA–Mn:ZnS modified carbon sensor for electrochemical investigation of metoclopramide hydrochloride. Diam. Relat. Mater. 2023, 138, 110254. [Google Scholar] [CrossRef]
- Ali, S.K.; Alamier, W.M.; Hasan, N.; Ahmed, S.; Ansari, A.; Imran, M. Synergistic nanomaterials: Zinc sulfide–polyaniline for ciprofloxacin electrochemical sensing. Appl. Phys. A 2023, 129, 859. [Google Scholar] [CrossRef]
- Gokulkumar, K.; Priscillal, I.J.D.; Wang, S.-F. Deep eutectic solvent-mediated synthesis of PDA-coated f-CNF doped ZnS nanoparticles for electrode modification: Innovative sensing platform for determination of pollutant 3-nitrophenol. J. Alloys Compd. 2022, 924, 166561. [Google Scholar] [CrossRef]
- Angelopoulou, M.; Kourti, D.; Mertiri, M.; Petrou, P.; Kakabakos, S.; Kokkinos, C. A 3D-printed electrochemical immunosensor employing Cd/Se ZnS QDs as labels for the rapid and ultrasensitive detection of Salmonella typhimurium in poultry samples. Chemosensors 2023, 11, 475. [Google Scholar] [CrossRef]
- Mohd Bakhori, N.; Yusof, N.A.; Abdullah, J.; Wasoh, H.; Ab Rahman, S.K.; Abd Rahman, S.F. Surface-enhanced CdSe/ZnS QD/SiNP electrochemical immunosensor for the detection of Mycobacterium tuberculosis by combination of CFP10–ESAT6 for better diagnostic specificity. Materials 2020, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Liu, S.; Li, H.; Li, D.; Han, X. Preparation and electrochemical capacitance of different micromorphology zinc sulfide on nickel foam for asymmetric supercapacitor. J. Energy Storage 2022, 50, 104600. [Google Scholar] [CrossRef]
- Rauf, M.; Shah, S.S.; Shah, S.N.A.; Haq, T.U.; Shah, J.; Ullah, A.; Ahmad, T.; Khan, Y.; Aziz, M.A.; Hayat, K. Facile hydrothermal synthesis of zinc sulfide nanowires for high-performance asymmetric supercapacitor. J. Saudi Chem. Soc. 2022, 26, 101514. [Google Scholar] [CrossRef]
- Hussain, I.; Mohapatra, D.; Dhakal, G.; Lamiel, C.; Sayed, M.S.; Sahoo, S.; Mohamed, S.G.; Kim, J.S.; Lee, Y.R.; Shim, J.-J. Uniform growth of ZnS nanoflakes for high-performance supercapacitor applications. J. Energy Storage 2021, 36, 102408. [Google Scholar] [CrossRef]
- Ajith Kumar, K.; Gnanavel, B.; Mohan, K.S.; Manoranjitham, R.; Backiyalakshmi, N.; Nallusamy, S.; Rao Bhaviripudi, V.V.; Kavinkumar, T.; Thirumurugan, A. Hydrothermal fabrication of zinc sulfide nanosheets for high-performance supercapacitors. Mater. Lett. 2025, 396, 138777. [Google Scholar] [CrossRef]
- Hassan, N.U.; Jabeen, N.; Younas, W.; Ahmed, F.; Hussain, A.; Asif, S.U.; Alghamdi, M.M.; Naveed, M. Efficient hybrid supercapacitor performance enabled by large surface area of 2D mesoporous zinc sulfide nanosheets synthesized via microwaves. J. Electroanal. Chem. 2024, 975, 118794. [Google Scholar] [CrossRef]
- Nanda, O.P.; Singh, P.; Banothu, Y.N.; Kumar, R.; Badhulika, S. Hydro/solvothermally grown ZnS/MnO2-metal organic framework based hydrogel for all-solid-state flexible supercapacitor. J. Energy Storage 2024, 75, 109729. [Google Scholar] [CrossRef]
- Godlaveeti, S.K.; Alshgari, R.A.; Mushab, M.; Mingqiang, L.; Ying, H. ZnS/MnO2 nanocomposite electrodes: A dual approach for superior supercapacitor and safety open structure lithium-ion battery. J. Mol. Struct. 2025, 1336, 142114. [Google Scholar] [CrossRef]
- Hadi, M. Development of novel and excellent Fe2O3/ZnS nanohybrid electrode for supercapacitor. Inorg. Chem. Commun. 2025, 177, 114323. [Google Scholar] [CrossRef]
- Khan, A.U.; Tahir, K.; Almarhoon, Z.M.; Albaqawi, H.S.; Alanazi, A.A.; Al-Shehri, H.S.; Althagafi, T.M.; Elboughdiri, N.; Al-Saeedi, S.I.; Zaki, M.E.A. A new binder-free ZnS–CuO microsphere: A battery-type electrode material for asymmetric supercapacitor. J. Energy Storage 2024, 80, 110308. [Google Scholar] [CrossRef]
- Abdullah, M.; John, P.; Jabbour, K.; Ahmad, M.I.; Khan, S.; Waheed, M.S.; Albaqami, M.D.; Sheikh, M.; Ehsan, M.F.; Ashiq, M.N. Improvement in capacitive performance of ZnS with MnO2 via composite (ZnS/MnO2) strategy developed by hydrothermal technique. J. Energy Storage 2024, 78, 110034. [Google Scholar] [CrossRef]
- Shah, M.Z.U.; Sajjad, M.; Hou, H.; BiBi, S.; Shah, A. Hydrothermal synthesis of ZnO@ZnS heterostructure on Ni foam: A binder-free electrode for high power and stable hybrid supercapacitors. Mater. Lett. 2022, 326, 132910. [Google Scholar]
- BiBi, S.; Shah, M.Z.U.; Sajjad, M.; Shafi, H.Z.; Amin, B.; Bajaber, M.A.; Shah, A. A new ZnO–ZnS–CdS heterostructure on Ni substrate: A binder-free electrode for advanced asymmetric supercapacitors with improved performance. Electrochim. Acta 2022, 430, 141031. [Google Scholar]
- Ghotbi, M.Y.; Sikiru, S.; Rajabi, A.; Soleimani, H.; Kou, L.; Ansari, M.N.M.; Ramachandaramurthy, V.K. ZnO/ZnS/carbon nanocomposite-derived sulfur-doped carbon nanosheets using a layered nanoreactor: Towards advanced supercapacitor electrodes and devices. Chem. Eng. J. 2024, 485, 150018. [Google Scholar]
- Riaz, J.; Cao, J.; Bibi, A.; Arif, M.; Muhammad, D. Hydrothermal synthesis of ball-like ZnS nanospheres decorated urchin-like W18O49 nanospheres as electrode for high power and stable hybrid supercapacitor. Mater. Lett. 2024, 370, 136853. [Google Scholar]
- Ajith Kumar, K.; Gnanavel, B.; Joshua, J.R.; BaQais, A.; Sharmila, V.; Alam, M.W. Decoration of sea-urchin-like NiCoP coated with WSe2@ZnS as an advanced electrode material for hybrid supercapacitors. Electrochim. Acta 2023, 465, 142895. [Google Scholar]
- Ahmad, S.A.; Shah, M.Z.U.; Rahman, S.U.; Arif, M.; Lu, J.; Huang, T.; Ahmad, A.; Al-Kahtani, A.A.; Tighezza, A.M.; Sajjad, M. CoSe2@ZnS microsphere arrays with remarkable electrochemical performance for hybrid asymmetric supercapacitor. J. Energy Storage 2023, 73, 109090. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Shah, M.Z.U.; Rahman, S.U.; Arif, M.; Javed, M.S.; Sufyan, M.; Huang, T.; Al-Saeedi, S.I.; Song, P.; Sajjad, M. Facile synthesis of hierarchical ZnS@FeSe2 nanostructures as new energy-efficient cathode material for advanced asymmetric supercapacitors. J. Sci. Adv. Mater. Devices 2022, 7, 100489. [Google Scholar]
- Ajith Kumar, K.; Gnanavel, B.; Alam, M.W.; Joshua, J.R.; Sharmila, V.; BaQais, A. Design of honeycomb-like WSe2@ZnS coated NH4NiPO4·H2O hybrids for flexible all-solid-state asymmetric supercapacitors. J. Energy Storage 2024, 82, 110596. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Shah, M.Z.U.; Ullah, S.M.; Rahman, S.U.; Ullah, M.S.; Eldin, S.M.; Song, P.; Sajjad, M. High power aqueous hybrid asymmetric supercapacitor based on zero-dimensional ZnS nanoparticles with two-dimensional nanoflakes CuSe2 nanostructures. Ceram. Int. 2023, 49, 20007–20016. [Google Scholar] [CrossRef]
- Dhilip Kumar, R.; Sreevani, K.; Shanmugavalli, V.; Nagarani, S.; Dhinakaran, V.; Balamurali, R. ZnS–Co3S4 nanoscrubber synthesized by hydrothermal route for pseudo-supercapacitors. Mater. Lett. 2022, 310, 131418. [Google Scholar]
- Ismail, K.B.M.; Kumar, M.A.; Prasath, J.; Mahalingam, S.; Jayavel, R.; Arivanandhan, M.; Kim, J. Enhanced supercapattery performance of hydrothermally synthesized MoS2/ZnS nanocomposites. J. Energy Storage 2025, 113, 115555. [Google Scholar] [CrossRef]
- Yadav, A.; Sharma, A.K.; Dubey, A.; Dey, K.K.; Chaudhary, D.K.; Dhawan, P.K. Enhanced pseudocapacitive performance of MoS2/ZnS nanocomposites for advanced supercapacitor applications. Mater. Lett. 2025, 392, 138543. [Google Scholar] [CrossRef]
- Azizi, S.; Askari, M.B.; Salarizadeh, P. ZnS/FeS/activated carbon derived from rice husk loaded on nickel foam as a novel electrode material for supercapacitors. Diam. Relat. Mater. 2025, 157, 112459. [Google Scholar] [CrossRef]
- Ma, Y.; Jia, Y.; Lin, Y.; Shi, W. ZnS/MoS2 film grown on Mo foil as binder free electrode for supercapacitor. Chem. Phys. 2021, 542, 111030. [Google Scholar] [CrossRef]
- Jia, S.; Zhao, Q.; He, M.; Zhang, T. Hierarchical construction of amorphous Ni–Co–OHS@ZnS hollow spheres with optimized reaction kinetics via ion exchange-etching strategy for energy storage. Chem. Eng. J. 2024, 494, 153215. [Google Scholar] [CrossRef]
- Tian, F.; Wang, H.; Li, H.; Bai, X.; Wu, J.; Geng, F.; Hu, J.; Ren, L.; Zhu, T.; Wei, T. Enhancement of the electrochemical performance of Ni3S2–ZnS/carbon-coated TiN nanotube arrays through Au-ion beam sputtering. J. Energy Storage 2024, 83, 110685. [Google Scholar] [CrossRef]
- Raza, A.; Rasheed, A.; Farid, A.; Yousaf, M.; Ayub, N.; Khan, I.A. Synthesis of binder-free nanofibers ZnS/MoS2/NiF electrode material for asymmetric supercapacitor applications. J. Energy Storage 2024, 84, 110811. [Google Scholar] [CrossRef]
- Qian, J.; Xu, J.; Lu, Z.; Wang, Y. Preparation of nanosphere-interspersed flower-like heterostructure of ZnS/ZnCo2S4@Ni(OH)2 and its application for asymmetric solid-state supercapacitor. J. Energy Storage 2023, 69, 107945. [Google Scholar] [CrossRef]
- Tian, F.; Wu, J.; Hu, J.; Lu, Q.; Guo, S.; Ren, L.; Han, W.; Zhu, T.; Wei, T. Controlled synthesis of sulfur-vacancy-enriched sheet-like Ni3S2@ZnS composites for asymmetric supercapacitors with ultralong cycle life. J. Alloys Compd. 2023, 968, 172214. [Google Scholar] [CrossRef]
- Gao, Y.; Yue, X.; Dong, Y.; Zheng, Q.; Lin, D. High-efficiency activated phosphorus-doped Ni2S3/Co3S4/ZnS nanowire/nanosheet arrays for energy storage of supercapacitors. J. Colloid Interface Sci. 2024, 658, 441–449. [Google Scholar] [CrossRef]
- Khan, M.U.; Khan, A.U.; Al-Saeedi, S.I.; Tahir, K.; Alanazi, A.A.; Almarhoon, Z.M.; Althagafi, T.M.; Zaki, M.E.A.; Hassan, H.M.A.; Wu, M. Hydrothermally synthesized binder-less ZnS/CdS on nickel foam as promising hybrid supercapacitor electrode materials. J. Electroanal. Chem. 2024, 973, 118690. [Google Scholar] [CrossRef]
- Ansari, S.; Kumar, S.; Nayak, D.; Mandal, G.; Bauri, J.; Choudhary, R.B. Zinc sulfide (ZnS) incorporated polypyrrole (PPy) matrix for high-performance supercapacitor. Mater. Today Proc. 2024. [Google Scholar] [CrossRef]
- Salah, N.; Shehab, M.; El Nady, J.; Ebrahim, S.; El-Maghraby, E.M.; Sakr, A.-H. Polyaniline/ZnS quantum dots nanocomposite as supercapacitor electrode. Electrochim. Acta 2023, 449, 142174. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, Y.; Zong, M.; Jiang, T.; Zhang, S.; Zhang, Z. Designing micro-3D hierarchical HZCNF@ZS-LDH@MX as advanced electrodes for flexible supercapacitors. Carbon 2025, 233, 119871. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Cao, T.; Lei, Z.; Ma, Y.; Liu, H.; Zhu, L.; Feng, X.; Wei, W.; Zhang, H. A facile method synthesizing marshmallow ZnS grown on Ti3C2 MXene for high-performance asymmetric supercapacitors. J. Energy Storage 2022, 50, 104652. [Google Scholar] [CrossRef]
- Maron, G.K.; Alano, J.H.; Noremberg, B.S.; Rodrigues, L.S.; Stolojan, V.; Silva, S.R.P.; Villarreal Carreño, N.L. Electrochemical supercapacitors based on 3D nanocomposites of reduced graphene oxide/carbon nanotube and ZnS. J. Alloys Compd. 2020, 836, 155408. [Google Scholar] [CrossRef]
- Rani, L.; Han, J.I. Construction of MWCNT/ZnS/NiS microspheres: Unveiling enhanced electrochemical performance for aqueous asymmetric supercapacitor. J. Energy Storage 2025, 114, 115733. [Google Scholar] [CrossRef]
- Chu, H.-S.; Ma, D.-M.; Wu, F.; Zhao, R.-D.; Xiang, J.; Li, L.-F.; Zhao, X.; Wang, T. ZnS@Co(OH)2 nanostructured materials with high-performance energy storage and superior electrocatalytic activity. Ceram. Int. 2025, 51, 17630–17640. [Google Scholar] [CrossRef]
- Chavan, G.T.; Amate, R.U.; Ahir, N.A.; Ingole, R.S.; Mane, S.M.; An, J. Exploring multi-metallic integration of (Co, Cu, Fe) in ZnS nanostructures: A new paradigm for energy-intensive hybrid supercapacitors. J. Energy Storage 2025, 117, 116129. [Google Scholar] [CrossRef]
- Ratchatacharoensak, A.; Jorn-am, T.; Supchocksoonthorn, P.; Sirisit, N.; Chanthad, C.; Manyam, J.; Sangtawesin, T.; Paoprasert, P. Synergistically enhancing the electrochemical performance of activated carbon with ZnS for the fabrication of asymmetric supercapacitors. J. Electroanal. Chem. 2025, 993, 119292. [Google Scholar] [CrossRef]
- Wu, H.; Liu, M.; Liu, J.; Song, Y.; Sun, B.; Zhang, C.; Xu, Y.; Cao, Y.; Chen, C. Direct growth of AC/ZnS–Ni7S6/Ni(OH)2 on nickel foam as a porous electrode material for high-performance supercapacitors. Electrochim. Acta 2023, 441, 141821. [Google Scholar] [CrossRef]
- Shohag, M.R.H.; Khan, M.M.R.; Saleh, M.A.; Supta, A.S.; Chowdhury, M.S.H.H.; Rahman, M.M.; Marwani, H.M.; Rahman, M.M.; Okoli, O. Easy fabrication of L-glutamic acid/ZnS composites for efficient photocatalytic and supercapacitor performance. RSC Adv. 2023, 13, 24343–24352. [Google Scholar] [CrossRef] [PubMed]









| Synthesis Method | Advantages | Disadvantages |
|---|---|---|
| Hydrothermal | High yield, pH, temperature, time, and morphology of the materials can be controlled | Time consuming, limited scalability, energy consumption, and high pressure requirements |
| Microwave | Rapid reaction rate, uniform heating, high yield, and control over temperature, pressure and time | High cost for equipment, scalability issues, safety concerns, and non-uniform heating in bulk synthesis |
| Sol-gel | Purity, homogeneity and control over precursor concentration | Cracking of films, long processing time, moisture sensitivity, and low scalability |
| Electrochemical | Reaction parameters, including current density, voltage, and time can be controlled | Limited to conductive substrates only such as FTO, complex optimization, limited control over crystal growth and low yield |
| Ultrasonication | Simple, eco-friendly, uniform particle formation, and decent reaction yield | Relies of radiation sources on ultrasonic radiation, limited control over particle morphology |
| Electrode Material | Analyte | Detection Technique | LOD (µM) | Linear Range (µM) | Sensitivity | Real Sample | Refs. |
|---|---|---|---|---|---|---|---|
| ZnS nanoflakes | UA | Amp | 1.51 | 0.01–2.0 mM | 34.28 µA·cm−2·mM−1 | - | [52] |
| ZnS nanoparticles | UA | Amp | 1.79 | 0.01–1.5 mM | 43.18 µA·cm−2·mM−1 | - | [52] |
| ZnS urchin-like nanostructures | UA | Amp | 0.7 | 0.01–1.7 mM | 76.12 µA·cm−2·mM−1 | - | [52] |
| ZnS/MnO2/MOF HG | GSH | DPV | 6.88 nM | 10 nM to 10 mM | 8.45 µA·nM−1 cm−2 | Stimulated blood serum | [53] |
| GCE/Nb2C/ZnS | DA | DPV | 1.39 | 0.09–0.82 mM | 12.1 μA/μM | - | [54] |
| ZnS | p-NP | SWV | 0.68 | - | 5 nA/nM | - | [56] |
| ZnS NPs/3D GF | UA | DPV | 0.042 | 0.5–60 | 2.39 μA·μM−1·cm−2 | Human plasma | [58] |
| ZnS NPs/3D GF | LD | DPV | 0.043 | 0.5–60 | 2.34 μA·μM−1·cm−2 | Human plasma | [58] |
| ZnS NPs@rGO/GCE | DAC | DPV | 0.498 nM | 7–65 nM | - | Urine and plasma | [59] |
| ZnS NPs@rGO/GCE | HCQ | DPV | 0.456 nM | 5–65 nM | - | Urine and plasma | [59] |
| ZnS/SnS2/rGO | MD | DPV | 0.02 | 0.01–2359 | 0.207 µA µM−1 cm−2 | Water and potato | [62] |
| Activated GCE/MWCNTs/CdS@ZnS | PRO | SWV | 12 nM | 0.06–27 | - | Urine, human blood plasma, and tablet | [65] |
| ZnS/Mn QDs/MWCNTs/GCE | Hydrazine | DPV | 28 nM | 90–1200 nM | 0.001 µA nM−1 | Tap, mineral and lake water | [67] |
| PTB-ZnS/CNTs/SPE | NO2− | i-t | 0.00073 | 0.00001–0.4 mM | - | Soil sample | [68] |
| Mn.ZnS(II) | ISP | DPV | 90 nM | 0.5–30 | 66.88 μA μM−1 cm−2 | - | [69] |
| Sr@ZnS QDs | H2O2 | DPV | 75.9 | 1–80 mM | 12.68 μA⋅mM−1⋅cm−2 | - | [71] |
| ZnS@C3N4 | flutamide | LSV | 12.6 nM | 0.05–1320.15 | 2.352 μA μM−1 cm−2 | Urine and serum | [75] |
| PVA-Mn:ZnS/g-C3N4@CPE | MCH | DPV | 5.03 nM | 20 nM–10 µM | - | Pharmaceutical tablets | [76] |
| ZnS/f-CNF@PDA/GCE | 3-NP | DPV | 0.85 | 0.05–497 | 0.12 μA μM−1 cm−2 | Urine | [78] |
| Electrode Material | Specific Capacitance (F/g) | Current Density (A/g) | Electrolyte | Cyclic Stability | Retention (%) | Refs. |
|---|---|---|---|---|---|---|
| ZnS/NF | 1827.5 | 15 | 1 M KOH | 3000 | 68.42 | [81] |
| ZnS nanoflakes | 659 C/g | 2 | 3 M KOH | 5000 | 87 | [83] |
| ZnS nanosheets | 2282 | 1 | 2 M KOH | 10,000 | 95 | [85] |
| PVA-ZnS/MnO2 | 112 | 1.4 | PVA-KOH gel | 20,000 | 63 | [86] |
| ZnS/MnO2 | 254.3 | 0.5 | 3 M KOH | 5000 | 82 | [87] |
| Fe2O3/ZnS | 1095 | 1 | 3 M KOH | 5000 | - | [88] |
| ZnS/MnO2 | 1002 | 1 | 1 M KOH | 5000 | 95 | [90] |
| NiCoP/WSe2@ZnS | 2416 | 1 | 2 M KOH | 5000 | 96 | [95] |
| ZnS@FeSe2 (AZ-2//AC) | 110 | 1 | 3 M KOH | 12,000 | 88.1 | [97] |
| NH4NiPO4.H2O/WSe2@ZnS | 1542 | 1 | 3 M KOH | 10,000 | 97 | [98] |
| ZnS/Co3S4 | 593 | 0.5 | 2 M KOH | 2000 | - | [100] |
| MoS2/ZnS||MoS2/ZnS | 145 C/g | 5 mV/s | 2 M KOH | 3000 | 90 | [101] |
| MoS2/ZnS | 1628.3 | 1 | 1M H2SO4 | 1000 | 78.3 | [102] |
| ZnS/MoS2 | 956.3 | 10 mA/cm3 | 1 M KCl | 2000 | 85.7 | [104] |
| ZnS/MoS2 | 3032 | 1 | 2 M KOH | 20,000 | 97 | [107] |
| ZnS/ZnCo2S4@Ni(OH)2 | 2276.9 | 1 | 6 M KOH | 10,000 | 94.5 | [108] |
| Ni3S2 @ZnS/NF | 1903 | 19 | 1 M KOH | 50,000 | 86.7 | [109] |
| P-Ni2S3/Co3S4/ZnS | 2716 | 1 | 3 M KOH | 9000 | 89 | [110] |
| PANI/ZnS QDs | 358 | 0.5 | 1 M H2SO4 | 1000 | 97.8 | [113] |
| MXene/ZnS | 2347.2 C/g | 1 | 2 M KOH | 5000 | 89.88 | [115] |
| MWCNTs/ZnS/NiS | 2267 | 2 | 2 M KOH | 5000 | 93 | [117] |
| Zn1−x=y=zCoxCuyFezS | 117.5 mF cm−2 | 2 mA cm−2 | 2 M KOH | 10,000 | 72 | [119] |
| Activated carbon/ZnS | 371.5 | 1 | 3 M KOH | 10,000 | 82.5 | [120] |
| AC/ZnS-Ni7S6/Ni(OH)2 | 1034.52 | 1 | 2 M KOH | 3000 | 93.8 | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajkumar, C.; Vignesh, S.; Ahmad, K.; Oh, T.H. ZnS-Based Electrode Materials for Electrochemical Sensing (Environmental Monitoring and Food Samples) and Energy Storage Applications. Biosensors 2025, 15, 730. https://doi.org/10.3390/bios15110730
Rajkumar C, Vignesh S, Ahmad K, Oh TH. ZnS-Based Electrode Materials for Electrochemical Sensing (Environmental Monitoring and Food Samples) and Energy Storage Applications. Biosensors. 2025; 15(11):730. https://doi.org/10.3390/bios15110730
Chicago/Turabian StyleRajkumar, Chellakannu, Shanmugam Vignesh, Khursheed Ahmad, and Tae Hwan Oh. 2025. "ZnS-Based Electrode Materials for Electrochemical Sensing (Environmental Monitoring and Food Samples) and Energy Storage Applications" Biosensors 15, no. 11: 730. https://doi.org/10.3390/bios15110730
APA StyleRajkumar, C., Vignesh, S., Ahmad, K., & Oh, T. H. (2025). ZnS-Based Electrode Materials for Electrochemical Sensing (Environmental Monitoring and Food Samples) and Energy Storage Applications. Biosensors, 15(11), 730. https://doi.org/10.3390/bios15110730

