Recognition Element-Based Strategies for Rapid Detection of Foodborne Pathogens: Recent Progress and Perspectives
Abstract
1. Introduction
2. Sample Preparation and Matrix Effects in Food Detection
3. Detection Strategies Driven by Recognition Elements
3.1. Antibody
3.2. Aptamer
3.3. Nucleic Acid
3.4. CRISPR/Cas System
3.5. Molecular Imprinting Technology
3.6. Peptide
3.7. Small-Molecule Receptor
4. Detection Methods and Innovative Rapid Strategies
4.1. Conventional Rapid Methods
4.1.1. Lateral Flow Assays
4.1.2. Electrochemical Biosensors
4.1.3. Fluorescence Biosensors
4.1.4. Raman Biosensors
4.2. Integration and Multianalyte Platforms

4.3. Microfluidics and Portable POCT Devices
4.4. Intelligent Terminals and Artificial Intelligence-Assisted Detection
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| S. aureus | Staphylococcus aureus |
| E. coli | Escherichia coli |
| L. monocytogenes | Listeria monocytogenes |
| WHO | World Health Organization |
| AI | artificial intelligence |
| IoT | Internet of Things |
| ELISA | enzyme-linked immunosorbent assay |
| LPS | lipopolysaccharides |
| pAbs | polyclonal antibodies |
| mAbs | monoclonal antibodies |
| SPA | staphylococcal protein A |
| SELEX | systematic evolution of ligands by exponential enrichment |
| SERS | surface-enhanced Raman scattering |
| BDS | bridge DNA synthesis |
| SPANI | sulfonated polyaniline |
| PCR | polymerase chain reaction |
| LAMP | loop-mediated isothermal amplification |
| RPA | recombinase polymerase amplification |
| SDA | strand displacement amplification |
| CRISPR | clustered regularly interspaced short palindromic repeats |
| Cas | CRISPR associated protein |
| GO | graphene oxide |
| crRNA | CRISPR RNA |
| MIT | molecular imprinting technology |
| SPR | surface plasmon resonance |
| SIT | surface imprinting technology |
| B. cereus | Bacillus cereus |
| POCT | point-of-care testing |
| LFAs | lateral flow assays |
| AuNPs | gold nanoparticles |
| CIA-LFB | CRISPR/Cas12a-assisted LAMP–lateral flow biosensor |
| P. aeruginosa | Pseudomonas aeruginosa |
| DPV | differential pulse voltammetry |
| CV | cyclic voltammetry |
| SWV | square wave voltammetry |
| EIS | electrochemical impedance spectroscopy |
| MOFs | metal–organic frameworks |
| PDMS | polydimethylsiloxane |
| AIE | aggregation-induced emission |
| OSDL | open-set deep learning |
References
- Zhang, B.; Li, H.H.; Pan, W.X.; Chen, Q.S.; Ouyang, Q.; Zhao, J.W. Dual-color upconversion nanoparticles (UCNPs)-based fluorescent immunoassay probes for sensitive sensing foodborne pathogens. Food Anal. Methods 2017, 10, 2036–2045. [Google Scholar] [CrossRef]
- Cai, M.H.; Xu, Q.Q.; Zhao, S.L.; Zhou, X.H.; Cai, Y.L.; He, X.L. Antibacterial effect of Euryale ferox seed shell polyphenol extract on Salmonella typhimurium. Foodborne Pathog. Dis. 2024, 21, 570–577. [Google Scholar] [CrossRef]
- Li, H.; Li, C.Z.; Shi, C.; Hu, W.; Cui, H.Y.; Lin, L. Characterization of controlled-release Eucalyptus citriodora oil/Zinc ions nanoparticles with enhanced antibacterial properties against E. coli O157:H7 in fruit juice. Food Res. Int. 2022, 162, 112138. [Google Scholar] [CrossRef]
- Cui, H.Y.; Cheng, Q.; Li, C.Z.; Khin, M.N.; Lin, L. Schiff base cross-linked dialdehyde β-cyclodextrin/gelatin-carrageenan active packaging film for the application of carvacrol on ready-to-eat foods. Food Hydrocoll. 2023, 141, 108744. [Google Scholar] [CrossRef]
- Song, L.Y.; Yang, H.; Cheng, S.; Zhang, Z.; Zhang, L.C.; Su, R.Y.; Li, Y.X.; Zhan, X.J.; Yang, B.W.; Lin, L.; et al. Combination effects of ultrasound and citral nanoemulsion against Shigella flexneri and the preservation effect on fresh-cut carrots. Food Control 2024, 155, 110069. [Google Scholar] [CrossRef]
- Chen, X.C.; Yang, H.Y.; Li, C.Z.; Hu, W.; Cui, H.Y.; Lin, L. Enhancing the targeting performance and prolonging the antibacterial effects of clove essential oil liposomes to Campylobacter jejuni by antibody modification. Food Res. Int. 2023, 167, 112736. [Google Scholar] [CrossRef] [PubMed]
- Hema, V.S.V.; Manickavasagan, A. Blockchain implementation for food safety in supply chain: A review. Compr. Rev. Food. Sci. Food Saf. 2024, 23, e70002. [Google Scholar] [CrossRef]
- Cândido, A.R.; Soares, K.; Moura-Alves, M.; Saraiva, C.; Esteves, A. Sustainable practices and microbial quality of cattle offal in slaughterhouses. Vet. Sci. 2025, 12, 153. [Google Scholar] [CrossRef]
- Zou, K.X.; Zhang, S.M.; Chen, Q.S.; Chen, X.M. Advancements in photoelectrochemical sensors for analysis of food contaminants. Trends Food Sci. Technol. 2025, 157, 104903. [Google Scholar] [CrossRef]
- Shi, C.; Liu, X.; Chen, Y.Y.; Dai, J.M.; Li, C.Z.; Felemban, S.; Khowdiary, M.M.; Cui, H.Y.; Lin, L. Inhibitory effects of citral on the production of virulence factors in Staphylococcus aureus and its potential application in meat preservation. Int. J. Food Microbiol. 2024, 413, 110581. [Google Scholar] [CrossRef]
- Alenyorege, E.; Ma, H.; Ayim, I.; Zhou, C. Ultrasound decontamination of pesticides and microorganisms in fruits and vegetables: A review. J. Food Saf. Food Qual. 2018, 69, 80–91. [Google Scholar] [CrossRef]
- Walker, S.V.; Boschert, A.L.; Wolke, M.; Wetsch, W.A. Bug in a mug: Are hospital coffee machines transmitting pathogens? BMJ 2023, 383, 2564. [Google Scholar] [CrossRef]
- Chin, P.S.; Ang, G.Y.; Yu, C.Y.; Tan, E.L.; Tee, K.K.; Yin, W.F.; Chan, K.G.; Tan, G.Y.A. Prevalence, antimicrobial resistance, and genetic diversity of Listeria spp. isolated from raw chicken meat and chicken-related products in Malaysia. J. Food Prot. 2018, 81, 284–289. [Google Scholar] [CrossRef]
- Jiang, L.L.; Zhang, B.B.; Liu, S.T.; Zhu, L.Q.; Zhu, F.H. The MBS microbial rapid detection system for rapid detection of major pathogenic bacteria in feed: Comparison with plate counting method. BMC Microbiol. 2022, 22, 242. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Kukkar, D.; Deng, Z.A.; Yang, D.; Wang, J.L.; Kim, K.H.; Zhang, D.H. “Lock-and-key” recognizer-encoded lateral flow assays toward foodborne pathogen detection: An overview of their fundamentals and recent advances. Biosens. Bioelectron. 2023, 235, 115317. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.L.; Ren, Y.W.; Ling, N.; Ye, Q.H.; Wu, Y.W.; Zhao, X.Y.; Gu, Q.H.; Wu, S.; Zhang, Y.X.; Wei, X.H.; et al. An ultrasensitive smartphone-assisted bicolor-ratiometric fluorescence sensing platform based on a “noise purifier” for point-of-care testing of pathogenic bacteria in food. Food Chem. 2024, 446, 138805. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hong, X.; Qiu, X.C.; Yang, C.Q.; Mao, Y.H.; Li, Y.; Liu, Z.J.; Du, D.L. Ultrasensitive monitoring strategy of PCR-like levels for zearalenone contamination based DNA barcode. J. Sci. Food. Agric. 2021, 101, 4490–4497. [Google Scholar] [CrossRef] [PubMed]
- Li, X.P.; Zhong, J.Y.; Li, H.Y.; Qiao, Y.B.; Mao, X.L.; Fan, H.F.; Zhong, Y.W.; Imani, S.; Zheng, S.S.; Li, J.H. Advances in the application of CRISPR-Cas technology in rapid detection of pathogen nucleic acid. Front. Mol. Biosci. 2023, 10, 1260883. [Google Scholar] [CrossRef]
- Alafeef, M.; Moitra, P.; Pan, D.P.J. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens. Bioelectron. 2020, 165, 112276. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Cao, L.L.; Cai, H.M.; Yang, W.Q.; Lu, H.J.; Adila, A.; Zhang, B.L.; Cao, Y.; Huang, W.H.; Xu, W.Z.; et al. A rapid microfluidic paper-based chip sensor using ratiometric fluorescence and molecularly imprinted polymers for visual detection of sulfadiazine in actual samples. J. Food Compos. Anal. 2025, 139, 107108. [Google Scholar] [CrossRef]
- Guo, Z.M.; Zhang, Y.Y.; Xiao, H.D.; Jayan, H.; Majeed, U.; Ashiagbor, K.; Jiang, S.Q.; Zou, X.B. Multi-sensor fusion and deep learning for batch monitoring and real-time warning of apple spoilage. Food Control 2025, 172, 111174. [Google Scholar] [CrossRef]
- Jung, T.; Yun, Y.R.; Bae, J.; Yang, S. Rapid bacteria-detection platform based on magnetophoretic concentration, dielectrophoretic separation, and impedimetric detection. Anal. Chim. Acta 2021, 1173, 338696. [Google Scholar] [CrossRef]
- Tertis, M.; Hosu, O.; Feier, B.; Cernat, A.; Florea, A.; Cristea, C. Electrochemical peptide-based sensors for foodborne pathogens detection. Molecules 2021, 26, 3200. [Google Scholar] [CrossRef]
- Kim, S.R.; Yoon, Y.; Kim, W.I.; Park, K.H.; Yun, H.J.; Chung, D.H.; Yun, J.C.; Ryu, K.Y. Comparison of sample preparation methods for the recovery of foodborne pathogens from fresh produce. J. Food Protect. 2012, 75, 1213–1218. [Google Scholar] [CrossRef]
- Chen, J.; Park, B. Effect of immunomagnetic bead size on recovery of foodborne pathogenic bacteria. Int. J. Food Microbiol. 2018, 267, 1–8. [Google Scholar] [CrossRef]
- Xiao, F.B.; Li, W.Q.; Xu, H.Y. Advances in magnetic nanoparticles for the separation of foodborne pathogens: Recognition, separation strategy, and application. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4478–4504. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Huang, J.; Li, N.; Salah, M.; Guan, S.N.; Pan, W.W.; Wang, Z.Y.; Zhou, X.H.; Wang, Y. Development of a colloidal gold immunochromatographic assay strip using a monoclonal antibody for the rapid detection of ofloxacin. Foods 2024, 13, 4137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Li, M.; Cui, Y.; Hong, X.; Du, D.L. Using of tyramine signal amplification to improve the sensitivity of ELISA for aflatoxin B1 in edible oil samples. Food Anal. Methods 2018, 11, 2553–2560. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhang, H.; Cui, Z.W.; Liu, S.J.; Xu, J.K.; Jia, C.H.; Chen, Y.Q.; Wang, L.L.; Sun, J.; Zhang, D.H.; et al. Chemical staining enhanced Enzyme-linked immunosorbent assay for sensitive determination of Clenbuterol in food. Food Chem. 2023, 400, 134012. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, H.Y.; Han, Y.F.; Yu, F.F.; Shi, X.M. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl. Food Chem. 2018, 240, 893–897. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.T.; Liu, Z.J.; Fu, X.L.; Du, D.L. Establishment of a chemiluminescence immunoassay combined with immunomagnetic beads for rapid analysis of ochratoxin A. J. AOAC Int. 2022, 105, 346–351. [Google Scholar] [CrossRef]
- Goethel, M.; Listek, M.; Messerschmidt, K.; Schloer, A.; Hoenow, A.; Hanack, K. A new workflow to generate monoclonal antibodies against microorganisms. Appl. Sci. 2021, 11, 9359. [Google Scholar] [CrossRef]
- Paramithiotis, S. Molecular targets for foodborne pathogenic bacteria detection. Pathogens 2023, 12, 104. [Google Scholar] [CrossRef] [PubMed]
- Colwill, K.; Gräslund, S. A roadmap to generate renewable protein binders to the human proteome. Nat. Methods 2011, 8, 551–552. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.D.; Yang, Y.M.; Niu, R.; Zhu, X.S.; Qiang, M.; Niu, G.; Wang, Y. Development and application of an immunoaffinity column clean-up for enrofloxacin determination in food samples. Food Agric. Immunol. 2017, 28, 248–259. [Google Scholar] [CrossRef]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Chen, Z.J.; Huang, A.J.; Dong, X.X.; Zhang, Y.F.; Zhu, L.; Luo, L.; Xu, Z.L.; Wang, H.W. A simple and sensitive fluoroimmunoassay based on the nanobody-alkaline phosphatase fusion protein for the rapid detection of fenitrothion. Front. Sustain. Food Syst. 2023, 7, 1320931. [Google Scholar] [CrossRef]
- Saleem, M.Z.; Jahangir, G.Z.; Saleem, A.; Zulfiqar, A.; Khan, K.A.; Ercisli, S.; Ali, B.; Saleem, M.H.; Saleem, A. Production technologies for recombinant antibodies: Insights into eukaryotic, prokaryotic, and transgenic expression systems. Biochem. Genet. 2024, 63, 3928–3967. [Google Scholar] [CrossRef]
- Bao, C.L.M.; Gao, Q.L.; Li, L.L.; Han, L.; Zhang, B.X.; Ding, Y.J.; Song, Z.P.; Zhang, R.N.; Zhang, J.S.; Wu, X.H. The application of nanobody in CAR-T therapy. Biomolecules 2021, 11, 238. [Google Scholar] [CrossRef]
- Qiu, Y.L.; Li, P.; Liu, B.B.; Liu, Y.; Wang, Y.L.; Tao, T.T.; Xu, J.L.; Hammock, B.D.; Liu, X.J.; Guan, R.F.; et al. Phage-displayed nanobody based double antibody sandwich chemiluminescent immunoassay for the detection of Cry2a toxin in cereals. Food Agric. Immunol. 2019, 30, 924–936. [Google Scholar] [CrossRef]
- Wang, Y.L.; Xu, J.L.; Qiu, Y.L.; Li, P.; Liu, B.B.; Yang, L.F.; Barnych, B.; Hammock, B.D.; Zhang, C.Z. Highly specific monoclonal antibody and sensitive quantum dot beads-based fluorescence immunochromatographic test strip for tebuconazole assay in agricultural products. J. Agric. Food. Chem. 2019, 67, 9096–9103. [Google Scholar] [CrossRef]
- Self, C.H.; Thompson, S. Light activatable antibodies: Models for remotely activatable proteins. Nat. Med. 1996, 2, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.W.; Chen, Z.Z.; Li, T.; Ye, X.L.; Luo, Q.; Lai, W.H. Comparison of oriented and non-oriented antibody conjugation with AIE fluorescence microsphere for the immunochromatographic detection of enrofloxacin. Food Chem. 2023, 429, 136816. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, X.X.; Shi, X.M.; Han, Y.F.; Guo, Z.M.; Liu, Y. Development of carbon quantum dot-labeled antibody fluorescence immunoassays for the detection of morphine in Hot Pot soup base. Food Anal. Methods 2020, 13, 1042–1049. [Google Scholar] [CrossRef]
- He, Y.F.; Yuan, J.L.; Khan, I.M.; Zhang, L.L.; Ma, P.F.; Wang, Z.P. Research progress of aptasensor technology in the detection of foodborne pathogens. Food Control 2023, 153, 109891. [Google Scholar] [CrossRef]
- Duan, N.; Gong, W.H.; Wu, S.J.; Wang, Z.P. Selection and application of ssDNA aptamers against clenbuterol hydrochloride based on ssDNA library immobilized SELEX. J. Agric. Food. Chem. 2017, 65, 1771–1777. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, M. Recent advances in the optimization of nucleic acid aptamers and aptasensors. Biosensors 2025, 15, 641. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.L.; Ali, S.; Haruna, S.A.; He, P.H.; Li, H.H.; Ouyang, Q.; Chen, Q.S. Development of a fluorescence aptasensor for rapid and sensitive detection of Listeria monocytogenes in food. Food Control 2021, 122, 107808. [Google Scholar] [CrossRef]
- Jayan, H.; Zhou, R.Y.; Zheng, Y.X.; Xue, S.S.; Yin, L.M.; El-Seedi, H.R.; Zou, X.B.; Guo, Z.M. Microfluidic-SERS platform with in-situ nanoparticle synthesis for rapid E. coli detection in food. Food Chem. 2025, 471, 142800. [Google Scholar] [CrossRef]
- Guo, A.J.; Zhang, Y.; Jiang, M.F.; Chen, L.; Jiang, X.R.; Zou, X.B.; Sun, Z.B. Aptasensors for rapid detection of hazards in food: Latest developments and trends. Biosensors 2025, 15, 629. [Google Scholar] [CrossRef]
- Yildirim-Tirgil, N. Development of aptamer-based ELISA method for d-dimer detection. Biotechnol. Appl. Biochem. 2023, 70, 249–256. [Google Scholar] [CrossRef]
- Song, S.H.; Gao, Z.F.; Guo, X.; Chen, G.H. Aptamer-based detection methodology studies in food safety. Food Anal. Methods 2019, 12, 966–990. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Li, W.T.; Hu, X.T.; Zhang, X.N.; Huang, X.W.; Li, Z.H.; Li, M.Y.; Zou, X.B.; Shi, J.Y. Efficient preparation of dual-emission ratiometric fluorescence sensor system based on aptamer-composite and detection of bis(2-ethylhexyl) phthalate in pork. Food Chem. 2021, 352, 129352. [Google Scholar] [CrossRef]
- Luo, L.J.; Liu, X.H.; Ma, S.; Li, L.B.; You, T.Y. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chem. 2020, 322, 126778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, C.P.; Guo, Z.M.; Yang, T.X.; Zhang, X.A.; Huang, X.W.; Shi, J.Y.; Gao, S.P.; Zou, X.B. Ultrasensitive analysis of Escherichia coli O157:H7 based on immunomagnetic separation and labeled surface-enhanced Raman scattering with minimized false positive identifications. J. Agric. Food. Chem. 2024, 72, 22349–22359. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Rong, Y.W.; Li, H.H.; Hu, Y.Q.; Chen, Q.S. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem. 2021, 349, 129157. [Google Scholar] [CrossRef] [PubMed]
- Léguillier, V.; Heddi, B.; Vidic, J. Recent advances in aptamer-based biosensors for bacterial detection. Biosensors 2024, 14, 210. [Google Scholar] [CrossRef]
- Wu, S.J.; Duan, N.; Qiu, Y.T.; Li, J.H.; Wang, Z.P. Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics. Int. J. Food Microbiol. 2017, 261, 42–48. [Google Scholar] [CrossRef]
- Jiao, T.H.; Dong, C.G.; Zhu, A.F.; Ahmad, W.; Peng, L.J.; Wu, X.X.; Chen, Q.M.; Wei, J.; Chen, X.M.; Qin, O.Y.; et al. AFB1-responsive mesoporous silica nanoparticles for AFB1 quantification based on aptamer-regulated release of SERS reporter. Food Chem. 2025, 463, 141417. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.L.; Wu, L.J.; Ding, L.H.; Effah, C.Y.; Wu, Y.J.; Xiong, Y.M.; He, L.L. Construction and bioapplications of aptamer-based dual recognition strategy. Biosens. Bioelectron. 2022, 195, 113661. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, S.W. Pretreatment methods for nucleic acid-based rapid detection of pathogens in food: A review. Food Control 2020, 121, 107575. [Google Scholar] [CrossRef]
- Li, Z.; Yang, C.Q.; Lu, W.Y.; Chu, Z.H.; Zhang, J.W.; Li, M.; Wang, Q.J. Ultrasensitive immuno-PCR for detecting aflatoxin B1 based on magnetic separation and barcode DNA. Food Control 2022, 138, 109028. [Google Scholar] [CrossRef]
- Peng, J.S.; Li, Y.; Deng, X.L.; Lu, M.Y.; Yang, C.B.; Shen, Y.P.; Xia, G.H.; Yang, H. Loop-mediated isothermal amplification for on-site visual identification of leech species. Food Anal. Methods 2024, 17, 618–627. [Google Scholar] [CrossRef]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand displacement amplification—An isothermal, in vitro DNA amplification technique. Nucleic. Acids. Res. 1992, 20, 1691–1696. [Google Scholar] [CrossRef]
- Xia, X.F.; Zhang, B.C.; Wang, J.; Li, B.; He, K.W.; Zhang, X.H. Rapid detection of Escherichia coli O157:H7 by loop-mediated isothermal amplification coupled with a lateral flow assay targeting the z3276 genetic marker. Food Anal. Methods 2022, 15, 908–916. [Google Scholar] [CrossRef]
- Fan, Q.; Xie, Z.X.; Wei, Y.; Zhang, Y.F.; Xie, Z.Q.; Xie, L.J.; Huang, J.L.; Zeng, T.T.; Wang, S.; Luo, S.S.; et al. Development of a visual multiplex fluorescent LAMP assay for the detection of foot-and-mouth disease, vesicular stomatitis and bluetongue viruses. PLoS ONE 2022, 17, e0278451. [Google Scholar] [CrossRef]
- Arunrut, N.; Jitrakorn, S.; Tondee, B.; Saksmerprome, V.; Kiatpathomchai, W. Real-time triplex loop-mediated isothermal amplification (LAMP) using a turbidimeter for detection of shrimp infectious hypodermal and hematopoietic necrosis virus (IHHNV). J. Aquat. Anim. Health 2024, 36, 205–219. [Google Scholar] [CrossRef]
- Atceken, N.; Dilmani, S.A.; Abdullah, A.C.; Sarikaya, M.; Yigci, D.; Korkmaz, G.; Tasoglu, S. Development and validation of LAMP assays for distinguishing MPXV clades with fluorescent and colorimetric readouts. Biosensors 2025, 15, 23. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Safenkova, I.; Zherdev, A.; Dzantiev, B.B. The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens. Plants 2021, 10, 2424. [Google Scholar] [CrossRef]
- Li, Z.; Hua, L.Y.; Xie, L.M.; Wang, D.; Jiang, X.Y. Automated microfluidic nucleic acid detection platform-integrated RPA-T7-Cas13a for pathogen diagnosis. Anal. Chem. 2023, 95, 6940–6947. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, P.P.; Si, X.X.; Li, J.; Dai, X.F.; Zhang, K.X.; Gao, S.; Dong, J.Q. Rapid and specific detection of Listeria monocytogenes with an isothermal amplification and lateral flow strip combined method that eliminates false-positive signals from primer-dimers. Front. Microbiol. 2020, 10, 2959. [Google Scholar] [CrossRef]
- Li, J.; Feng, Y.W.; Huang, L.J.; Jiang, R.; Shen, X.F. Strand-displacement DNA polymerase induced isothermal circular amplification fluorescence sensor for identification of pork component. Food Biosci. 2021, 42, 101189. [Google Scholar] [CrossRef]
- Politza, A.J.; Liu, T.Y.; Guan, W.H. Programmable magnetic robot (ProMagBot) for automated nucleic acid extraction at the point of need. Lab Chip 2023, 23, 3882–3892. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Kshirsagar, A.; Politza, A.J.; Guan, W.H. High fidelity machine-learning-assisted false positive discrimination in loop-mediated isothermal amplification using nanopore-based sizing and counting. ACS Nano 2024, 18, 7170–7179. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bejarano, F.M.; Vega-Rodríguez, M.A.; Santander-Jiménez, S. GADPO: Genetic algorithm based on dominance for primer optimization. Expert Syst. Appl. 2024, 238, 122206. [Google Scholar] [CrossRef]
- Huang, F.Y.; Jiang, Y.Y.; Wu, Q.L.; Zheng, C.C.; Huang, S.; Yang, H.; Xiang, G.X.; Zheng, L.B. A one-pot loop-mediated isothermal amplification platform using fluorescent gold nanoclusters for rapid and naked-eye pathogen detection. Food Chem. 2024, 460, 140573. [Google Scholar] [CrossRef]
- Yang, N.; Fu, J.J.; Wang, A.Y.; Liu, S.H.; Chang, K.P.; Song, W.; Tao, S.L.; Mao, H.P.; Zhang, X.D.; Xu, L.J. Fluorescence detection of bacterial pathogens in rice by recombinant polymerase amplification based on self-heating paper chip. Rice Sci. 2025, 32, 131–136. [Google Scholar] [CrossRef]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, F.Q.; Chen, Z.H.; Wang, J.; Li, W.Q.; Fan, F.J.; Tao, Y.J.; Zhao, L.; Zhong, W.G.; Zhu, Q.H.; et al. Intron-targeted gene insertion in rice using CRISPR/cas9: A case study of the Pi-ta gene. Crop J. 2020, 8, 424–431. [Google Scholar] [CrossRef]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef]
- Fokum, E.; Zabed, H.M.; Guo, Q.; Yun, J.H.; Yang, M.M.; Pang, H.; An, Y.F.; Li, W.; Qi, X.H. Metabolic engineering of bacterial strains using CRISPR/Cas9 systems for biosynthesis of value-added products. Food Biosci. 2019, 28, 125–132. [Google Scholar] [CrossRef]
- Guo, A.J.; Wu, Y.; Xie, Y.K.; Guo, W.; Guo, Y.Q.; Zhang, X.A.; Zhang, W.; Zou, X.B.; Sun, Z.B. CRISPR-based fluorescent aptasensor combined with smartphone for on-site visual detection of DEHP in packaged foods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2026, 344, 126649. [Google Scholar] [CrossRef]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Guo, Y.Q.; Xu, H.; Li, C.; Zhang, X.A.; Zou, X.B.; Sun, Z.B. Ultrasensitive “on-off” ratiometric fluorescence biosensor based on RPA-CRISPR/Cas12a for detection of Staphylococcus aureus. J. Agric. Food. Chem. 2025, 73, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bai, L.L.; Wang, H.M.; He, K.Y.; Wang, R.; Wang, Q.; Zhang, F.; Xu, X.H. Graphene oxide assisting the visual detection of Salmonella by CRISPR/Cas12a. Microchem. J. 2023, 191, 108870. [Google Scholar] [CrossRef]
- Ghouneimy, A.; Mahfouz, M. Streamlined detection of SARS-CoV-2 via Cas13. Nat. Biomed. Eng. 2022, 6, 925–927. [Google Scholar] [CrossRef]
- Yuan, B.W.; Yuan, C.C.; Li, L.L.; Long, M.; Chen, Z.L. Application of the CRISPR/Cas system in pathogen detection: A review. Molecules 2022, 27, 6999. [Google Scholar] [CrossRef]
- Chao, A.Q.; Hu, Q.Q.; Yin, K. A label-free CRISPR/Cas12a-G4 biosensor integrated with FTA card for detection of foodborne pathogens. Biosensors 2025, 15, 230. [Google Scholar] [CrossRef]
- Ajibode, E.T.; Bender, A.R.; Yehl, K. Profiling crRNA architectures for enhanced Cas12 biosensing. Commun. Biol. 2025, 8, 947. [Google Scholar] [CrossRef]
- Geng, Z.J.; Ji, Q.B.; Chen, Y.J.; Hao, L.; Wang, J.S.; Feng, Z.Y.; Zheng, Q.Y.; Zhang, G.Q.; Wang, Y. Nucleic acid-free aptamer-CRISPR/Cas14 biosensor for prosthetic joint infection rapid detection. Sens. Actuator. Rep. 2025, 9, 100318. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Guo, W.; Li, C.; Xu, H.; Zhang, X.A.; Zou, X.B.; Sun, Z.B. Fe3O4@Au nanoparticle-enabled magnetic separation coupled with CRISPR/Cas12a for ultrasensitive detection of foodborne pathogens. J. Agric. Food Chem. 2025, 73, 13949–13959. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.C.; Chen, D.J.; Li, T.; Yan, J.Y.; Zhu, J.; He, T.; Hu, R.; Li, Y.; Yang, Y.H. Microfluidic space coding for multiplexed nucleic acid detection via CRISPR-Cas12a and recombinase polymerase amplification. Nat. Commun. 2022, 13, 6480. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.Q.; Lu, J.; Wu, Y.L.; Meng, M.J.; Yu, C.; Sun, C.; Chen, M.N.; Da, Z.L.; Yan, Y.S. Antifouling molecularly imprinted membranes for pretreatment of milk samples: Selective separation and detection of lincomycin. Food Chem. 2020, 333, 127477. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.C.; Guo, W.L.; Liu, Y.; Liu, Z.C.; Qiu, J.; Peng, J.B. A novel electrochemical sensor based on graphene oxide decorated with silver nanoparticles–molecular imprinted polymers for determination of sunset yellow in soft drinks. Food Anal. Methods 2017, 10, 2293–2301. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, X.M.; Yu, F.F.; Quan, Y. Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles Fe3O4 for the selective detection of acrylamide in potato chips. Food Chem. 2020, 317, 126431. [Google Scholar] [CrossRef]
- Ren, T.T.; Lu, Y.W.; Liu, P.; Hu, X.L.; Wang, W.X.; Wang, S.; Liu, X.Y.; Tang, Y.W. Sensitive and specific detection of listeria monocytogenes in food samples using imprinted upconversion fluorescence probe prepared by emulsion polymerization method. Food Chem. X 2024, 23, 101618. [Google Scholar] [CrossRef]
- Mukunzi, D.; Habimana, J.D.; Li, Z.Y.; Zou, X.B. Mycotoxins detection: View in the lens of molecularly imprinted polymer and nanoparticles. Crit. Rev. Food Sci. Nutr. 2023, 63, 6034–6068. [Google Scholar] [CrossRef]
- Song, X.Y.; Wang, H.H.; Shao, X.F.; Xu, X.L. Molecular imprinting film and turn-on fluorescence probe working in tandem for Salmonella typhimurium detection. LWT-Food Sci. Technol. 2024, 205, 116524. [Google Scholar] [CrossRef]
- Andersson, T.; Bläckberg, A.; Lood, R.; Ertürk Bergdahl, G.E. Development of a molecular imprinting-based surface plasmon resonance biosensor for rapid and sensitive detection of Staphylococcus aureus alpha hemolysin from human serum. Front. Cell. Infect. Microbiol. 2020, 10, 571578. [Google Scholar] [CrossRef]
- Li, Y.X.; Luo, L.X.; Kong, Y.Q.; Li, Y.J.; Wang, Q.S.; Wang, M.Q.; Li, Y.; Davenport, A.; Li, B. Recent advances in molecularly imprinted polymer-based electrochemical sensors. Biosens. Bioelectron. 2024, 249, 116018. [Google Scholar] [CrossRef]
- Qiu, H.; Gao, L.; Wang, J.X.; Pan, J.M.; Yan, Y.S.; Zhang, X.F. A precise and efficient detection of Seta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products. Food Chem. 2017, 217, 620–627. [Google Scholar] [CrossRef]
- Han, E.; Pan, Y.Y.; Li, L.; Cai, J.R. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem. 2023, 426, 136608. [Google Scholar] [CrossRef] [PubMed]
- Rapichai, W.; Hlaoperm, C.; Feldner, A.; Voelkle, J.; Choowongkomon, K.; Rattanasrisomporn, J.; Lieberzeit, P.A. A molecularly imprinted polymer nanobodies (nanoMIPs)-based electrochemical sensor for the detection of Staphylococcus epidermidis. Sensors 2025, 25, 2150. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.F.; Jacob, K.I.; Lu, J.W.; Guo, L. Facile fabrication of surface imprinted polymers based on nanofibrous aerogels for specific capture of lysozyme form egg white. Food Chem. 2025, 484, 144449. [Google Scholar] [CrossRef] [PubMed]
- Doostmohammadi, A.; Youssef, K.; Akhtarian, S.; Tabesh, E.; Kraft, G.; Brar, S.K.; Rezai, P. Molecularly imprinted polymer (MIP) based core-shell microspheres for bacteria isolation. Polymer 2022, 251, 124917. [Google Scholar] [CrossRef]
- Islam, M.A.; Karim, A.; Ethiraj, B.; Raihan, T.; Kadier, A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol. Adv. 2022, 55, 107901. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wen, C.T.; Li, C.Z.; Duan, Y.Q.; Zhang, H.H.; Ma, H.L. Antioxidant peptide fractions isolated from wheat germ protein with subcritical water extraction and its transport across Caco-2 cells. J. Food Sci. 2019, 84, 2139–2146. [Google Scholar] [CrossRef]
- Escobar, V.; Scaramozzino, N.; Vidic, J.; Buhot, A.; Mathey, R.; Chaix, C.; Hou, Y.X. Recent advances on peptide-based biosensors and electronic noses for foodborne pathogen detection. Biosensors 2023, 13, 258. [Google Scholar] [CrossRef]
- Wen, C.T.; Zhang, J.X.; Zhang, H.H.; Duan, Y.Q.; Ma, H.L. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci. Technol. 2020, 105, 308–322. [Google Scholar] [CrossRef]
- Xu, P.; Ghosh, S.; Gul, A.R.; Bhamore, J.R.; Park, J.P.; Park, T.J. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trac-Trends Anal. Chem. 2021, 137, 116229. [Google Scholar] [CrossRef]
- Lisowska, M.; Lickiss, F.; Gil-Mir, M.; Huart, A.S.; Trybala, Z.; Way, L.; Hernychova, L.; Krejci, A.; Muller, P.; Krejcir, R.; et al. Next-generation sequencing of a combinatorial peptide phage library screened against ubiquitin identifies peptide aptamers that can inhibit the in vitro ubiquitin transfer cascade. Front. Microbiol. 2022, 13, 875556. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Xu, J.; Zhang, L.W.; Zheng, T.; Liu, L.; Zhang, L. Physicochemical stability-increasing effects of anthocyanin via a co-assembly approach with an amphiphilic peptide. Food Chem. 2021, 362, 130101. [Google Scholar] [CrossRef] [PubMed]
- Ronda, L.; Tonelli, A.; Sogne, E.; Autiero, I.; Spyrakis, F.; Pellegrino, S.; Abbiati, G.; Maffioli, E.; Schulte, C.; Piano, R.; et al. Rational design of a user-friendly aptamer/peptide-based device for the detection of Staphylococcus aureus. Sensors 2020, 20, 4977. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of listeria monocytogenes and Staphylococcus aureus. Microchim. Acta 2020, 187, 486. [Google Scholar] [CrossRef]
- Zhao, C.X.; Jian, X.X.; Gao, Z.D.; Song, Y.Y. Plasmon-mediated peroxidase-like activity on an asymmetric nanotube architecture for rapid visual detection of bacteria. Anal. Chem. 2022, 94, 14038–14046. [Google Scholar] [CrossRef]
- Vasilescu, A.; Gáspár, S.; Gheorghiu, M.; Polonschii, C.; Banciu, R.M.; David, S.; Gheorghiu, E.; Marty, J.L. Promising solutions to address the non-specific adsorption in biosensors based on coupled electrochemical-surface plasmon resonance detection. Chemosensors 2025, 13, 92. [Google Scholar] [CrossRef]
- Abdualrahman, M.A.Y.; Ma, H.L.; Zhou, C.S.; Yagoub, A.A.; Hu, J.L.; Yang, X. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides. J. Sci. Food. Agric. 2016, 96, 4861–4873. [Google Scholar] [CrossRef]
- Al Musaimi, O.; Lombardi, L.; Williams, D.R.; Albericio, F. Strategies for improving peptide stability and delivery. Pharmaceuticals 2022, 15, 1283. [Google Scholar] [CrossRef]
- Das, T.N.; Ramesh, A.; Ghosh, A.; Moyra, S.; Maji, T.K.; Ghosh, G. Peptide-based nanomaterials and their diverse applications. Nanoscale Horiz. 2025, 10, 279–313. [Google Scholar] [CrossRef]
- Schulze, H.; Wilson, H.; Cara, I.; Carter, S.; Dyson, E.N.; Elangovan, R.; Rimmer, S.; Bachmann, T.T. Label-free electrochemical sensor for rapid bacterial pathogen detection using vancomycin-modified highly branched polymers. Sensors 2021, 21, 1872. [Google Scholar] [CrossRef]
- Olademehin, O.P.; Kim, S.J.; Shuford, K.L. Molecular dynamics simulation of atomic interactions in the vancomycin binding site. ACS Omega 2021, 6, 775–785. [Google Scholar] [CrossRef]
- Sherman, M.E.; Smith, R.D.; Gardner, F.M.; Goodlett, D.R.; Ernst, R.K. A sensitive GC-MS method for quantitation of lipid a backbone components and terminal phosphate modifications. J. Am. Soc. Mass Spectrom. 2022, 33, 2301–2309. [Google Scholar] [CrossRef]
- Qi, J.F.; Hu, C.J.; Li, J.Y.; Li, Y.; Zhang, Y.J.; Liu, J.N.; Xiao, Y.Q.; Zhang, W.N.; Wei, D.Q.; Liu, J.H. Vancomycin-bacterial imprinted polymer hybrid for viable Staphylococcus aureus highly efficient capture, photothermal inactivation, and sensitive detection. Food Chem. 2025, 483, 144224. [Google Scholar] [CrossRef] [PubMed]
- Novakovic, Z.; Khalife, M.; Costache, V.; Camacho, M.J.; Cardoso, S.; Martins, V.; Gadjanski, I.; Radovic, M.; Vidic, J. Rapid detection and identification of vancomycin-sensitive bacteria using an electrochemical apta-sensor. ACS Omega 2024, 9, 2841–2849. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Zhao, J.; Xu, X.X.; Guo, L.L.; Xu, L.G.; Sun, M.Z.; Hu, S.D.; Kuang, H.; Xu, C.L.; Li, A.K. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 2022, 6, 2101143. [Google Scholar] [CrossRef] [PubMed]
- Bikkarolla, S.K.; McNamee, S.E.; Vance, P.; McLaughlin, J. High-sensitive detection and quantitative analysis of thyroid-stimulating hormone using gold-nanoshell-based lateral flow immunoassay device. Biosensors 2022, 12, 182. [Google Scholar] [CrossRef]
- Feng, J.Q.; Xiong, M.Y.; Qiao, Y.S.; Wang, P.; Lin, X.F.; Kang, L.X.; Duan, N.; Wang, Z.P.; Wu, S.J. Ultrasensitive point-of-care testing of salmonella in lettuce and milk samples using a recombinase polymerase amplification-based colorimetric/ fluorescent dual-readout lateral flow assay. Food Chem. 2025, 481, 144058. [Google Scholar] [CrossRef]
- Mukama, O.; Wu, J.H.; Li, Z.Y.; Liang, Q.X.; Yi, Z.J.; Lu, X.W.; Liu, Y.J.; Liu, Y.M.; Hussain, M.; Makafe, G.G.; et al. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosens. Bioelectron. 2020, 159, 112143. [Google Scholar] [CrossRef]
- Park, J.; Tieu, M.V.; Hoang, T.X.; Pham, D.T.; Park, S.; Vu, P.C.; Tran, H.M.; Cho, S.B. Novel high-throughput electrochemical detection of Staphylococcus aureus, Bacillus cereus, or Micrococcus luteus using AuNPs@Ti3C2TZ functionalized with sandwich peptides. Small 2025, 21, 2411486. [Google Scholar] [CrossRef]
- Okeke, E.S.; Ezeorba, T.P.C.; Okoye, C.O.; Chen, Y.; Mao, G.H.; Feng, W.W.; Wu, X.Y. Analytical detection methods for azo dyes: A focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection. J. Food Compos. Anal. 2022, 114, 104778. [Google Scholar] [CrossRef]
- Geleta, G.S. Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials for detection of ascorbic acid, dopamine, and uric acid: A review. Sens. Bio-Sens. Res. 2024, 43, 100610. [Google Scholar] [CrossRef]
- Brzechwa-Chodzyńska, A.; Drożdż, W.; Harrowfield, J.; Stefankiewicz, A.R. Fluorescent sensors: A bright future for cages. Coordin. Chem. Rev. 2021, 434, 213820. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, J.G.; Ma, F.; Zhang, C.Y. Advances in single-molecule fluorescent nanosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.S.; Liu, X.M.; Li, Z.Q.; Li, X.; Li, Q.J.; Li, W.W.; Li, J.L. Whole-cell molecularly imprinted fluorescent photonic microsphere microarray for high-throughput detection of foodborne pathogens. Anal. Chem. 2025, 97, 9779–9788. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, C.C.; Liu, A.R.; Liu, Y.; Dong, J.J.; Wang, Z.; Wei, W.; Liu, S.Q. Simultaneous detection of foodborne pathogenic bacteria in milk by fluorescence immunoassay. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 285, 121830. [Google Scholar] [CrossRef]
- Sun, F.; Pang, K.; Yang, K.K.; Zheng, L.; Wang, M.M.; Wang, Y.F.; Chen, Q.; Ye, Z.H.; Liang, P.; Yu, X.P. Aptamer-conjugated magnetic nanoparticles integrated with SERS for multiplex Salmonella detection. Biosensors 2025, 15, 464. [Google Scholar] [CrossRef]
- Wei, W.; Haruna, S.A.; Zhao, Y.; Li, H.; Chen, Q. Surface-enhanced Raman scattering biosensor-based sandwich-type for facile and sensitive detection of Staphylococcus aureus. Sens. Actuators B Chem. 2022, 364, 131929. [Google Scholar] [CrossRef]
- Cui, L.; Li, H.Z.; Yang, K.; Zhu, L.J.; Xu, F.; Zhu, Y.G. Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. TrAC Trends Anal. Chem. 2021, 143, 116415. [Google Scholar] [CrossRef]
- Choi, J.H.; Shin, M.; Yang, L.T.; Conley, B.; Yoon, J.; Lee, S.N.; Lee, K.B.; Choi, J.W. Clustered regularly interspaced short palindromic repeats-mediated amplification-free detection of viral DNAs using surface-enhanced Raman spectroscopy-active nanoarray. ACS Nano 2021, 15, 13475–13485. [Google Scholar] [CrossRef]
- Qu, Q.; Li, Q.; Xiao, X.; Zhu, K.; Gao, W.; Wang, Q.; Wu, W. Dual-plasmonic metals functionalized MXene synergistic enhanced SERS biosensor for sensitive and selective detection of S. aureus in milk. Microchim. Acta 2025, 192, 620. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Ye, Y.; Teng, J.; Xue, F.; Pan, D.; Li, B.; Chen, W. In Vitro Isothermal Nucleic Acid Amplification Assisted Surface-Enhanced Raman Spectroscopic for Ultrasen-sitive Detection of Vibrio parahaemolyticus. Anal Chem. 2017, 89, 9775–9780. [Google Scholar] [CrossRef] [PubMed]
- Preechakasedkit, P.; Pulsrikarn, C.; Nuanualsuwan, S.; Phuket, N.R.N.; Citterio, D.; Ruecha, N. Label-free detection of waterborne pathogens using an all-solid-state laser-induced graphene potentiometric ion flux immunosensor. Anal. Chem. 2024, 96, 15476–15483. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Liang, N.N.; Hu, X.T.; Li, W.T.; Guo, Z.; Zhang, X.A.; Huang, X.W.; Li, Z.H.; Zou, X.B.; Shi, J.Y. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663. [Google Scholar] [CrossRef]
- Liu, R.; Ali, S.; Haruna, S.A.; Ouyang, Q.; Li, H.H.; Chen, Q.S. Development of a fluorescence sensing platform for specific and sensitive detection of pathogenic bacteria in food samples. Food Control 2022, 131, 108419. [Google Scholar] [CrossRef]
- Ouyang, Q.; Zhang, M.M.; Yang, Y.C.; Din, Z.U.; Chen, Q.S. Mesoporous silica-modified upconversion biosensor coupled with real-time ion release properties for ultrasensitive detection of Staphylococcus aureus in meat. Food Control 2023, 145, 109444. [Google Scholar] [CrossRef]
- Kashef, M.T.; Helmy, O.M. Development of a multiplex polymerase chain reaction-based DNA lateral flow assay as a point-of-care diagnostic for fast and simultaneous detection of MRSA and Vancomycin resistance in bacteremia. Diagnostics 2022, 12, 2691. [Google Scholar] [CrossRef]
- Shang, Y.T.; Cai, S.Z.; Ye, Q.H.; Wu, Q.P.; Shao, Y.N.; Qu, X.Y.; Xiang, X.R.; Zhou, B.Q.; Ding, Y.; Chen, M.T.; et al. Quantum dot nanobeads-labelled lateral flow immunoassay strip for rapid and sensitive detection of Salmonella typhimurium based on strand displacement loop-mediated isothermal amplification. Engineering 2022, 19, 62–70. [Google Scholar] [CrossRef]
- Wu, H.H.; Zhao, P.P.; Yang, X.H.; Li, J.; Zhang, J.Y.; Zhang, X.; Zeng, Z.H.; Dong, J.Q.; Gao, S.; Lu, C. A recombinase polymerase amplification and lateral flow strip combined method that detects Salmonella enterica serotype typhimurium with no worry of primer-dependent artifacts. Front. Microbiol. 2020, 11, 1015. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Xu, H.; Wu, Y.; Luo, S.S.; Hong, Q.; Zhang, X.A.; Zou, X.B.; Sun, Z.B. Conductive MoS2-Au nanocomposite-based electrochemical biosensor for CRISPR/Cas12a-driven Staphylococcus aureus detection. Sens. Actuator B-Chem. 2025, 442, 138078. [Google Scholar] [CrossRef]
- El-Wekil, M.M.; Halby, H.M.; Darweesh, M.; Ali, M.E.; Ali, R. An innovative dual recognition aptasensor for specific detection of Staphylococcus aureus based on Au/Fe3O4 binary hybrid. Sci. Rep. 2022, 12, 12502. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Li, J.; Song, X.L.; Xu, K.; Wang, J.; Zhao, C. Label-free detection of Staphylococcus aureus based on bacteria-imprinted polymer and turn-on fluorescence probes. ACS Appl. Bio Mater. 2021, 4, 420–427. [Google Scholar] [CrossRef]
- Hu, J.; Wu, D.; Li, T.; Cao, Y.; Wang, X.; Gan, N. Ratiometric electrochemical aptasensor for point-of-care testing Vibrio parahaemolyticus together with antimicrobial peptide-labeled nano metal-organic framework signal tag. Sens. Actuators B Chem. 2022, 352, 130987. [Google Scholar] [CrossRef]
- Yin, M.M.; Liu, C.W.; Ge, R.; Fang, Y.; Wei, J.; Chen, X.; Chen, Q.S.; Chen, X.M. Paper-supported near-infrared-light-triggered photoelectrochemical platform for monitoring Escherichia coli O157:H7 based on silver nanoparticles-sensitized-upconversion nanophosphors. Biosens. Bioelectron. 2022, 203, 114022. [Google Scholar] [CrossRef] [PubMed]
- Gull, H.; Ikram, A.; Khalil, A.A.; Ahmed, Z.; Nemat, A. Assessing the multitargeted antidiabetic potential of three pomegranate peel-specific metabolites: An in silico and pharmacokinetics study. Food Sci. Nutr. 2023, 11, 7188–7205. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.W.; Zou, X.M.; Song, S.H.; Chen, G.H. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. J. Agric. Food. Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, H.R.; Zhang, P.P.; Sun, C.Y.; Wang, X.C.; Wang, X.R.; Yang, R.F.; Wang, C.B.; Zhou, L. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci. Rep. 2016, 6, 21342. [Google Scholar] [CrossRef]
- Wang, Z.P.; Cheng, X.R.; Ma, A.M.; Jiang, F.; Chen, Y.P. Multiplexed food-borne pathogen detection using an argonaute-mediated digital sensor based on a magnetic-bead-assisted imaging transcoding system. Nat. Food 2025, 6, 170–181. [Google Scholar] [CrossRef]
- Li, J.Z.; Xue, J.X.; Zhang, Y.; He, Y.; Fu, Z.F. Shape-encoded functional hydrogel pellets for multiplexed detection of pathogenic bacteria using a gas pressure sensor. ACS Sens. 2022, 7, 2438–2445. [Google Scholar] [CrossRef]
- Ding, X.D.; Ahmad, W.; Rong, Y.W.; Wu, J.Z.; Ouyang, Q.; Chen, Q.S. A dual-mode fluorescence and colorimetric sensing platform for efficient detection of ofloxacin in aquatic products using iron alkoxide nanozyme. Food Chem. 2024, 442, 138417. [Google Scholar] [CrossRef]
- Huang, R.; Zigale, T.T.; Meng, H.; Wang, L.; Dong, Q.W.; Zeng, K.; Zhang, Z. Cobalt single-atom nanozyme-enabled multimodal lateral flow immunoassay for on-site ultrasensitive detection of tetracycline residues in agri-food products. J. Agric. Food. Chem. 2025, 73, 16648–16659. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.T.; Shi, J.Y.; Shi, Y.Q.; Zou, X.B.; Tahir, H.E.; Holmes, M.; Zhang, W.; Huang, X.W.; Li, Z.H.; Xu, Y.W. A dual-mode sensor for colorimetric and fluorescent detection of nitrite in hams based on carbon dots-neutral red system. Meat Sci. 2019, 147, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Sun, M.N.; Shi, H.X.; Xue, L.L.; Zhang, M.; Yang, W.E.; Dang, Y.L.; Qiao, Z.H. A colorimetric/fluorescent dual-mode aptasensor for Salmonella based on the magnetic separation of aptamers and a DNA-nanotriangle programmed multivalent aptamer. Foods 2023, 12, 3853. [Google Scholar] [CrossRef]
- Tang, D.Y.; Li, P.; Qi, S.; Wu, Q.; Yu, R.L.; Liu, M.; Wang, Z.P. Point-of-care analysis for foodborne pathogens in food samples based on a fully enclosed microfluidic chip cartridge. Lab Chip 2025, 25, 3537–3548. [Google Scholar] [CrossRef] [PubMed]
- Cabrales-Arellano, P.; Park, E.; Minor, M.; Delgado, E.; Valles-Rosales, D.; Taboada, H.; Espiritu, J.; Su, J.Z.; Park, Y.H. Rapid identification of Staphylococcus aureus based on a fluorescence imaging/detection platform that combines loop mediated isothermal amplification assay and the smartphone-based system. Sci. Rep. 2022, 12, 20655. [Google Scholar] [CrossRef]
- Mishra, A.; Roy, S.; Israel Shaikh, N.I.; Malave, P.; Mishra, A.; Anish Alam, M.A.; Ghorpade, Y.; Rahil Hasan, M.; Nizam, A. Recent advances in multiplex aptasensor detection techniques for food-borne pathogens: A comprehensive review of novel approaches. Biosens. Bioelectron. X 2024, 16, 100417. [Google Scholar] [CrossRef]
- Yang, N.; Wang, P.; Xue, C.Y.; Sun, J.; Mao, H.P.; Oppong, P.K. A portable detection method for organophosphorus and carbamates pesticide residues based on multilayer paper chip. J. Food Process Eng. 2018, 41, e12867. [Google Scholar] [CrossRef]
- Yang, N.; Zhou, X.; Yu, D.F.; Jiao, S.Y.; Han, X.; Zhang, S.L.; Yin, H.; Mao, H.P. Pesticide residues identification by impedance time-sequence spectrum of enzyme inhibition on multilayer paper-based microfluidic chip. J. Food Process Eng. 2020, 43, e13544. [Google Scholar] [CrossRef]
- Liu, S.S.; Zhang, M.M.; Chen, Q.S.; Ouyang, Q. Multifunctional metal-organic frameworks driven three-dimensional folded paper-based microfluidic analysis device for chlorpyrifos detection. J. Agric. Food. Chem. 2024, 72, 14375–14385. [Google Scholar] [CrossRef]
- Wang, Y.F.; Mao, H.P.; Zhang, X.D.; Liu, Y.; Du, X.X. A rapid detection method for tomato gray mold spores in greenhouse based on microfluidic chip enrichment and lens-less diffraction image processing. Foods 2021, 10, 3011. [Google Scholar] [CrossRef]
- Zhang, X.D.; Bian, F.; Wang, Y.F.; Hu, L.; Yang, N.; Mao, H.P. A method for capture and detection of crop airborne disease spores based on microfluidic chips and micro Raman spectroscopy. Foods 2022, 11, 3462. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.B.; Li, C.; Wu, Z.W.; Jiang, X.R.; Zhao, F.; Guo, W.; Guo, Y.Q.; Yu, Q.Q.; Zou, X.B.; Yang, N. High-precision microfluidic impedance sensing for pretreatment and detection of multiple mycotoxins. Anal. Chem. 2025, 97, 10646–10654. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.C.; Wang, J.; Li, T.; Pan, Q.B.; Zhu, L.C.; Yu, F.F.; Zhao, Y.Z.; Liu, H.B. A smartphone-based fluorescent sensor for rapid detection of multiple pathogenic bacteria. Biosens. Bioelectron. 2023, 242, 115744. [Google Scholar] [CrossRef]
- Mohamed, T.M.K.; Gao, J.M.; Tunio, M. Development and experiment of the intelligent control system for rhizosphere temperature of aeroponic lettuce via the internet of things. Int. J. Agric. Biol. Eng. 2022, 15, 225–233. [Google Scholar] [CrossRef]
- Wu, Q.; Gu, J.N. Design and research of robot visual servo system based on artificial intelligence. Agro Food Ind. Hi-Tech. 2017, 28, 125–128. [Google Scholar]
- Yang, N.; Yu, J.J.; Wang, A.Y.; Tang, J.; Zhang, R.B.; Xie, L.L.; Shu, F.Y.; Kwabena, O.P. A rapid rice blast detection and identification method based on crop disease spores’ diffraction fingerprint texture. J. Sci. Food. Agric. 2020, 100, 3608–3621. [Google Scholar] [CrossRef]
- El-Mesery, H.S.; Qenawy, M.; Ali, M.; Rostom, M.; Elbeltagi, A.; Salem, A.; Elwakeel, A.E. Optimization of dried garlic physicochemical properties using a self-organizing map and the development of an artificial intelligence prediction model. Sci. Rep. 2025, 15, 3105. [Google Scholar] [CrossRef]
- Li, H.H.; Geng, W.H.; Zheng, Z.H.; Haruna, S.A.; Chen, Q.S. Flexible SERS sensor using AuNTs-assembled PDMS film coupled chemometric algorithms for rapid detection of chloramphenicol in food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef]
- Wang, B.F.; Li, Y.W.; Zhou, M.F.; Han, Y.L.; Zhang, M.Y.; Gao, Z.L.; Liu, Z.T.; Chen, P.; Du, W.; Zhang, X.C.; et al. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat. Commun. 2023, 14, 1341. [Google Scholar] [CrossRef]
- Phangwipas, P.; Thangavel, B.; Shin, J.H. Automated multistep lateral flow immunoassay using a smartphone for the quantification of foodborne bacteria from fresh lettuce. Chemosensors 2023, 11, 36. [Google Scholar] [CrossRef]
- Chen, X.Z.; Xu, J.; Li, Y.X.; Zhang, L.N.; Bi, N.; Gou, J.; Zhu, T.F.; Jia, L. A novel intelligently integrated MOF-based ratio fluorescence sensor for ultra-sensitive monitoring of TC in water and food samples. Food Chem. 2023, 405, 134899. [Google Scholar] [CrossRef]
- Xi, Q.B.; Chen, Q.M.; Ahmad, W.; Pan, J.; Zhao, S.G.; Xia, Y.; Ouyang, Q.; Chen, Q.S. Quantitative analysis and visualization of chemical compositions during shrimp flesh deterioration using hyperspectral imaging: A comparative study of machine learning and deep learning models. Food Chem. 2025, 481, 143997. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Sheng, W.; Adade, S.Y.S.S.; Nunekpeku, X.; Chen, Q.S. Investigation of heat-induced pork batter quality detection and change mechanisms using Raman spectroscopy coupled with deep learning algorithms. Food Chem. 2024, 461, 140798. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.J.; Yang, Y.N.; Xu, F.; Lu, X.Y.; Shuai, M.R.; An, Z.L.; Chen, X.M.; Li, H.; Martin, F.L.; Vikesland, P.J.; et al. Open-set deep learning-enabled single-cell Raman spectroscopy for rapid identification of airborne pathogens in real-world environments. Sci. Adv. 2025, 11, eadp7991. [Google Scholar] [CrossRef]
- Sobhan, A.; Hossain, A.; Wei, L.; Muthukumarappan, K.; Ahmed, M. IoT-enabled biosensors in food packaging: A breakthrough in food safety for monitoring risks in real time. Foods 2025, 14, 1403. [Google Scholar] [CrossRef]
- Li, J.; Lin, X.F.; Wu, J.J.; Ying, D.C.; Duan, N.; Wang, Z.P.; Wu, S.J. Multifunctional magnetic composite nanomaterial for Colorimetric-SERS Dual-Mode detection and photothermal sterilization of Vibrio parahaemolyticus. Chem. Eng. J. 2023, 477, 147113. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Yang, Y.C.; Chen, Q.S. Upconversion nanoprobes based on a horseradish peroxidase-regulated dual-mode strategy for the ultrasensitive detection of Staphylococcus aureus in meat. J. Agric. Food. Chem. 2021, 69, 9947–9956. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Wang, X.; Wang, X.; Majid, Z.; Huang, K.L.; Xu, W.T.; Luo, Y.B.; Nan, C. A portable 3D-printed pretreatment device combined with graded lateral flow assay for detection of S. aureus. Sens. Actuator B-Chem. 2023, 383, 133601. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhang, H.Q.; Li, H.; Ding, Y.K.; Li, J.H.; Zhao, C.; Yao, S. A smartphone-enabled colorimetric platform based on enzyme cascade amplification strategy for detection of Staphylococcus aureus in milk. J. Dairy. Sci. 2024, 107, 5438–5448. [Google Scholar] [CrossRef]





| Recognition Element | Affinity (Kd) | Specificity | Stability | Cost | Application Scenarios | Limitations |
|---|---|---|---|---|---|---|
| Antibody | nM–pM | High, specific to antigens such as LPS and proteins | Sensitive to temperature/pH | High | Immunochromatography, ELISA, immunofluorescence | Long preparation cycle, high cost, risk of cross-reactivity |
| Aptamer | nM–pM | High, targeting proteins, toxins, and nucleic acids | Stable under diverse conditions | Medium | Fluorescence, electrochemical, SERS biosensors | Matrix interference, risk of nuclease degradation |
| Nucleic Acid | fM–nM (with amplification) | Very high, based on complementary base pairing | Moderate, susceptible to degradation | Medium | PCR, LAMP, RPA and other amplification techniques | Complex sample pretreatment, false-positive risk |
| CRISPR/Cas System | aM–fM | Extremely high, single-base discrimination | Moderate, depends on nucleic acid extraction | Medium–High | Rapid nucleic acid detection, POCT | Complex sample preparation, system optimization required |
| Molecular Imprinting Technology | μM–nM | Moderate, depending on template molecules | High, resistant to heat, acid, and alkali | Low | Electrochemical, optical, SPR detection | Limited efficiency for large biomolecules, nonspecific adsorption |
| Peptide | μM–nM | Moderate, can be improved by sequence design | High, robust under diverse conditions | Low | Electrochemical, fluorescence, biochips | Lower specificity, enzymatic degradation risk |
| Small-Molecule Receptor | μM–nM | Relatively low, broad-spectrum recognition | High, chemically stable | Low | Antibiotic-derivative detection, auxiliary recognition | Limited strain-level discrimination, insufficient specificity |
| Recognition Elements | Target Analyte | Detection Method | Limit of Detection | Linear Range | Detection Time | Real Sample | Recovery Rate | Reference |
|---|---|---|---|---|---|---|---|---|
| Antibody | Vibrio parahaemolyticus | Raman | 1 CFU/mL | 3–2.2 × 108 CFU/mL | 180 min | Water | 95–107% | [142] |
| E. coli | Electrochemistry | 0.1 CFU/mL | 0.1–105 CFU/mL | 10 min | Water | 94–109% | [143] | |
| E. coli O157:H7 | Fluorescence | 7 CFU/mL | 0–106 CFU/mL | 120 min | Milk | 87.10–109.82% | [144] | |
| Aptamer | Salmonella | Raman | 35.51 CFU/mL | 102–108 CFU/mL | 120 min | Milk, chicken, shrimp | 94–100.4% | [140] |
| S. aureus | Fluorescence | 6 CFU/mL | 36–3.6 × 107 CFU/mL | 110 min | Water | 96–105% | [145] | |
| Milk | 93–106% | |||||||
| Tea | 88–101% | |||||||
| Fish | 92–95% | |||||||
| S. aureus | Fluorescence | 25 CFU/mL | 63–6.3 × 106 CFU/mL | 30 min | Pork | 91–93% | [146] | |
| Beef | 96–105% | |||||||
| Nucleic acid | S. aureus | LFA | 107 CFU/mL | 120 min | Blood | [147] | ||
| Salmonella typhimurium | LFA+ Fluorescence | 0.1 CFU/mL | 102–107 CFU/mL | 15 min | Water, juice, lettuce, chicken | 85–110% | [148] | |
| Salmonella | LFA | 1 CFU/mL | 10−1–104 CFU/mL | 30 min | Milk | [149] | ||
| CRISPR/Cas | P. aeruginosa | LFA | 1 CFU/mL | 1–108 CFU/mL | 35 min | Milk | [131] | |
| S. aureus | Electrochemistry | 3 CFU/mL | 1.06–1.06 × 108 CFU/mL | 30 min | Milk | [150] | ||
| S. aureus | Fluorescence | 3 CFU/mL | 7.9–7.9 × 108 CFU/mL | 80 min | Egg | 98.77–104.13% | [85] | |
| MIT | Salmonella typhimurium | Fluorescence | 17.38 CFU/mL | 10–107 CFU/mL | 136 min | Chicken | 94.7–102.1% | [99] |
| S. aureus | Electrochemistry | 1 CFU/mL | 10–107 CFU/mL | 110 min | Milk | 96–104% | [151] | |
| S. aureus | Fluorescence | 11.12 CFU/mL | 10–107 CFU/mL | 97.7–101.9% | [152] | |||
| Peptide | Vibrio parahaemolyticus | Electrochemistry | 4 CFU/mL | 10–107 CFU/mL | 30 min | Shrimp | 97–106% | [153] |
| E. coli O157:H7 | Fluorescence | 2 CFU/mL | 5–5 × 106 CFU/mL | 50 min | Pork, cabbage, milk | [154] | ||
| S. aureus | Electrochemistry | 50 CFU/mL | 50–106 CFU/mL | 170 min | Water | [132] | ||
| Small-molecule receptor | S. aureus | Electrochemistry | 2.7 CFU/mL | 102–109 CFU/mL | 10 min | Milk | [125] | |
| S. aureus | Raman | 2 CFU/mL | 38–3.8 × 107 CFU/mL | 95 min | Fish | 90.51–97.97% | [143] | |
| Milk | 91.32–98.38% |
| Platform Type | Recognition Elements | Target Analyte | Technical Features | Performance | Advantages | Real Sample | Reference |
|---|---|---|---|---|---|---|---|
| Multi-target platform | MIT | Salmonella | 3D photonic microsphere microarray | 3 CFU/mL | high-throughput and low-cost detection | Water, milk | [135] |
| Shigella | 20 CFU/mL | ||||||
| E. coli | 1 CFU/mL | ||||||
| Peptide | L. monocytogenes | Electrode array | 9 CFU/mL | High-throughput and low-cost detection | [115] | ||
| S. aureus | 3 CFU/mL | ||||||
| Aptamer | S. aureus | Shape-encoded functional hydrogel pellets | 1.4 × 103 CFU/mL | A facile, cost-effective, and portable gas pressure sensor | Water | [159] | |
| E. coli | 5.3 × 102 CFU/mL | ||||||
| Multimodal platform | Aptamer | Vibrio parahaemolyticus | Colorimetry | 9 CFU/mL | Signal cross-validation, anti-interference | Shrimp | [186] |
| Raman | 7 CFU/mL | ||||||
| Aptamer | S. aureus | Fluorescence | 22 CFU/mL | Signal cross-validation, anti-interference | Pork, beef | [187] | |
| Colorimetry | 20 CFU/mL | ||||||
| Aptamer | Salmonella | Fluorescence | 60 CFU/mL | Signal cross-validation, anti-interference | Milk, egg, chicken | [163] | |
| Colorimetry | 316 CFU/mL | ||||||
| POCT | Nucleic Acid | Vibrio parahaemolyticus, Salmonella typhimurium, L. monocytogenes, S. aureus | Fully enclosed chip | 500 CFU/mL, 45 min | Automation, rapid detection | Meat products, egg products, aquatic products | [173] |
| Aptamer | E. coli, S. aureus, P. aeruginosa | 3D-printed microfluidic chip combined with smartphone | 100 CFU/mL, 40 min | Portable and low-cost detection | Water, orange juice, milk | [158] | |
| Antibody | S. aureus | A multifunction and portable 3D-printed pretreatment device | 100 CFU/mL, 180 min | Highly sensitive and graded detection | Solid and semi-solid food samples | [188] | |
| Smart terminal platform | Aptamer | S. aureus | Enhance the portability of detection with smartphone app | 6.9 CFU/mL, 50 min | Suitable for areas with limited resources | Milk | [189] |
| Nucleic Acid | S. aureus | Smartphone-based signal acquisition and visualization | 900 CFU/mL, 60 min | Real-time analysis | Milk | [165] | |
| Multiple foodborne pathogens | Raman spectroscopy combined with deep learning | Accuracy of 93% | Rapid, culture-free identification | Air | [183] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Jiang, M.; Xie, Y.; Xu, H.; Sun, Z. Recognition Element-Based Strategies for Rapid Detection of Foodborne Pathogens: Recent Progress and Perspectives. Biosensors 2025, 15, 717. https://doi.org/10.3390/bios15110717
Guo W, Jiang M, Xie Y, Xu H, Sun Z. Recognition Element-Based Strategies for Rapid Detection of Foodborne Pathogens: Recent Progress and Perspectives. Biosensors. 2025; 15(11):717. https://doi.org/10.3390/bios15110717
Chicago/Turabian StyleGuo, Wang, Meifeng Jiang, Yunkai Xie, Hong Xu, and Zongbao Sun. 2025. "Recognition Element-Based Strategies for Rapid Detection of Foodborne Pathogens: Recent Progress and Perspectives" Biosensors 15, no. 11: 717. https://doi.org/10.3390/bios15110717
APA StyleGuo, W., Jiang, M., Xie, Y., Xu, H., & Sun, Z. (2025). Recognition Element-Based Strategies for Rapid Detection of Foodborne Pathogens: Recent Progress and Perspectives. Biosensors, 15(11), 717. https://doi.org/10.3390/bios15110717

