A Highly Sensitive Fluorescent Sensor Based on Carbon Dots and Gold Nanoparticles for Carbaryl Through the Inner Filter Effect
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Experimental Instruments
2.3. Preparation of CDs
2.4. Preparation of AuNPs
2.5. Fluorometric Detection of Carbaryl
2.6. Procedures for the Detection of Carbaryl in Real Samples
3. Results and Discussion
3.1. Characteristics of AuNPs and CDs
3.2. Fluorescence Quenching Effect Through the IFE Between CDs and AuNPs
3.3. Feasibility of the Sensor for Detection of Carbaryl
3.4. Optimization of the Experimental Conditions
3.5. Detection of Carbaryl
3.6. Selectivity Study
3.7. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adhikari, S.; Joshi, R.; Joshi, R.; Kim, M.; Jang, Y.; Tufa, L.T.; Gicha, B.B.; Lee, J.; Lee, D.; Cho, B.-K. Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique. Food Chem. 2024, 457, 140486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Li, L.; Lin, D.; Jiang, C. Ultrasensitive and on-site detection of carbaryl pesticides via dual-mode nanosensors utilizing portable devices. ACS Sustain. Chem. Eng. 2023, 11, 4998–5006. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Y.; Wang, H.; Jiao, L.; Chen, H.; Zhu, C. Bismuth atom-doped gold aerogels for the detection of acetylcholinesterase activity and organophosphorus inhibitor. Chem. Eng. J. 2023, 474, 145483. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Q.; Li, Q.; Li, H.; Li, F. Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the interference of H2O2 and color. Anal. Chem. 2021, 93, 4084–4091. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, G.; Dennison, G.H.; FitzGerald, N.; Burn, P.L.; Gentle, I.R.; Shaw, P.E. Challenges in fluorescence detection of chemical warfare agent vapors using solid-state films. Adv. Mater. 2020, 32, 1905785. [Google Scholar] [CrossRef]
- Cao, J.; Wang, M.; She, Y.; Zheng, L.; Jin, F.; Shao, Y.; Wang, J.; El-Aty, A.M.A. Highly sensitive and rapid screening technique for the detection of organophosphate pesticides and copper compounds using bifunctional recombinant TrxA-PvCarE1. J. Agric. Food Chem. 2024, 72, 5003–5013. [Google Scholar] [CrossRef]
- Wang, X.; Feng, T.; Wang, J.; Hao, L.; Wang, C.; Wu, Q.; Wang, Z. Preparation of magnetic porous covalent triazine-based organic polymer for the extraction of carbamates prior to high performance liquid chromatography-mass spectrometric detection. J. Chromatogr. A 2019, 1602, 178–187. [Google Scholar] [CrossRef]
- Ruengprapavut, S.; Sophonnithiprasert, T.; Pongpoungphet, N. The effectiveness of chemical solutions on the removal of carbaryl residues from cucumber and chili presoaked in carbaryl using the HPLC technique. Food Chem. 2020, 309, 125659. [Google Scholar] [CrossRef] [PubMed]
- Khachornsakkul, K.; Leelasattarathkul, T. Distance-based paper analytical device for residual carbaryl pesticide quantification in food beverage samples. Sens. Actuators B Chem. 2025, 441, 137984. [Google Scholar] [CrossRef]
- Pang, G.; Chang, Q.; Bai, R.; Fan, C.; Zhang, Z.; Yan, H.; Wu, X. Simultaneous screening of 733 pesticide residues in fruits and vegetables by a GC/LC-Q-TOFMS combination technique. Engineering 2020, 6, 432–441. [Google Scholar] [CrossRef]
- Hong, J.; Kawashima, A.; Hamada, N. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane. Appl. Surf. Sci. 2017, 407, 440–446. [Google Scholar] [CrossRef]
- Song, D.; Li, G.; Liu, Q.; Huang, X.; Wang, W.; Gao, F. Multi-effect coupling enhanced PtPdRhFeCu HEA/N-Cu-ZnSe@C biosensing device for pesticide residue detection in fruits and vegetables with ultra-low detection limit. Food Chem. 2025, 468, 142468. [Google Scholar] [CrossRef]
- Bilal, S.; Sami, A.J.; Hayat, A.; Rehman, M.F.U. Assessment of pesticide induced inhibition of Apis mellifera (honeybee) acetylcholinesterase by means of N-doped carbon dots/BSA nanocomposite modified electrochemical biosensor. Bioelectrochemisty 2022, 144, 107999. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Guan, L.; Chen, H.; Li, D.; Zhang, L.; Huang, S. Preparation of a Novel Green Fluorescent Carbon Quantum Dots and Application in Fe3+-Specific Detection in Biological System. J. Anal. Test. 2024, 8, 40–51. [Google Scholar] [CrossRef]
- Wu, G.; Qiu, H.; Liu, X.; Luo, P.; Wu, Y.; Shen, Y. Nanomaterials-based fluorescent assays for pathogenic bacteria in food-related matrices. Trends Food Sci. Technol. 2023, 142, 104214. [Google Scholar] [CrossRef]
- Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal. Chem. 2012, 84, 4185–4191. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Bei, F.; Hou, J.; Ai, S. A highly sensitive dual-signaling assay via inner filter effect between g-C3N4 and gold nanoparticles for organophosphorus pesticides. Sens. Actuators B Chem. 2018, 255, 2232–2239. [Google Scholar] [CrossRef]
- Ye, Q.; Dai, T.; Shen, J.; Xu, Q.; Hu, X.; Shu, Y. Incorporation of Fluorescent Carbon Quantum Dots into Metal–Organic Frameworks with Peroxidase-Mimicking Activity for High-Performance Ratiometric Fluorescent Biosensing. J. Anal. Test. 2023, 7, 16–24. [Google Scholar] [CrossRef]
- Shi, J.; Tian, F.; Lyu, J.; Yang, M. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J. Mater. Chem. B 2015, 3, 6989–7005. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, K.-H.; Deep, A. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens. Bioelectron. 2015, 70, 469–481. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Q.; Wang, Y.; Zhang, B.; Tang, X.; Talap, J.; Sun, J.; Yang, X. Fluorescent Iron-Doped Polymer Dot Nanozyme-Based Cascade System for Dual-Mode Detection of Acetylcholinesterase Activity and Its Inhibitors. Anal. Chem. 2024, 96, 15682–15691. [Google Scholar] [CrossRef]
- Mahmoudi, N.; Fatemi, F.; Rahmandoust, M.; Mirzajani, F.; Siadat, S.O.R. Development of a carbon quantum dot-based sensor for the detection of acetylcholinesterase and the organophosphate pesticide. Heliyon 2023, 9, 19551. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, J.; Ying, Y.; She, Y.; Wang, J.; Ping, J. Carbon nanomaterial-enabled pesticide biosensors: Design strategy, biosensing mechanism, and practical application. TrAC Trends Anal. Chem. 2018, 106, 62–83. [Google Scholar] [CrossRef]
- Ren, H.; Tai, S.; Barimah, A.O.; Mao, M.; Peng, C.; Xu, J.; Wang, Z. Advancement of pesticides fluorescence detection: From sensing strategies to application prospect. Trends Food Sci. Technol. 2024, 152, 104682. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Huang, Y.; Li, L.; Liu, H.; Ding, Y. Carbon Dots as “On–Off–On” Fluorescence Sensors for Selective and Consecutive Detection of 4-Nitrophenol and Cerium(IV) in Water Samples. J. Anal. Test. 2024, 8, 201–209. [Google Scholar] [CrossRef]
- Xu, M.; Li, X.; Liu, P.; Liu, J.; Han, X.; Chai, G.; Zhong, S.; Yang, B.; Cui, L. A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chin. Chem. Lett. 2025, 36, 109860. [Google Scholar] [CrossRef]
- Yue, X.; Wu, C.; Zhou, Z.; Fu, L.; Bai, Y. Fluorescent Sensing of Ciprofloxacin and Chloramphenicol in Milk Samples via Inner Filter Effect and Photoinduced Electron Transfer Based on Nanosized Rod-Shaped Eu-MOF. Foods 2022, 11, 3138. [Google Scholar] [CrossRef]
- Li, B.; Zhou, M.; Zhao, C.; Xiao, L.; Qi, T.; Xu, H.; Guo, L.; Ning, G.; Lu, X.; Zhu, K.; et al. Dual-Mode Colorimetric and Fluorescent Detection of Tumor Cells Based on Gold Nanoparticles-Loaded Phosphine Covalent Organic Frameworks. J. Anal. Test. 2025, 9, 21–31. [Google Scholar]
- Zhai, Y.; Jin, L.; Wang, P.; Dong, S. Dual-functional Au–Fe3O4 dumbbell nanoparticles for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect. Chem. Commun. 2011, 47, 8268–8270. [Google Scholar] [CrossRef]
- Chen, X.; He, Z.; Jiao, S.; Sun, Z.; Zhang, S.; Liu, X. Colorimetric-fluorescent dual-mode nanosensor-powered enzyme immunoassay for ochratoxin A via alkaline phosphatase-mediated silver nanoparticle growth and fluorescence inner filter effect. J. Hazard. Mater. 2025, 494, 138539. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z. On–off–on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect. ACS Appl. Mater. Interfaces 2013, 5, 13242–13247. [Google Scholar] [CrossRef]
- George, J.K.; Ramu, S.; Halali, V.V.; Balakrishna, R.G. Inner filter effect as a boon in perovskite sensing systems to achieve higher sensitivity levels. ACS Appl. Mater. Interfaces 2021, 13, 57264–57273. [Google Scholar] [CrossRef]
- Sajwan, R.K.; Lakshmi, G.; Solanki, P.R. Fluorescence tuning behavior of carbon quantum dots with gold nanoparticles via novel intercalation effect of aldicarb. Food. Chem. 2021, 340, 127835. [Google Scholar] [CrossRef]
- Khodadoust, S.; Nasab, R.B.; Zeraatpisheh, F. Ultrasound-assisted dispersive nano sponge-activated carbon for extraction of propoxur and carbaryl: Response surface methodology. J. Water Process Eng. 2024, 64, 105712. [Google Scholar] [CrossRef]
- Liu, Q.; Fei, A.; Huan, J.; Mao, H.; Wang, K. Effective amperometric biosensor for carbaryl detection based on covalent immobilization acetylcholinesterase on multiwall carbon nanotubes/graphene oxide nanoribbons nanostructure. J. Electroanal. Chem. 2015, 740, 8–13. [Google Scholar] [CrossRef]
- Li, Y.; Shi, L.; Han, G.; Xiao, Y.; Zhou, W. Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network. Sens. Actuators B Chem. 2017, 238, 945–953. [Google Scholar] [CrossRef]
- Shahdost-fard, F.; Fahimi-Kashani, N.; Hormozi-nezhad, M. A ratiometric fluorescence nanoprobe using CdTe QDs for fast detection of carbaryl insecticide in apple. Talanta 2021, 221, 121467. [Google Scholar] [CrossRef]
- Tian, F.; Jiang, L.; Wang, Z.; Peng, L.; Zhang, Z.; Huang, Y. Mn2+-activated CRISPR-Cas12a strategy for fluorescence detection of the insecticide carbaryl. Sens. Actuators B Chem. 2024, 398, 134695. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Xu, X.; Ye, K.; Wang, L.; Zhu, H.; Wang, M.; Niu, X. Integrating peroxidase-mimicking activity with photoluminescence into one framework structure for high-performance ratiometric fluorescent pesticide sensing. Sens. Actuators B Chem. 2021, 328, 129024. [Google Scholar] [CrossRef]
- Wang, J.; Sun, X.; Pan, W.; Wang, J. A fluorescence and phosphorescence dual-signal readout platform based on carbon dots/SiO2 for multi-channel detections of carbaryl, thiram and chlorpyrifos. Microchem. J. 2022, 178, 107408. [Google Scholar] [CrossRef]






| Material | Method | Linear Range (ng/mL) | LOD (ng/mL) | Ref. | 
|---|---|---|---|---|
| NSAC a | HPLC-UV b | 3.5–10,000 | 0.1 | [34] | 
| MWCNTs c-GONRs d | Electrochemical | 1–1000 | 0.34 | [35] | 
| e-pGON e | Electrochemical | 0.3–6.1 | 0.15 | [36] | 
| CdTe QDs f | Fluorescent | 50–14,000 | 0.12 | [37] | 
| MACC g | Fluorescent | 4–200 | 5.81 | [38] | 
| NH2-MIL-101(Fe) h | Fluorescent | 2–100 | 1.45 | [39] | 
| PAT i-CDs@SiO2 j | Fluorescent | 10–100 | 3.3 | [40] | 
| R-CDs k | Fluorescent | 0–20,000 | 0.52 | [26] | 
| CDs+AuNPs | Fluorescent | 0.2–200 | 0.05 | This work | 
| Sample | Added (ng/mL) | Found (ng/mL) | Recovery (%) | RSD (%) | 
|---|---|---|---|---|
| 1 | 0 | - | - | - | 
| 2 | 0.20 | 0.195 | 97.5% | 1.09 | 
| 3 | 50.0 | 50.54 | 101.1% | 4.93 | 
| 4 | 200 | 199.3 | 99.7% | 4.76 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Bao, C.; Yang, M. A Highly Sensitive Fluorescent Sensor Based on Carbon Dots and Gold Nanoparticles for Carbaryl Through the Inner Filter Effect. Biosensors 2025, 15, 691. https://doi.org/10.3390/bios15100691
Lu Y, Bao C, Yang M. A Highly Sensitive Fluorescent Sensor Based on Carbon Dots and Gold Nanoparticles for Carbaryl Through the Inner Filter Effect. Biosensors. 2025; 15(10):691. https://doi.org/10.3390/bios15100691
Chicago/Turabian StyleLu, Yan, Chengqi Bao, and Minghui Yang. 2025. "A Highly Sensitive Fluorescent Sensor Based on Carbon Dots and Gold Nanoparticles for Carbaryl Through the Inner Filter Effect" Biosensors 15, no. 10: 691. https://doi.org/10.3390/bios15100691
APA StyleLu, Y., Bao, C., & Yang, M. (2025). A Highly Sensitive Fluorescent Sensor Based on Carbon Dots and Gold Nanoparticles for Carbaryl Through the Inner Filter Effect. Biosensors, 15(10), 691. https://doi.org/10.3390/bios15100691
 
        


 
       