Integration of Artificial Intelligence in Biosensors for Enhanced Detection of Foodborne Pathogens
Abstract
1. Introduction
2. Foodborne Pathogens and Challenges in Their Detection
3. Biosensor-Based Foodborne Pathogen Detection
4. Artificial Intelligence in Biosensing Platforms
4.1. AI-Assisted Selection and Multi-Analyte Analysis
4.2. Recognition Element Selection and Optimization
4.3. Transducer Design
4.4. Signal Processing and Interpretation
5. Integration of AI with Biosensors for Enhanced Detection of Foodborne Pathogens
5.1. Electrochemical Biosensors
5.2. Optical Biosensors
5.2.1. Colorimetric Biosensor
5.2.2. Fluorescent Biosensors
5.2.3. Surface Plasmon Resonance
5.2.4. Surface-Enhanced Raman Scattering (SERS)
6. Current Challenges and Future Directions in AI-Assisted Biosensing
6.1. Data Standardization and Interoperability
6.2. Algorithmic Bias and Generalizability Across Food Types
6.3. Cost, Scalability, and Commercialization Barriers
6.4. Regulatory Acceptance and Validation Requirements
6.5. Data Privacy and Security Concerns
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
AI | Artificial Intelligence |
CNNs | Convolutional Neural Networks |
SERS | Surface-Enhanced Raman Spectroscopy |
IoT | Internet of Things |
NGS | Next-Generation Sequencing |
VBNC | Viable but Non-Culturable |
LFDs | Lateral Flow Devices |
PCR | Polymerase Chain Reaction |
IUPAC | International Union of Pure and Applied Chemistry |
MIPs | Molecularly Imprinted Polymers |
SELEX | Systematic Evolution of Ligands by Exponential Enrichment |
Nb-HRP | Nanobody–Horseradish Peroxidase |
EIS | Electrochemical Impedance Spectroscopy |
SPR | Surface Plasmon Resonance |
QCM | Quartz Crystal Microbalance |
ML | Machine Learning |
DL | Deep Learning |
RF | Reinforcement Learning |
ANN | Artificial Neural Network |
LPS | Lipopolysaccharide |
CQDs | Carbon Quantum Dots |
k-NN | k-Nearest Neighbors |
BIPs-PEC | Bacterial Imprinting Photoelectrochemical |
RNNs | Recurrent Neural Networks |
SVM | Support Vector Machine |
VOCs | Volatile Organic Compounds |
SHDS | Staggered Herringbone Double-Spiral |
PQD | Perovskite Quantum Dot |
LFA | Lateral Flow Assay |
SVR | Support Vector Regression |
XGBR | Extreme Gradient Boosting Regression |
CAD | Computer-Aided Design |
XAI | Explainable Artificial Intelligence |
References
- Fung, F.; Wang, H.-S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Schirone, M.; Visciano, P.; Tofalo, R.; Suzzi, G. Editorial: Foodborne Pathogens: Hygiene and Safety. Front. Microbiol. 2019, 10, 1974. [Google Scholar] [CrossRef]
- Gourama, H. Foodborne pathogens. In Food Safety Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 25–49. [Google Scholar]
- Pires, S.M.; Devleesschauwer, B. Estimates of global disease burden associated with foodborne pathogens. In Foodborne Infections and Intoxications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–17. [Google Scholar]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; De Silva, N.R.; Gargouri, N. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef]
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar]
- Elbehiry, A.; Marzouk, E.; Alzaben, F.; Almuaither, A.; Abead, B.; Alamri, M.; Almuzaini, A.M.; Abu-Okail, A. Emerging Technologies and Integrated Strategies for Microbial Detection and Control in Fresh Produce. Microorganisms 2025, 13, 1447. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.S.; Kim, C.M.; Ha, S.D. Detection and enumeration of microorganisms in ready-to-eat foods, ready-to-cook foods and fresh-cut produce in Korea. J. Food Saf. 2010, 30, 480–489. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, C.-W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef]
- Wang, Y.; Salazar, J.K. Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr. Rev. Food Sci. Food Saf. 2016, 15, 183–205. [Google Scholar] [CrossRef]
- Neethirajan, S.; Ragavan, V.; Weng, X.; Chand, R. Biosensors for sustainable food engineering: Challenges and perspectives. Biosensors 2018, 8, 23. [Google Scholar] [CrossRef]
- Turasan, H.; Kokini, J. Novel nondestructive biosensors for the food industry. Annu. Rev. Food Sci. Technol. 2021, 12, 539–566. [Google Scholar] [CrossRef]
- Nastasijevic, I.; Kundacina, I.; Jaric, S.; Pavlovic, Z.; Radovic, M.; Radonic, V. Recent advances in biosensor technologies for meat production chain. Foods 2025, 14, 744. [Google Scholar] [CrossRef]
- Morales, M.A.; Halpern, J.M. Guide to selecting a biorecognition element for biosensors. Bioconjugate Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef] [PubMed]
- Crivianu-Gaita, V.; Thompson, M. Aptamers, antibody scFv, and antibody Fab’fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens. Bioelectron. 2016, 85, 32–45. [Google Scholar] [CrossRef]
- Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010, 28, 232–254. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Rani, R. Development of biosensors for the detection of biological warfare agents: Its issues and challenges. Sci. Prog. 2013, 96, 294–308. [Google Scholar] [CrossRef]
- Gao, R.; Liu, X.; Xiong, Z.; Wang, G.; Ai, L. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety. Food Res. Int. 2024, 193, 114767. [Google Scholar] [CrossRef] [PubMed]
- Forinová, M.; Seidlová, A.; Pilipenco, A.; Lynn, N.S., Jr.; Obořilová, R.; Farka, Z.; Skládal, P.; Saláková, A.; Spasovová, M.; Houska, M. A comparative assessment of a piezoelectric biosensor based on a new antifouling nanolayer and cultivation methods: Enhancing S. aureus detection in fresh dairy products. Curr. Res. Biotechnol. 2023, 6, 100166. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Huang, K.; Cheng, N. Biosensor for agriculture and food safety: Recent advances and future perspectives. Adv. Agrochem 2022, 1, 3–6. [Google Scholar] [CrossRef]
- Singh, L.; Sharanagat, V.S. Application of biosensors against food-borne pathogens. Nutr. Food Sci. 2024, 54, 207–237. [Google Scholar] [CrossRef]
- Aliakbar Ahovan, Z.; Hashemi, A.; De Plano, L.M.; Gholipourmalekabadi, M.; Seifalian, A. Bacteriophage based biosensors: Trends, outcomes and challenges. Nanomaterials 2020, 10, 501. [Google Scholar] [CrossRef]
- Ferrigno, P.K. Non-antibody protein-based biosensors. Essays Biochem. 2016, 60, 19–25. [Google Scholar]
- McGrath, T.F.; Andersson, K.; Campbell, K.; Fodey, T.L.; Elliott, C.T. Development of a rapid low cost fluorescent biosensor for the detection of food contaminants. Biosens. Bioelectron. 2013, 41, 96–102. [Google Scholar] [CrossRef]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food safety analysis using electrochemical biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef]
- Akkaş, T.; Reshadsedghi, M.; Şen, M.; Kılıç, V.; Horzum, N. The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Adv. Mater. 2025, 2504796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R. Application of biosensing technology in the rapid identification of pathogenic microorganisms. Mol. Cell. Biomech. 2025, 22, 1155. [Google Scholar] [CrossRef]
- Mishra, P.; Gupta, D. Comparative analysis of a bioelectric cell biosensor dataset employing machine learning classifiers for reliable Listeria monocytogenes identification. In Proceedings of the 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 24–28 June 2024; pp. 1–6. [Google Scholar]
- Wang, Y.; Feng, Y.; Xiao, Z.; Luo, Y. Machine learning supported single-stranded DNA sensor array for multiple foodborne pathogenic and spoilage bacteria identification in milk. Food Chem. 2025, 463, 141115. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Gupta, A.; Gupta, C.; Mani, A.; Basu, T. AI-Driven Improvements in Electrochemical Biosensors for Effective Pathogen Detection at Point-of-Care. Eng. Proc. 2024, 73, 5. [Google Scholar]
- Zhou, Z.; Tian, D.; Yang, Y.; Cui, H.; Li, Y.; Ren, S.; Han, T.; Gao, Z. Machine learning assisted biosensing technology: An emerging powerful tool for improving the intelligence of food safety detection. Curr. Res. Food Sci. 2024, 8, 100679. [Google Scholar] [CrossRef]
- Ding, H.; Hou, H.; Wang, L.; Cui, X.; Yu, W.; Wilson, D.I. Application of convolutional neural networks and recurrent neural networks in food safety. Foods 2025, 14, 247. [Google Scholar] [CrossRef]
- Zhang, S.; Han, Z.; Feng, Z.; Sun, M.; Duan, X. Deep learning assisted microfluidic impedance flow cytometry for label-free foodborne bacteria analysis and classification. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico City, Mexico, 1–5 November 2021; pp. 7087–7090. [Google Scholar]
- Quan, H.; Wang, S.; Xi, X.; Zhang, Y.; Ding, Y.; Li, Y.; Lin, J.; Liu, Y. Deep learning enhanced multiplex detection of viable foodborne pathogens in digital microfluidic chip. Biosens. Bioelectron. 2024, 245, 115837. [Google Scholar] [CrossRef]
- Kant, K.; Shahbazi, M.-A.; Dave, V.P.; Ngo, T.A.; Chidambara, V.A.; Than, L.Q.; Bang, D.D.; Wolff, A. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol. Adv. 2018, 36, 1003–1024. [Google Scholar] [CrossRef]
- Yi, J.; Wisuthiphaet, N.; Raja, P.; Nitin, N.; Earles, J.M. AI-enabled biosensing for rapid pathogen detection: From liquid food to agricultural water. Water Res. 2023, 242, 120258. [Google Scholar] [CrossRef]
- Zhao, J.; Han, M.; Ma, A.; Jiang, F.; Chen, R.; Dong, Y.; Wang, X.; Ruan, S.; Chen, Y. A machine vision-assisted Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella in food without convoluted DNA extraction and amplification procedures. J. Hazard. Mater. 2024, 466, 133648. [Google Scholar] [CrossRef]
- Thapa, R.; Poudel, S.; Krukiewicz, K.; Kunwar, A. A topical review on AI-interlinked biodomain sensors for multi-purpose applications. Measurement 2024, 227, 114123. [Google Scholar]
- Protopappas, L.; Bechtsis, D.; Tsotsolas, N. IoT Services for Monitoring Food Supply Chains. Appl. Sci. 2025, 15, 7602. [Google Scholar] [CrossRef]
- Weiming, S.; Yahaya, A. An IoT-Driven architectural framework for a food quality monitoring and safety management system. Front. Soc. Sci. Technol. 2024, 6, 74–79. [Google Scholar]
- Kabiraz, M.P.; Majumdar, P.R.; Mahmud, M.C.; Bhowmik, S.; Ali, A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023, 9, e15482. [Google Scholar] [CrossRef] [PubMed]
- Barton Behravesh, C.; Jones, T.F.; Vugia, D.J.; Long, C.; Marcus, R.; Smith, K.; Thomas, S.; Zansky, S.; Fullerton, K.E.; Henao, O.L. Deaths associated with bacterial pathogens transmitted commonly through food: Foodborne diseases active surveillance network (FoodNet), 1996–2005. J. Infect. Dis. 2011, 204, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Martinović, T.; Andjelković, U.; Gajdošik, M.Š.; Rešetar, D.; Josić, D. Foodborne pathogens and their toxins. J. Proteom. 2016, 147, 226–235. [Google Scholar] [CrossRef]
- Bai, X.; Nakatsu, C.H.; Bhunia, A.K. Bacterial biofilms and their implications in pathogenesis and food safety. Foods 2021, 10, 2117. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yao, H.; Zhao, X.; Ge, C. Biofilm formation and control of foodborne pathogenic bacteria. Molecules 2023, 28, 2432. [Google Scholar] [CrossRef]
- Kanthenga, H.T.; Banicod, R.J.S.; Ntege, W.; Njiru, M.N.; Javaid, A.; Tabassum, N.; Kim, Y.-M.; Khan, F. Functional diversity of AI-2/LuxS system in Lactic Acid Bacteria: Impacts on Biofilm Formation and Environmental Resilience. Res. Microbiol. 2025, 176, 104296. [Google Scholar] [CrossRef] [PubMed]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria monocytogenes–how this pathogen survives in food-production environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar]
- Rodrigues, C.S.; Sá, C.V.G.C.D.; Melo, C.B.D. An overview of Listeria monocytogenes contamination in ready to eat meat, dairy and fishery foods. Ciência Rural. 2016, 47, e20160721. [Google Scholar] [CrossRef]
- Aladhadh, M. A review of modern methods for the detection of foodborne pathogens. Microorganisms 2023, 11, 1111. [Google Scholar] [CrossRef]
- Ge, B.; Meng, J. Advanced technologies for pathogen and toxin detection in foods: Current applications and future directions. JALA J. Assoc. Lab. Autom. 2009, 14, 235–241. [Google Scholar] [CrossRef]
- Thung, T.; Lee, E.; Wai, G.; Pui, C.; Kuan, C.; Premarathne, J.; Nurzafirah, M.; Tan, C.; Malcolm, T.; Ramzi, O. A review of culture-dependent and molecular methods for detection of Salmonella in food safety. Food Res. 2019, 3, 622–627. [Google Scholar] [CrossRef]
- Souii, A.; M’hadheb-Gharbi, M.B.; Gharbi, J. Nucleic acid-based biotechnologies for food-borne pathogen detection using routine time-intensive culture-based methods and fast molecular diagnostics. Food Sci. Biotechnol. 2016, 25, 11–20. [Google Scholar] [CrossRef]
- Rohde, A.; Hammerl, J.A.; Boone, I.; Jansen, W.; Fohler, S.; Klein, G.; Dieckmann, R.; Al Dahouk, S. Overview of validated alternative methods for the detection of foodborne bacterial pathogens. Trends Food Sci. Technol. 2017, 62, 113–118. [Google Scholar] [CrossRef]
- Foddai, A.C.; Grant, I.R. Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Appl. Microbiol. Biotechnol. 2020, 104, 4281–4288. [Google Scholar] [CrossRef]
- Oluwaseun, A.C.; Phazang, P.; Sarin, N.B. Biosensors: A Fast-Growing Technology for Pathogen Detection in Agriculture and Food Sector; InTechOpen: London, UK, 2018. [Google Scholar]
- Priyanka, B.; Patil, R.K.; Dwarakanath, S. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 2016, 144, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Birbian, N.; Sinha, S.; Goswami, A. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci 2014, 1, 65–80. [Google Scholar]
- Mayo, B.; TCC Rachid, C.; Alegría, Á.; MO Leite, A.; S Peixoto, R.; Delgado, S. Impact of next generation sequencing techniques in food microbiology. Curr. Genom. 2014, 15, 293–309. [Google Scholar] [CrossRef]
- Jagadeesan, B.; Gerner-Smidt, P.; Allard, M.W.; Leuillet, S.; Winkler, A.; Xiao, Y.; Chaffron, S.; Van Der Vossen, J.; Tang, S.; Katase, M. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol. 2019, 79, 96–115. [Google Scholar] [CrossRef]
- Sirangelo, T.M.; Calabrò, G. Next generation sequencing approach and impact on bioinformatics: Applications in agri-food field. J. Bioinform. Syst. Biol. 2020, 3, 032–044. [Google Scholar] [CrossRef]
- Jongenburger, I.; Den Besten, H.; Zwietering, M. Statistical aspects of food safety sampling. Annu. Rev. Food Sci. Technol. 2015, 6, 479–503. [Google Scholar] [CrossRef]
- Japelaghi, R.H.; Haddad, R.; Garoosi, G.-A. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides. Mol. Biotechnol. 2011, 49, 129–137. [Google Scholar] [CrossRef]
- Senturk, E.; Aktop, S.; Sanlibaba, P.; Tezel, B. Biosensors: A novel approach to detect food-borne pathogens. Appl. Microbiol. Open Access 2018, 4, 4–11. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Hemavathy, R.; Jeevanantham, S.; Kamalesh, R.; Sneha, S.; Yaashikaa, P. Methods of detection of food-borne pathogens: A review. Environ. Chem. Lett. 2021, 19, 189–207. [Google Scholar] [CrossRef]
- Shah, K.; Maghsoudlou, P. Enzyme-linked immunosorbent assay (ELISA): The basics. Br. J. Hosp. Med. 2016, 77, C98–C101. [Google Scholar] [CrossRef] [PubMed]
- Altayb, H.N.; Badri, R.M.; Chaieb, K.; Moglad, E. Detection and characterization of the most common foodborne pathogens by using multiplex PCR procedure. Saudi J. Biol. Sci. 2023, 30, 103653. [Google Scholar] [CrossRef]
- Lewis, E.; Hudson, J.A.; Cook, N.; Barnes, J.D.; Haynes, E. Next-generation sequencing as a screening tool for foodborne pathogens in fresh produce. J. Microbiol. Methods 2020, 171, 105840. [Google Scholar] [CrossRef]
- Ferrario, C.; Lugli, G.A.; Ossiprandi, M.C.; Turroni, F.; Milani, C.; Duranti, S.; Mancabelli, L.; Mangifesta, M.; Alessandri, G.; van Sinderen, D. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens. Int. J. Food Microbiol. 2017, 256, 20–29. [Google Scholar] [CrossRef]
- Bozal-Palabiyik, B.; Gumustas, A.; Ozkan, S.A.; Uslu, B. Biosensor-based methods for the determination of foodborne pathogens. In Foodborne Diseases; Elsevier: Amsterdam, The Netherlands, 2018; pp. 379–420. [Google Scholar]
- Quintela, I.A.; Vasse, T.; Lin, C.-S.; Wu, V.C. Advances, applications, and limitations of portable and rapid detection technologies for routinely encountered foodborne pathogens. Front. Microbiol. 2022, 13, 1054782. [Google Scholar] [CrossRef] [PubMed]
- Zolti, O.; Suganthan, B.; Ramasamy, R.P. Lab-on-a-chip electrochemical biosensors for foodborne pathogen detection: A review of common standards and recent progress. Biosensors 2023, 13, 215. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, J.; Lu, X.; Liu, Q. Isothermal nucleic acid amplification based microfluidic “lab-on-a-chip” for the detection of pathogenic bacteria and viruses in agri-foods. Trends Food Sci. Technol. 2024, 148, 104482. [Google Scholar] [CrossRef]
- Sobhan, A.; Hossain, A.; Wei, L.; Muthukumarappan, K.; Ahmed, M. IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time. Foods 2025, 14, 1403. [Google Scholar] [CrossRef]
- Iqbal, M.; Yousaf, J.; Khan, A.; Muhammad, T. IoT-Enabled Food Freshness Detection Using Multi-Sensor Data Fusion and Mobile Sensing Interface. ICCK Trans. Sens. Commun. Control. 2025, 2, 122–131. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, H.; Bai, J.; He, Q.; Deng, R. CRISPR-Cas based molecular diagnostics for foodborne pathogens. Crit. Rev. Food Sci. Nutr. 2024, 64, 5269–5289. [Google Scholar] [CrossRef]
- Sharma, S.; Tharani, L. Optical sensing for real-time detection of food-borne pathogens in fresh produce using machine learning. Sci. Prog. 2024, 107, 00368504231223029. [Google Scholar] [CrossRef]
- Yang, M.; Liu, X.; Luo, Y.; Pearlstein, A.J.; Wang, S.; Dillow, H.; Reed, K.; Jia, Z.; Sharma, A.; Zhou, B. Machine learning-enabled non-destructive paper chromogenic array detection of multiplexed viable pathogens on food. Nat. Food 2021, 2, 110–117. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Du, X. Electrochemical biosensors for detection of foodborne pathogens. Micromachines 2019, 10, 222. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, K.; Lin, J. Optical biosensors for the detection of foodborne pathogens: Recent development and future prospects. TrAC Trends Anal. Chem. 2024, 177, 117785. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Nickhil, C.; Kate, A.; Srivastva, R.M.; Mohapatra, D.; Jadam, R.S.; Yadav, A.; Modhera, B. Biosensor: Fundamentals, biomolecular component, and applications. In Advances in Biomedical Polymers and Composites; Elsevier: Amsterdam, The Netherlands, 2023; pp. 617–633. [Google Scholar]
- Feng, Y.; Shi, J.; Liu, J.; Yuan, Z.; Gao, S. Advancing Food Safety Surveillance: Rapid and Sensitive Biosensing Technologies for Foodborne Pathogenic Bacteria. Foods 2025, 14, 2654. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and microfluidic biosensors: From fabrication to application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, J.; Wu, L.; Huang, Y.; Zhang, Y.; Zhu, M.; Wang, Y.; Zhu, Z.; Yang, C. Trends in miniaturized biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2020, 122, 115701. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Lee, Y.-C.; Lai, Y.-H.; Lim, J.-C.; Huang, N.-T.; Lin, C.-T.; Huang, J.-J. Review of integrated optical biosensors for point-of-care applications. Biosensors 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.; Toth, K.; Durst, R.A.; Wilson, G.S. Technical report electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Van Dorst, B.; Mehta, J.; Bekaert, K.; Rouah-Martin, E.; De Coen, W.; Dubruel, P.; Blust, R.; Robbens, J. Recent advances in recognition elements of food and environmental biosensors: A review. Biosens. Bioelectron. 2010, 26, 1178–1194. [Google Scholar] [CrossRef]
- Chen, J.; Andler, S.M.; Goddard, J.M.; Nugen, S.R.; Rotello, V.M. Integrating recognition elements with nanomaterials for bacteria sensing. Chem. Soc. Rev. 2017, 46, 1272–1283. [Google Scholar] [CrossRef]
- Wei, L.-N.; Luo, L.; Wang, B.-Z.; Lei, H.-T.; Guan, T.; Shen, Y.-D.; Wang, H.; Xu, Z.-L. Biosensors for detection of paralytic shellfish toxins: Recognition elements and transduction technologies. Trends Food Sci. Technol. 2023, 133, 205–218. [Google Scholar] [CrossRef]
- Kanyong, P.; Patil, A.V.; Davis, J.J. Functional molecular interfaces for impedance-based diagnostics. Annu. Rev. Anal. Chem. 2020, 13, 183–200. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhu, X.; Meng, Q.; Zheng, P.; Zhang, J.; He, Z.; Jiang, H. Gold interdigitated micro-immunosensor based on Mn-MOF-74 for the detection of Listeria monocytogens. Biosens. Bioelectron. 2021, 183, 113186. [Google Scholar] [CrossRef]
- Gao, S.; Yang, W.; Zheng, X.; Wang, T.; Zhang, D.; Zou, X. Advances of nanobody-based immunosensors for detecting food contaminants. Trends Food Sci. Technol. 2025, 156, 104871. [Google Scholar] [CrossRef]
- Currie, S.; Cortes de la Torre, A.J.; Kumar, A.; Logsetty, S.; Liu, S. Next-Generation Wound Care: Aptamer-Conjugated Polydiacetylene/Polyurethane Nanofibrous Biosensors for Selective In Situ Colorimetric Detection of Pseudomonas. Adv. Funct. Mater. 2024, 34, 2403440. [Google Scholar] [CrossRef]
- Zhou, Z.; Lan, X.; Zhu, L.; Zhang, Y.; Chen, K.; Zhang, W.; Xu, W. Portable dual-aptamer microfluidic chip biosensor for Bacillus cereus based on aptamer tailoring and dumbbell-shaped probes. J. Hazard. Mater. 2023, 445, 130545. [Google Scholar] [CrossRef]
- An, Q.; Wang, Y.; Tian, Z.; Han, J.; Li, J.; Liao, F.; Yu, F.; Zhao, H.; Wen, Y.; Zhang, H. Molecular and structural basis of an ATPase-nuclease dual-enzyme anti-phage defense complex. Cell Res. 2024, 34, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Song, Z.; Zhou, C.; Ma, P.; Li, C.; Lu, Q.; Liao, Z.; Huang, Z.; Tang, Y.; Li, H. Development of nanobody-horseradish peroxidase-based sandwich ELISA to detect Salmonella Enteritidis in milk and in vivo colonization in chicken. J. Nanobiotechnology 2022, 20, 167. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Ma, Z.; Gu, H.; Luo, X.; Yin, X.; Yi, H.; Chen, Y. Hybrid recognition-enabled ratiometric electrochemical sensing of Staphylococcus aureus via in-situ growth of MOF/Ti3C2Tx-MXene and a self-reporting bacterial imprinted polymer. Food Chem. 2025, 463, 141496. [Google Scholar]
- Zhao, J.; Chen, R.; Ma, A.; Dong, Y.; Han, M.; Yu, X.; Chen, Y. CuO2@ SiO2 nanoparticle assisted click reaction-mediated magnetic relaxation biosensor for rapid detection of Salmonella in food. Biosens. Bioelectron. 2025, 273, 117188. [Google Scholar] [CrossRef]
- Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1465–1487. [Google Scholar]
- Iqbal, M.A.; Gupta, S.; Hussaini, S. A Review on Electrochemical Biosensors: Principles and Applications. Adv. Bioresearch 2012, 3, 158–163. [Google Scholar]
- Wang, B.; Wang, H.; Lu, X.; Zheng, X.; Yang, Z. Recent advances in electrochemical biosensors for the detection of foodborne pathogens: Current perspective and challenges. Foods 2023, 12, 2795. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Sun, Z.; Guo, Q.; Weng, X. Microfluidic thread-based electrochemical aptasensor for rapid detection of Vibrio parahaemolyticus. Biosens. Bioelectron. 2021, 182, 113191. [Google Scholar] [CrossRef] [PubMed]
- Bacchu, M.; Ali, M.; Das, S.; Akter, S.; Sakamoto, H.; Suye, S.-I.; Rahman, M.; Campbell, K.; Khan, M. A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal. Chim. Acta 2022, 1192, 339332. [Google Scholar] [CrossRef]
- Soares, R.R.; Hjort, R.G.; Pola, C.C.; Parate, K.; Reis, E.L.; Soares, N.F.; McLamore, E.S.; Claussen, J.C.; Gomes, C.L. Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sens. 2020, 5, 1900–1911. [Google Scholar]
- Habimana, J.d.D.; Ji, J.; Sun, X. Minireview: Trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics. Anal. Lett. 2018, 51, 2933–2966. [Google Scholar] [CrossRef]
- Qin, J.; Guo, N.; Yang, J.; Wei, J. Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays. Food Chem. 2024, 447, 139019. [Google Scholar] [CrossRef]
- Wei, W.; Haruna, S.A.; Zhao, Y.; Li, H.; Chen, Q. Surface-enhanced Raman scattering biosensor-based sandwich-type for facile and sensitive detection of Staphylococcus aureus. Sens. Actuators B Chem. 2022, 364, 131929. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, H.; Li, M.; Sun, C.; Ren, D.; Li, Y. Fiber optic surface plasmon resonance sensor for detection of E. coli O157: H7 based on antimicrobial peptides and AgNPs-rGO. Biosens. Bioelectron. 2018, 117, 347–353. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Liu, L.; Jia, M.; Li, X.; Li, J. Nano-biosensor based on manganese dioxide nanosheets and carbon dots for dual-mode determination of Staphylococcus aureus. Food Chem. 2024, 432, 137144. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Z.; Xie, J.; Zhu, Z.; Feng, Y.; Yu, S.; Xue, L.; Wu, S.; Gu, Q.; Zhang, J. Dual-mode immunochromatographic assay based on dendritic gold nanoparticles with superior fluorescence quenching for ultrasensitive detection of E. coli O157: H7. Food Chem. 2023, 424, 136366. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Q.; Liu, X.; Wang, Y.; Wang, J.; Wang, X. An ultrasensitive fluorescence nano-biosensor based on RBP 41-quantum dot microspheres for rapid detection of Salmonella in the food matrices. Food Chem. 2025, 468, 142504. [Google Scholar] [CrossRef]
- Choi, J.R.; Hu, J.; Tang, R.; Gong, Y.; Feng, S.; Ren, H.; Wen, T.; Li, X.; Abas, W.A.B.W.; Pingguan-Murphy, B. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab A Chip 2016, 16, 611–621. [Google Scholar] [CrossRef]
- Arora, P.; Sindhu, A.; Dilbaghi, N.; Chaudhury, A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens. Bioelectron. 2011, 28, 1–12. [Google Scholar] [CrossRef]
- Beyazit, F.; Arica, M.Y.; Acikgoz-Erkaya, I.; Ozalp, C.; Bayramoglu, G. Quartz crystal microbalance–based aptasensor integrated with magnetic pre-concentration system for detection of Listeria monocytogenes in food samples. Microchim. Acta 2024, 191, 235. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Huang, X.; Guo, J.; Ma, X. Automatic smartphone-based microfluidic biosensor system at the point of care. Biosens. Bioelectron. 2018, 110, 78–88. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, H.; Wang, X.; Zhang, Y.; Sun, W.; Liu, Q.; Zhou, X.; Xu, W.; Luo, Y.; Huang, K. Zwitterions modified biosensors improve detection performance in complex food matrices. Trends Food Sci. Technol. 2024, 145, 104374. [Google Scholar] [CrossRef]
- Cui, F.; Yue, Y.; Zhang, Y.; Zhang, Z.; Zhou, H.S. Advancing biosensors with machine learning. ACS Sens. 2020, 5, 3346–3364. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent advances in electrochemical biosensors: Applications, challenges, and future scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Flynn, C.D.; Chang, D. Artificial intelligence in point-of-care biosensing: Challenges and opportunities. Diagnostics 2024, 14, 1100. [Google Scholar] [CrossRef]
- Bocan, A.; Siavash Moakhar, R.; del Real Mata, C.; Petkun, M.; De Iure-Grimmel, T.; Yedire, S.G.; Shieh, H.; Khorrami Jahromi, A.; Mahshid, S.S.; Mahshid, S. Machine-Learning-Aided Advanced Electrochemical Biosensors. Adv. Mater. 2025, 37, 2417520. [Google Scholar] [CrossRef]
- Weichert, D.; Link, P.; Stoll, A.; Rüping, S.; Ihlenfeldt, S.; Wrobel, S. A review of machine learning for the optimization of production processes. Int. J. Adv. Manuf. Technol. 2019, 104, 1889–1902. [Google Scholar] [CrossRef]
- Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39. [Google Scholar]
- Saravanan, R.; Sujatha, P. A state of art techniques on machine learning algorithms: A perspective of supervised learning approaches in data classification. In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 14–15 June 2018; pp. 945–949. [Google Scholar]
- Naeem, S.; Ali, A.; Anam, S.; Ahmed, M.M. An unsupervised machine learning algorithms: Comprehensive review. Int. J. Comput. Digit. Syst. 2023, 13, 911–921. [Google Scholar] [CrossRef]
- Jovel, J.; Greiner, R. An introduction to machine learning approaches for biomedical research. Front. Med. 2021, 8, 771607. [Google Scholar] [CrossRef]
- Morales, E.F.; Escalante, H.J. A brief introduction to supervised, unsupervised, and reinforcement learning. In Biosignal Processing and Classification Using Computational Learning and Intelligence; Elsevier: Amsterdam, The Netherlands, 2022; pp. 111–129. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Reddy, G.S.; Pathak, H. The understanding of deep learning: A comprehensive review. Math. Probl. Eng. 2021, 2021, 5548884. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Xu, Y.; Yang, J. Machine learning meets omics: Applications and perspectives. Brief. Bioinform. 2022, 23, bbab460. [Google Scholar] [CrossRef] [PubMed]
- Abed, M.M.; Wouters, C.L.; Froehlich, C.E.; Nguyen, T.B.; Caldwell, R.; Riley, K.L.; Roy, P.; Reineke, T.M.; Haynes, C.L. A Machine Learning-Enabled SERS Sensor: Multiplex Detection of Lipopolysaccharides from Foodborne Pathogenic Bacteria. ACS Appl. Mater. Interfaces 2025, 17, 45139–45149. [Google Scholar] [CrossRef]
- Xiao, M.; Mei, L.; Qi, J.; Zhu, L.; Wang, F. Functionalized carbon quantum dots fluorescent sensor array assisted by a machine learning algorithm for rapid foodborne pathogens identification. Microchem. J. 2024, 201, 110701. [Google Scholar] [CrossRef]
- Bazin, I.; Tria, S.A.; Hayat, A.; Marty, J.-L. New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron. 2017, 87, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Feng, X.; Tang, F.; Jiang, H.; Han, S.; Tao, R.; Lu, C. Aptamer screening: Current methods and future trend towards Non-SELEX approach. Biosensors 2024, 14, 350. [Google Scholar] [CrossRef]
- Peltomaa, R.; Benito-Peña, E.; Barderas, R.; Moreno-Bondi, M.C. Phage display in the quest for new selective recognition elements for biosensors. Acs Omega 2019, 4, 11569–11580. [Google Scholar] [CrossRef]
- Brown, A.; Brill, J.; Amini, R.; Nurmi, C.; Li, Y. Development of better aptamers: Structured library approaches, selection methods, and chemical modifications. Angew. Chem. Int. Ed. 2024, 63, e202318665. [Google Scholar] [CrossRef]
- Qian, S.; Chang, D.; He, S.; Li, Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal. Chim. Acta 2022, 1196, 339511. [Google Scholar] [CrossRef] [PubMed]
- Gotrik, M.R.; Feagin, T.A.; Csordas, A.T.; Nakamoto, M.A.; Soh, H.T. Advancements in aptamer discovery technologies. Acc. Chem. Res. 2016, 49, 1903–1910. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, T.; Zhang, H.; Li, W.; Lian, C.; Jiang, Y.; Qu, M.; Zhao, Z.; Wang, Y.; Sun, Y. AI-Enhanced Electrochemical Sensing Systems: A Paradigm Shift for Intelligent Food Safety Monitoring. Biosensors 2025, 15, 565. [Google Scholar] [CrossRef] [PubMed]
- Ciloglu, F.U.; Caliskan, A.; Saridag, A.M.; Kilic, I.H.; Tokmakci, M.; Kahraman, M.; Aydin, O. Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniques. Sci. Rep. 2021, 11, 18444. [Google Scholar] [CrossRef]
- Ding, J.; Lin, Q.; Zhang, J.; Young, G.M.; Jiang, C.; Zhong, Y.; Zhang, J. Rapid identification of pathogens by using surface-enhanced Raman spectroscopy and multi-scale convolutional neural network. Anal. Bioanal. Chem. 2021, 413, 3801–3811. [Google Scholar] [CrossRef]
- Ciloglu, F.U.; Saridag, A.M.; Kilic, I.H.; Tokmakci, M.; Kahraman, M.; Aydin, O. Identification of methicillin-resistant Staphylococcus aureus bacteria using surface-enhanced Raman spectroscopy and machine learning techniques. Analyst 2020, 145, 7559–7570. [Google Scholar] [CrossRef]
- Hussain, M.; Zou, J.; Zhang, H.; Zhang, R.; Chen, Z.; Tang, Y. Recent Progress in Spectroscopic Methods for the Detection of Foodborne Pathogenic Bacteria. Biosensors 2022, 12, 869. [Google Scholar] [CrossRef]
- Goumas, G.; Vlachothanasi, E.N.; Fradelos, E.C.; Mouliou, D.S. Biosensors, artificial intelligence biosensors, false results and novel future perspectives. Diagnostics 2025, 15, 1037. [Google Scholar] [CrossRef]
- Zhou, B.; Li, X.; Pan, Y.; He, B.; Gao, B. Artificial Intelligence-Assisted Next-Generation Biomaterials: From Design and Preparation to Medical Applications. Colloids Surf. B Biointerfaces 2025, 114970. [Google Scholar] [CrossRef] [PubMed]
- Sagdic, K.; Eş, I.; Sitti, M.; Inci, F. Smart materials: Rational design in biosystems via artificial intelligence. Trends Biotechnol. 2022, 40, 987–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tan, F.; Huang, S.; Zu, J.; Guo, W.; Cui, B.; Fang, Y. Ultrasensitive Staphylococcus aureus Detection via Machine Learning-Optimized Bacterial-Imprinted Photoelectrochemical Biosensor with Active/Passive Dual-Mode Validation. Anal. Chem. 2025, 97, 16456–16464. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Lee, J.; Moon, J.; Lee, T.; Kim, J.; Jeong, Y.; Lim, E.K.; Jung, J.; Jung, Y.; Lee, S.J. Multiplex Detection of Foodborne Pathogens using 3D Nanostructure Swab and Deep Learning-Based Classification of Raman Spectra. Small 2024, 20, 2308317. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Z.; Wang, Z.; Shi, L.; Zhuo, J.; Yan, S.; Ji, Y.; Wang, Y.; Zhang, D.; Wang, J. Machine-learning-assisted aggregation-induced emissive nanosilicon-based sensor array for point-of-care identification of multiple foodborne pathogens. Anal. Chem. 2024, 96, 6588–6598. [Google Scholar] [CrossRef]
- Gruhl, F.J.; Rapp, B.E.; Länge, K. Biosensors for Diagnostic Applications. Adv. Biochem. Eng. Biotechnol. 2012, 133, 115–148. [Google Scholar]
- Deng, Z.; Yun, Y.-H.; Duan, N.; Wu, S. Artificial intelligence algorithms-assisted biosensors in the detection of foodborne pathogenic bacteria: Recent advances and future trends. Trends Food Sci. Technol. 2025, 161, 105072. [Google Scholar] [CrossRef]
- Tian, Y.; Chao, M.A.; Kulkarni, C.; Goebel, K.; Fink, O. Real-time model calibration with deep reinforcement learning. Mech. Syst. Signal Process. 2022, 165, 108284. [Google Scholar] [CrossRef]
- Durand, A.; Wiesner, T.; Gardner, M.-A.; Robitaille, L.-É.; Bilodeau, A.; Gagné, C.; De Koninck, P.; Lavoie-Cardinal, F. A machine learning approach for online automated optimization of super-resolution optical microscopy. Nat. Commun. 2018, 9, 5247. [Google Scholar] [CrossRef]
- Ismaiel, E.; Zátonyi, A.; Fekete, Z. Dimensionality Reduction and Prediction of Impedance Data of Biointerface. Sensors 2022, 22, 4191. [Google Scholar] [CrossRef] [PubMed]
- Porr, B.; Daryanavard, S.; Bohollo, L.M.; Cowan, H.; Dahiya, R. Real-time noise cancellation with deep learning. PLoS ONE 2022, 17, e0277974. [Google Scholar] [CrossRef]
- Ma, H.; Li, G.; Zhang, H.; Wang, X.; Li, F.; Yan, J.; Hong, L.; Zhang, Y.; Pu, Q. Rapid and ultra-sensitive detection of foodborne pathogens by deep learning-enhanced microfluidic biosensing. Sens. Actuators B Chem. 2025, 436, 137646. [Google Scholar]
- Zhang, S.; Zhu, W.; Zhang, X.; Mei, L.; Liu, J.; Wang, F. Machine learning-driven fluorescent sensor array using aqueous CsPbBr3 perovskite quantum dots for rapid detection and sterilization of foodborne pathogens. J. Hazard. Mater. 2025, 483, 136655. [Google Scholar]
- Mostajabodavati, S.; Mousavizadegan, M.; Hosseini, M.; Mohammadimasoudi, M.; Mohammadi, J. Machine learning-assisted liquid crystal-based aptasensor for the specific detection of whole-cell Escherichia coli in water and food. Food Chem. 2024, 448, 139113. [Google Scholar] [CrossRef]
- Ganjalizadeh, V.; Meena, G.G.; Stott, M.A.; Hawkins, A.R.; Schmidt, H. Machine learning at the edge for AI-enabled multiplexed pathogen detection. Sci. Rep. 2023, 13, 4744. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Cai, A.; Xu, T.; Zhang, X. Artificial intelligence biosensors for continuous glucose monitoring. Interdiscip. Mater. 2023, 2, 290–307. [Google Scholar] [CrossRef]
- Xu, J.; Akhtar, M.; Meng, W.; Bai, J.; Prince, S.; Huang, R. Advances in Pathogen Detection: From Traditional Methods to Nanotechnology, Biosensing and AI Integration. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2025, 17, e70022. [Google Scholar] [CrossRef]
- Rong, Y.; Padron, A.; Hagerty, K.; Nelson, N.; Chi, S.; Keyhani, N.; Katz, J.; Datta, S.; Gomes, C.; McLamore, E. Post hoc support vector machine learning for impedimetric biosensors based on weak protein–ligand interactions. Analyst 2018, 143, 2066–2075. [Google Scholar] [CrossRef]
- Pantic, I.V.; Pantic, J.P.; Valjarevic, S.; Corridon, P.R.; Topalovic, N. Artificial intelligence–based approaches based on random forest algorithm for signal analysis: Potential applications in detection of chemico-biological interactions. Chem. Biol. Interact. 2025, 418, 111624. [Google Scholar]
- Parmar, J.; Patel, S.K.; Katkar, V.; Natesan, A. Graphene-based refractive index sensor using machine learning for detection of Mycobacterium tuberculosis bacteria. IEEE Trans. NanoBioscience 2022, 22, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Vohra, B.; Gupta, K. Supervised learning approach towards class separability-linear discriminant analysis. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1088–1093. [Google Scholar]
- Ma, S.; Dai, Y. Principal component analysis based methods in bioinformatics studies. Brief. Bioinform. 2011, 12, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Lee, H.; Devaraj, V.; Kim, W.-G.; Lee, Y.; Kim, Y.; Jeong, N.-N.; Choi, E.J.; Baek, S.H.; Han, D.-W. Hierarchical cluster analysis of medical chemicals detected by a bacteriophage-based colorimetric sensor array. Nanomaterials 2020, 10, 121. [Google Scholar] [CrossRef]
- Ma, J.; Guan, Y.; Xing, F.; Eltzov, E.; Wang, Y.; Li, X.; Tai, B. Accurate and non-destructive monitoring of mold contamination in foodstuffs based on whole-cell biosensor array coupling with machine-learning prediction models. J. Hazard. Mater. 2023, 449, 131030. [Google Scholar]
- Ahmed, K.; Bui, F.M.; Wu, F.-X. PreOBP_ML: Machine learning algorithms for prediction of optical biosensor parameters. Micromachines 2023, 14, 1174. [Google Scholar] [CrossRef]
- Wekalao, J.; Siddharthan, N.; Shibu, S.; Murthy, G.S.; Karthikeyan, K.V.; Mallan, S.; Ganesan, K.; Sekar, V.; Rashed, A.N.Z. High sensitivity terahertz biosensor based on graphene/methylammonium lead halide metasurface with machine learning-enhanced pathogen detection. Plasmonics 2025, 20, 4747–4768. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; Sayada, J.; Zareef, M.; Shoaib, M.; Chen, X.; Li, H.; Chen, Q. Progress of machine learning-based biosensors for the monitoring of food safety: A review. Biosens. Bioelectron. 2025, 267, 116782. [Google Scholar]
- Xu, Y.; Zhu, J.; Liu, R.; Jiang, F.; Chen, M.; Kutsanedzie, F.Y.; Jiao, T.; Wei, J.; Chen, X.-m.; Chen, Q. Nanogap-Assisted SERS/PCR Biosensor Coupled Machine Learning for the Direct Sensing of Staphylococcus aureus in Food. J. Agric. Food Chem. 2025, 73, 1589–1597. [Google Scholar]
- Li, Y.; Chen, F.; Liu, Y.; Khan, M.A.; Zhao, H.; Cao, H.; Ye, D. Identification of multiple foodborne pathogens using single-atom nanozyme colorimetric sensor arrays and machine learning. Chem. Eng. J. 2025, 511, 162115. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, Z.; Luo, Y.; Cardoso, Z.A.; Wang, D.; Flock, G.H.; Thompson-Witrick, K.A.; Yu, H.; Zhang, B. Enhancing pathogen identification in cheese with high background microflora using an artificial neural network-enabled paper chromogenic array sensor approach. Sens. Actuators B Chem. 2024, 410, 135675. [Google Scholar] [CrossRef]
- Jia, Z.; Luo, Y.; Wang, D.; Holliday, E.; Sharma, A.; Green, M.M.; Roche, M.R.; Thompson-Witrick, K.; Flock, G.; Pearlstein, A.J. Surveillance of pathogenic bacteria on a food matrix using machine-learning-enabled paper chromogenic arrays. Biosens. Bioelectron. 2024, 248, 115999. [Google Scholar] [CrossRef]
- Cui, R.; Tang, H.; Huang, Q.; Ye, T.; Chen, J.; Huang, Y.; Hou, C.; Wang, S.; Ramadan, S.; Li, B. AI-assisted smartphone-based colorimetric biosensor for visualized, rapid and sensitive detection of pathogenic bacteria. Biosens. Bioelectron. 2024, 259, 116369. [Google Scholar] [CrossRef]
- Konstantinou, L.; Varda, E.; Apostolou, T.; Loizou, K.; Dougiakis, L.; Inglezakis, A.; Hadjilouka, A. A Novel Application of B. EL. D™ Technology: Biosensor-Based Detection of Salmonella spp. in Food. Biosensors 2024, 14, 582. [Google Scholar] [CrossRef]
- Wang, C.; Hao, T.; Wang, Z.; Lin, H.; Wei, W.; Hu, Y.; Wang, S.; Shi, X.; Guo, Z. Machine learning-assisted cell-imprinted electrochemical impedance sensor for qualitative and quantitative analysis of three bacteria. Sens. Actuators B Chem. 2023, 384, 133672. [Google Scholar] [CrossRef]
- Coatrini-Soares, A.; Coatrini-Soares, J.; Neto, M.P.; de Mello, S.S.; Pinto, D.D.S.C.; Carvalho, W.A.; Gilmore, M.S.; Piazzetta, M.H.O.; Gobbi, A.L.; de Mello Brandão, H. Microfluidic E-tongue to diagnose bovine mastitis with milk samples using Machine learning with Decision Tree models. Chem. Eng. J. 2023, 451, 138523. [Google Scholar] [CrossRef]
- Zhang, B.; Rahman, M.A.; Liu, J.; Huang, J.; Yang, Q. Real-time detection and analysis of foodborne pathogens via machine learning based fiber-optic Raman sensor. Measurement 2023, 217, 113121. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, S.; Duan, H.; Liu, Y. A fluorescent biosensor for sensitive detection of Salmonella typhimurium using low-gradient magnetic field and deep learning via faster region-based convolutional neural network. Biosensors 2021, 11, 447. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Liu, C.; Fang, S.; Ma, J.; Qiu, J.; Xu, D.; Li, L.; Yu, J.; Li, D.; Liu, Q. SERS-based lateral flow assay combined with machine learning for highly sensitive quantitative analysis of Escherichia coli O157: H7. Anal. Bioanal. Chem. 2020, 412, 7881–7890. [Google Scholar] [CrossRef]
- Ding, S.; Chen, X.; Yu, B.; Liu, Z. Electrochemical biosensors for clinical detection of bacterial pathogens: Advances, applications, and challenges. Chem. Commun. 2024, 60, 9513–9525. [Google Scholar] [CrossRef]
- Sardini, E.; Serpelloni, M.; Tonello, S. Printed electrochemical biosensors: Opportunities and metrological challenges. Biosensors 2020, 10, 166. [Google Scholar] [CrossRef]
- Aliev, T.A.; Lavrentev, F.V.; Dyakonov, A.V.; Diveev, D.A.; Shilovskikh, V.V.; Skorb, E.V. Electrochemical platform for detecting Escherichia coli bacteria using machine learning methods. Biosens. Bioelectron. 2024, 259, 116377. [Google Scholar] [CrossRef]
- Huang, X.; Xu, D.; Chen, J.; Liu, J.; Li, Y.; Song, J.; Ma, X.; Guo, J. Smartphone-based analytical biosensors. Analyst 2018, 143, 5339–5351. [Google Scholar] [CrossRef]
- Mazur, F.; Han, Z.; Tjandra, A.D.; Chandrawati, R. Digitalization of colorimetric sensor technologies for food safety. Adv. Mater. 2024, 36, 2404274. [Google Scholar] [CrossRef]
- Hagos, D.H.; Aryal, S.K.; Ymele-Leki, P.; Burge, L.L. AI-driven multimodal colorimetric analytics for biomedical and behavioral health diagnostics. Comput. Struct. Biotechnol. J. 2025, 27, 2219–2232. [Google Scholar] [CrossRef]
- Qian, S.; Cui, Y.; Cai, Z.; Li, L. Applications of smartphone-based colorimetric biosensors. Biosens. Bioelectron. X 2022, 11, 100173. [Google Scholar] [CrossRef]
- Wang, L.; Ji, Y.; Chen, Y.; Zheng, S.; Wang, F.; Li, C. Recent research progress of fluorescence biosensors based on carbon dots in early diagnosis of diseases. TrAC Trends Anal. Chem. 2024, 180, 117962. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, H. A review on machine learning–powered fluorescent and colorimetric sensor arrays for bacteria identification. Microchim. Acta 2023, 190, 451. [Google Scholar] [CrossRef] [PubMed]
- Willander, M.; Al-Hilli, S. Analysis of biomolecules using surface plasmons. In Micro and Nano Technologies in Bioanalysis: Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 201–229. [Google Scholar]
- Piliarik, M.; Vaisocherová, H.; Homola, J. Surface plasmon resonance biosensing. Methods Mol. Biol. 2009, 503, 65–88. [Google Scholar]
- Vaisocherová-Lísalová, H.; Víšová, I.; Ermini, M.L.; Špringer, T.; Song, X.C.; Mrázek, J.; Lamačová, J.; Lynn, N.S., Jr.; Šedivák, P.; Homola, J. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens. Bioelectron. 2016, 80, 84–90. [Google Scholar] [CrossRef]
- Taylor, A.D.; Ladd, J.; Yu, Q.; Chen, S.; Homola, J.; Jiang, S. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens. Bioelectron. 2006, 22, 752–758. [Google Scholar] [CrossRef]
- Park, B.; Wang, B.; Chen, J. Label-free immunoassay for multiplex detections of foodborne bacteria in chicken carcass rinse with surface plasmon resonance imaging. Foodborne Pathog. Dis. 2021, 18, 202–209. [Google Scholar] [CrossRef]
- Cho, H.-K.; Kim, G.-Y.; Kim, W.-H.; Sung, M.-S. Detection of pathogenic Salmonella using a surface plasmon resonance biosensor. J. Biosyst. Eng. 2010, 35, 116–123. [Google Scholar] [CrossRef]
- Zain, H.; Batumalay, M.; Harith, Z.; Rahim, H.; Harun, S. Machine learning algorithms for surface plasmon resonance bio-detection applications, A short review. In Proceedings of Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; p. 012013. [Google Scholar]
- Chang, Y.-F.; Wang, Y.-C.; Huang, T.-Y.; Li, M.-C.; Chen, S.-Y.; Lin, Y.-X.; Su, L.-C.; Lin, K.-J. AI integration into wavelength-based SPR biosensing: Advancements in spectroscopic analysis and detection. Anal. Chim. Acta 2025, 1341, 343640. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Ali, S.; Jiao, T.; Wang, Z.; Ouyang, Q.; Chen, Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1466–1494. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Islam, M.R.; Zughaier, S.M.; Chen, X.; Zhao, Y. Precision classification and quantitative analysis of bacteria biomarkers via surface-enhanced Raman spectroscopy and machine learning. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 320, 124627. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Yang, H.; Acharya, J.; Liao, J.; Ivanek, R.; Wiedmann, M. Initializing a Public Repository for Hosting Benchmark Datasets to Facilitate Machine Learning Model Development in Food Safety. J. Food Prot. 2025, 88, 100463. [Google Scholar] [CrossRef]
- Khoiri, S.; Moussango, V.D. A Short Review on Harnessing Bioinformatics for Food Safety: Computational Approaches to Detecting Foodborne Pathogens. J. Adv. Health Inform. Res. 2024, 2, 109–114. [Google Scholar] [CrossRef]
- Kotsiri, Z.; Vidic, J.; Vantarakis, A. Applications of biosensors for bacteria and virus detection in food and water–A systematic review. J. Environ. Sci. 2022, 111, 367–379. [Google Scholar] [CrossRef]
- Han, Q.; Wang, H.; Wang, J. Multi-mode/signal biosensors: Electrochemical integrated sensing techniques. Adv. Funct. Mater. 2024, 34, 2403122. [Google Scholar]
- Li, T.; Zhang, J.; Bu, P.; Wu, H.; Guo, J.; Guo, J. Multi-modal nanoprobe-enabled biosensing platforms: A critical review. Nanoscale 2024, 16, 3784–3816. [Google Scholar] [CrossRef]
- Dehimi, N.E.H.; Tolba, Z. Attention mechanisms in deep learning: Towards explainable artificial intelligence. In Proceedings of the 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS), El Oued, Algeria, 24–25 April 2024; pp. 1–7. [Google Scholar]
- Roy, D.; Alison, J.; August, T.; Bélisle, M.; Bjerge, K.; Bowden, J.; Bunsen, M.; Cunha, F.; Geissmann, Q.; Goldmann, K. Towards a standardized framework for AI-assisted, image-based monitoring of nocturnal insects. Philos. Trans. R. Soc. B 2024, 379, 20230108. [Google Scholar] [CrossRef]
- Giorgi, G.; Tonello, S. Wearable biosensor standardization: How to make them smarter. Standards 2022, 2, 366–384. [Google Scholar] [CrossRef]
- Grossman, R.L.; Boyles, R.R.; Davis-Dusenbery, B.N.; Haddock, A.; Heath, A.P.; O’Connor, B.D.; Resnick, A.C.; Taylor, D.M.; Ahalt, S. A framework for the interoperability of cloud platforms: Towards FAIR data in SAFE environments. Sci. Data 2024, 11, 241. [Google Scholar] [CrossRef]
- Vazquez, P.; Hirayama-Shoji, K.; Novik, S.; Krauss, S.; Rayner, S. Globally Accessible Distributed Data Sharing (GADDS): A decentralized FAIR platform to facilitate data sharing in the life sciences. Bioinformatics 2022, 38, 3812–3817. [Google Scholar] [CrossRef]
- O’Doherty, K.C.; Shabani, M.; Dove, E.S.; Bentzen, H.B.; Borry, P.; Burgess, M.M.; Chalmers, D.; De Vries, J.; Eckstein, L.; Fullerton, S.M. Toward better governance of human genomic data. Nat. Genet. 2021, 53, 2–8. [Google Scholar] [CrossRef]
- Shehzad, K.; Munir, A.; Ali, U. AI-Powered Food Contaminant Detection: A Review of Machine Learning Approaches. Glob. J. Comput. Sci. Artif. Intell. 2025, 1, 1–22. [Google Scholar] [CrossRef]
- Colella, J.P.; Cobos, M.E.; Salinas, I.; Cook, J.A.; Consortium, P. Advancing the central role of non-model biorepositories in predictive modeling of emerging pathogens. PLoS Pathog. 2023, 19, e1011410. [Google Scholar] [CrossRef] [PubMed]
- Holland, S.; Hosny, A.; Newman, S.; Joseph, J.; Chmielinski, K. The dataset nutrition label. Data Prot. Priv. 2020, 12, 1. [Google Scholar]
- Jangid, H.; Panchpuri, M.; Dutta, J.; Joshi, H.C.; Paul, M.; Karnwal, A.; Ahmad, A.; Alshammari, M.B.; Hossain, K.; Pant, G. Nanoparticle-based detection of foodborne pathogens: Addressing matrix challenges, advances, and future perspectives in food safety. Food Chem. X 2025, 29, 102696. [Google Scholar] [CrossRef]
- Nashruddin, S.N.A.B.M.; Salleh, F.H.M.; Yunus, R.M.; Zaman, H.B. Artificial intelligence− powered electrochemical sensor: Recent advances, challenges, and prospects. Heliyon 2024, 10, e37964. [Google Scholar] [CrossRef] [PubMed]
- Baştürk, M.; Yüzer, E.; Şen, M.; Kılıç, V. Smartphone-Embedded Artificial Intelligence-Based Regression for Colorimetric Quantification of Multiple Analytes with a Microfluidic Paper-Based Analytical Device in Synthetic Tears. Adv. Intell. Syst. 2024, 6, 2400202. [Google Scholar] [CrossRef]
- Jiang, M.; Zheng, S.; Zhu, Z. What can AI-TENG do for low abundance biosensing? Front. Bioeng. Biotechnol. 2022, 10, 899858. [Google Scholar] [CrossRef]
- Ahmed, A.E.T.; Dhahi, T.S.; Attia, T.A.; Ali, F.A.E.; Elobaid, M.E.; Adam, T.; Gopinath, S.C. AI-optimized electrochemical aptasensors for stable, reproducible detection of neurodegenerative diseases, cancer, and coronavirus. Heliyon 2025, 11, e41338. [Google Scholar] [CrossRef] [PubMed]
- Nath, N.; Chakroborty, S.; Vishwakarma, D.P.; Goga, G.; Yadav, A.S.; Mohan, R. Recent advances in sustainable nature-based functional materials for biomedical sensor technologies. Environ. Sci. Pollut. Res. 2024, 31, 57289–57313. [Google Scholar] [CrossRef] [PubMed]
- Vakilian, K.A.; Moreau, M.; Javidan, S.M. An IoT-based smart biosensor for the measurement of nitrate concentration in liquid samples. In Proceedings of the 2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP), Babol, Iran, 21–22 February 2024; pp. 1–5. [Google Scholar]
- Soudier, P.; Faure, L.; Kushwaha, M.; Faulon, J.-L. Cell-free biosensors and AI integration. In Cell-Free Gene Expression: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2022; pp. 303–323. [Google Scholar]
- Zhang, Z.; Liu, X.; Zhou, H.; Xu, S.; Lee, C. Advances in machine-learning enhanced nanosensors: From cloud artificial intelligence toward future edge computing at chip level. Small Struct. 2024, 5, 2300325. [Google Scholar] [CrossRef]
- Adadi, A.; Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 2018, 6, 52138–52160. [Google Scholar] [CrossRef]
- Barciela, P.; Perez-Vazquez, A.; Silva, A.; Barroso, M.F.; Carpena, M.; Prieto, M.A. Advancing Food Safety Sensing through Artificial Intelligence: Machine Learning-Enhanced Biosensors in Action. Proceedings 2024, 104, 25. [Google Scholar] [CrossRef]
- Buyuktepe, O.; Catal, C.; Kar, G.; Bouzembrak, Y.; Marvin, H.; Gavai, A. Food fraud detection using explainable artificial intelligence. Expert Syst. 2025, 42, e13387. [Google Scholar] [CrossRef]
- Kulzer, B.; Heinemann, L. Predicting Glucose Values: A New Era for Continuous Glucose Monitoring; SAGE Publications Sage CA: Los Angeles, CA, USA, 2024; Volume 18, pp. 1000–1003. [Google Scholar]
- Chen, Y.; Wang, Y.; Zhang, Y.; Wang, X.; Zhang, C.; Cheng, N. Intelligent biosensors promise smarter solutions in food safety 4.0. Foods 2024, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Meliana, C.; Liu, J.; Show, P.L.; Low, S.S. Biosensor in smart food traceability system for food safety and security. Bioengineered 2024, 15, 2310908. [Google Scholar] [CrossRef] [PubMed]
- Alatalo, J.; Sipola, T.; Kokkonen, T. Food supply chain cyber threats: A scoping review. In World Conference on Information Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2023; pp. 94–104. [Google Scholar]
- Orel, A.; Bernik, I. GDPR and health personal data; tricks and traps of compliance. Decis. Support Syst. Educ. 2018, 255, 155–159. [Google Scholar]
Method | Detection Time | Sensitivity | Cost and Resources | Portability | Regulatory Acceptance | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|---|
Culture-based methods | Days | Very high | Low to moderate; requires media, incubator, Biosafety Level 2 (BSL-2), and trained personnel | Lab-based | Gold standard; widely accepted (reference methods in BAM/ISO) | Species/viability confirmation; inexpensive consumables | Time-consuming; cannot detect VBNC pathogens | [55,57] |
Biochemical test | Days | Moderate | Low; requires culture step and reagents | Lab-based | Widely used for presumptive identification | Simple, low cost | Requires pure isolates; limited specificity; only provides presumptive identification | [42,65] |
ELISA | Hours | Moderate | Low to moderate; plate reader or lateral-flow kits | Lab-based; Benchtop; LFA portable | Accepted for screening; confirmation needed | Scalable, user-friendly | Susceptible to cross-reactivity and food-matrix interference; often requires enrichment; limited to known antigens | [50,66] |
PCR/qPCR | Hours | High | Moderate per test; high capital cost for thermocycler and other equipment | Lab-based but portable versions exist; mainly benchtop | Broad acceptance (ISO) | High sensitivity/specificity; multiplexing | Inhibited by complex food matrices, detects DNA from dead cells, requires skilled personnel, and a controlled environment | [55,67] |
Next-Generation Sequencing | Days | Very High | High sequencing platforms and bioinformatics | Lab-based | Emerging outbreak/source-tracking | Comprehensive profiling, strain-level identification | High cost and turnaround; requires advanced bioinformatics; not feasible for routine quality control | [68,69] |
Conventional biosensor | Minutes to Hours | Moderate to High | Low to moderate; portable reader | Portable handheld devices, suitable for field use | Limited; assay-specific validation | Rapid, simple, portable | Signal drift and noise in complex samples; calibration and standardization issues; limited regulatory validation | [70,71] |
Microfluidics/Lab-on-a-chip | Minutes to Hours | High | Moderate; chip and reader, fabrication required | Compact, field-deployable chip-based modules | Limited; emerging | Low reagent use; integrates preparation and detection | Device fabrication and reproducibility challenges; prone to clogging/fouling; requires specialized fabrication facilities | [72,73] |
IoT-enabled devices | Real-time/continuous | Variable | Moderate; sensors and connectivity | Remote, real-time monitoring across the supply chain | Limited; complementary only | Remote monitoring; traceability | Indirect detection of hazards; data security and connectivity issues; confirmatory tests still required | [74,75] |
CRISPR-Cas-based molecular diagnostics | Minutes to Hours | Very High | Low to moderate; isothermal setup and Cas reagents | Field-deployable, portable isothermal platforms | Emerging | Ultra-sensitive, specific, rapid | Limited standardization; off-target activity risk; regulatory pathways still emerging | [76] |
AI-assisted biosensor | Minutes to Hours | High | High upfront development and hardware costs; needs for computational power, specialized software, skilled personnel, and extensive training datasets | Portable sensor platforms | Emerging | Improved detection in noisy matrices; automated decision support | Model interpretability (“black box”) issues require large datasets and revalidation; regulatory acceptance is still limited | [77,78] |
Food Matrix | Biosensor Type | AI Method | Detection Principle | Target Pathogen | Performance Metrics | References |
---|---|---|---|---|---|---|
Milk | Nanogap-assisted hybrid biosensor | Machine learning (ML)—bootstrapping soft shrinkage–partial least squares regression | PCR amplification of nuc gene captured in Au/Ag nanogaps; nanogap “hotspots” enhance SERS signals; ML model improves spectral analysis and quantitative prediction | Staphylococcus aureus | Root mean-square error of prediction: 0.437; prediction set correlation coefficient: 0.967 | [171] |
Orange/strawberry juice, milk | Photoelectrochemical | ML (with molecular docking) | BIPs constructed with S. aureus and 4-ethynylacetophenone; dual-mode operation: active bias enhances electron transfer, passive bias repels cells; ML used to analyze and predict sensor performance, reducing background interference | S. aureus | LOD: 101 CFU/mL; High specificity vs. other bacteria | [146] |
Milk, chicken | Fluorescence | Convolutional neural networks (CNNs) | QD–aptamer probe fluorescence imaged inside microchannel; CNN processes images to quantify E. coli concentration and filter noise | Escherichia coli | LOD: 2 CFU/mL; Linear range 10–3 × 106 CFU/mL (R2 = 0.990); 100% capture at 4 × 102 CFU/mL; >99% accuracy; Recovery 96.7–104% | [155] |
Tap water | Fluorescence | Support vector machine | PQD-based array detects fluorescence quenching from pathogen interactions; ML models classify and quantify species and mixtures; simultaneous detection and inactivation | E. coli, S. aureus, Salmonella typhimurium, Listeria monocytogenes, Pseudomonas aeruginosa | LOD: 93–136 CFU/mL; accuracy: 100% for individual/mixed pathogens; antibacterial efficacy: >99% in 30 min | [156] |
Water, coconut juice | Fe–N–C single-atom nanozyme (SAzyme)-based colorimetric sensor array | Machine learning (Principal Component Analysis, Linear Discriminant Analysis, and Hierarchical Clustering Analysis) | Fe-N-C single-atom nanozymes catalyze chromogenic substrates, producing color changes. Pathogens inhibit the SAzymes’ activity, resulting in distinct colorimetric signals. ML processes these signals to create unique fingerprints for each pathogen, enabling differentiation and identification | S. aureus, S. enterica, Vibrio vulnificus, V. harveyi, L. monocytogenes, V. parahaemolyticus | Detection range: 105–108 CFU/mL; simultaneous detection; stable over a period of 25 days | [172] |
Tap water, apple juice | LC-based aptasensor | Artificial Neural Network (ANN) (water), XGBoost (juice) | Liquid crystal alignment change captured by polarized microscopy; ML models analyze image features for sensitive classification and quantification | E. coli | LOD: 6 CFU/mL; R2: 0.986 (water), 0.976 (juice); Detection ~5 min | [157] |
Tap water, pork | Fluorescence | K-nearest neighbors (KNN), naive Bayes (best), decision tree, linear discriminant analysis (LDA), support vector machine (SVM) | Fluorescence quenching from CQD–bacteria binding generates unique signal patterns; ML classifies fingerprints for species and mixture ID | E. coli O157:H7, S. aureus, P. aeruginosa, Shigella, L. monocytogenes | LOD: 103 CFU/mL; detection in 5 min; 100% accuracy in real and mixed samples; high anti-interference | [131] |
Fresh produce | Optical | ML (random forest and support vector machine) | Photonics-based sensor system generating optical signals for pathogen detection, with ML algorithms analyzing the signals to predict contamination risk | E. coli, Salmonella enterica | Accuracy up to 95%; F1-score > 0.9; high sensitivity | [77] |
Milk | ssDNA–nanoparticle optical sensor array | Partial least square discriminant analysis (PLS-DA), KNN, RF classifier, SV classifier, multilayer perceptron (MLP), Kolmogorov–Arnold network (KAN) | Pathogen biomolecules displace ssDNA from nanoparticles, restoring fluorescence; ML models classify fluorescence fingerprints for species ID | E. coli, S. enterica, S. aureus, Shigella sonnei, Bacillus cereus | Accuracy up to 98.4% (MLP, 120 min); >90% at 30 min; high anti-interference | [30] |
Shredded cheddar cheese | Colorimetric | Artificial neural network (deep feed-forward neural network) | PCA detects pathogen-specific volatile organic compounds (VOCs) via color changes; ANN decodes complex VOC-induced patterns to distinguish pathogens from high background flora | S. enteritidis, E. coli O157:H7 | Accuracy: 85–92% (3–5 log CFU/g), 72–96% at 1 log CFU/g within 1 day; no enrichment or incubation required | [173] |
Ground chicken | Colorimetric | Deep feed-forward neural network | Pathogen-specific VOC emissions interact with chromogenic dyes; ML recognizes temporal colorimetric shifts for species identification and multiplex detection | L. monocytogenes, S. enterica, and E. coli O157:H7 | Accuracy: >90% at levels as low as 1 log CFU/g within 5–7 h (25 °C); >80% accuracy within 24 h at 4 °C | [174] |
Orange juice, fish, milk, drumsticks, lettuce, chicken, streaky pork | Fluorescence | Elastic network regression | Phages capture viable cells, DNA cleaved by CbAgo, fluorescent probes targeted, signals accumulated on microsphere; machine vision interprets signals for accurate quantification | S. typhimurium | LOD: 40.5 CFU/mL; Recovery: 93.22–106.02%; Coefficient of variation: 1.47–12.75% | [38] |
Blueberries | Colorimetric | Deep learning (DL)—YOLOv5 | HAase secreted by live bacteria degrades CPRG-loaded HA hydrogel; released CPRG reacts with β-gal hydrogel, and color change is analyzed via YOLOv5 | E. coli, P. aeruginosa, S. aureus, Group A Streptococcus | LOD: 10 CFU/mL; detection time: 60 min; accuracy: >92% | [175] |
Meat products | Electrochemical | Cloud-based algorithm (feature extraction + statistical classification) | Membrane-engineered cells detect shifts in potential upon pathogen binding; the algorithm processes signals for classification | Salmonella spp. | Accuracy: 86.1%; LOD: 1 log CFU g−1; Time-to-result; could detect the pathogen within 24 h after a 3 min analysis | [176] |
Milk | Nanosensor array (aggregation-induced emissive nanosilicons) | XGBoost, ANN | Nanosilicon array differentiates pathogens based on surface potential and hydrophobic interactions; AI enables classification and quantification of multiple pathogens simultaneously | E. coli, Cronobacter sakazakii, L. monocytogenes, S. enteritidis, V. parahaemolyticus, S. aureus, Campylobacter jejuni, and Shigella dysenteriae | Accuracy: 93.75–100% within 1 h; Quantification limits: 103 CFU/mL (C. sakazakii), 102 CFU/mL (L. monocytogenes); Mixed-sample detection: 105 CFU/mL | [148] |
Milk and seawater | Electrochemical | Random forest | Whole-cell imprinted polymer on electrode records impedance signals; six EIS parameters processed by ML for classification and semi-quantification | E. coli, S. aureus, V. parahaemolyticus | Detection range: 10–106 CFU/mL; accuracy: 95.00% | [177] |
Peanuts, maize | Whole-cell biosensor | Random forest (best), sPLS-DA, SVM, ANN, HDDA | VOCs from mold infection trigger promoter responses; biosensor luminescence patterns classified using ML to detect mold presence and stage | Aspergillus flavus | Accuracy: 100% for healthy vs. infected, 95% for pre-mold stages in peanuts, 98% for pre-mold stages in maize, 83% for infected peanuts vs. maize; detection Time: Up to 6 h | [167] |
Milk | Electrochemical | Decision tree models | Differential impedance responses from multilayer films analyzed with ML; multidimensional calibration spaces discriminate pathogen concentrations, interferences, and mastitis infection states | S. aureus | LOD: 2.01–3.41 CFU/mL; Accuracy: 100% (spiked blank milk), 94% (crude milk, multiclass), 100% (ternary classification of infected, treated, and healthy samples) | [178] |
Spoiled food simulations | Raman spectroscopy-based fiber-optic sensor | ANN, RF, SVM, KNN, XGBoost, LR | The fiber-optic Raman probe excites pathogen-specific VOCs with a 532 nm laser, and the scattered light is captured by a spectrometer. ML analyzes the raw Raman spectra to extract molecular features and improve detection accuracy | L. monocytogenes, S. typhimurium, and E. coli | ANN: 95% accuracy (AUC = 0.99); RF: 85% accuracy at 100-fold dilution | [179] |
Fresh-cut romaine lettuce | Colorimetric | Machine learning-enabled multilayer neural network | VOC emissions from viable pathogens generate dye-specific colorimetric patterns; ML recognizes patterns for species-level identification, viability discrimination, and multiplex detection | E. coli O157:H7, S. aureus, L. monocytogenes | Accuracy: 95% for bacterial identity, 93% for quantification, 91% for multiplexed samples; Detection time: Visible pattern change within 2 h | [78] |
Milk | Fluorescence | DL—Faster Region-Based Convolutional Neural Network | Immunomagnetic capture and fluorescent labeling; low-gradient magnetic field converts signals to planar distribution; DL algorithm identifies fluorescent spots for accurate quantification | S. typhimurium | Limit of detection: 55 CFU/mL; Linear range: 69–1100 CFU/mL; Recovery: 85.31–110.48% (mean 102.74%); Coefficient of variation: < 8%; Detection time: 2.5h | [180] |
Milk and Beef | SERS-LFA (surface-enhanced raman scattering-based lateral flow assay) | Bayesian ridge regression (BRR), elastic net regression (ENR), support vector regression (SVR), and eXtreme gradient boosting regression (XGBR) | Double-antibody sandwich immunoassay with SERS nanotags; ML regression models used for quantitative analysis of Raman spectra | E. coli O157:H7 | LOD: 6.94 × 101 CFU/mL; Recovery: 86–128%; Detection possible after 2 h incubation | [181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banicod, R.J.S.; Tabassum, N.; Jo, D.-M.; Javaid, A.; Kim, Y.-M.; Khan, F. Integration of Artificial Intelligence in Biosensors for Enhanced Detection of Foodborne Pathogens. Biosensors 2025, 15, 690. https://doi.org/10.3390/bios15100690
Banicod RJS, Tabassum N, Jo D-M, Javaid A, Kim Y-M, Khan F. Integration of Artificial Intelligence in Biosensors for Enhanced Detection of Foodborne Pathogens. Biosensors. 2025; 15(10):690. https://doi.org/10.3390/bios15100690
Chicago/Turabian StyleBanicod, Riza Jane S., Nazia Tabassum, Du-Min Jo, Aqib Javaid, Young-Mog Kim, and Fazlurrahman Khan. 2025. "Integration of Artificial Intelligence in Biosensors for Enhanced Detection of Foodborne Pathogens" Biosensors 15, no. 10: 690. https://doi.org/10.3390/bios15100690
APA StyleBanicod, R. J. S., Tabassum, N., Jo, D.-M., Javaid, A., Kim, Y.-M., & Khan, F. (2025). Integration of Artificial Intelligence in Biosensors for Enhanced Detection of Foodborne Pathogens. Biosensors, 15(10), 690. https://doi.org/10.3390/bios15100690