Progress in NiO Based Materials for Electrochemical Sensing Applications
Abstract
1. Introduction
2. Synthesis Methods for NiO
2.1. Hydrothermal/Solvothermal Method
2.2. Microwave Method
2.3. Sol–Gel Method
2.4. Co-Precipitation Method
2.5. Sputtering Method
2.6. Physical Vapor Deposition Method
2.7. Chemical Vapor Deposition Method
2.8. Laser Ablation Method
3. Progress in Electrochemical Sensors
3.1. NiO/Graphene
3.2. NiO/CNTs
3.3. NiO/g-CN
3.4. NiO/MOF
3.5. NiO/Zeolitic Imidazolate Framework (ZIF)
3.6. NiO/COF
3.7. NiO/Mxene
3.8. NiO/Polymers
3.9. NiO/LDH
3.10. NiO Overview
4. Conclusions
- NiO-modified electrodes have been extensively utilized for the electrochemical detection of biologically significant analytes, including glucose, dopamine, ascorbic acid, uric acid, and hydrogen peroxide.
- These sensing platforms have also shown strong potential for monitoring environmental contaminants such as heavy metal ions (e.g., Pb2+, Cd2+), pesticides, phenolic derivatives, and volatile organic compounds, offering a rapid, sensitive, and economically viable alternative to conventional analytical methods.
- In the food and pharmaceutical industries, NiO-based sensors have been effectively employed for the analysis of additives, preservatives, and active pharmaceutical ingredients, thereby supporting quality control and regulatory compliance.
- The integration of NiO-based sensing systems with emerging technologies such as machine learning, data analytics, and the Internet of Things (IoT) is expected to usher in a new era of intelligent, autonomous, and interconnected electrochemical sensing platforms for healthcare diagnostics and environmental monitoring.
- Despite substantial progress, challenges related to the long-term operational stability, reproducibility, and selectivity of these sensors, especially in complex real-world matrices, remain to be addressed.
- Furthermore, the incorporation of NiO-based sensors into miniaturized, flexible, and wearable devices represents a rapidly evolving research direction, driven by the need for portable and point-of-care diagnostic solutions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Guo, W.; Lv, C.; Liu, X.; Yang, M.; Guo, M.; Fu, Q. Electrochemical Biosensors Represent Promising Detection Tools in Medical Field. Adv. Sens. Energy Mater. 2023, 2, 100081. [Google Scholar] [CrossRef]
- Singh, R.; Gupta, R.; Bansal, D.; Bhateria, R.; Sharma, M. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS Omega 2024, 9, 7336–7356. [Google Scholar] [CrossRef]
- Lawal, A.T. Recent Developments in Electrochemical Sensors Based on Graphene for Bioanalytical Applications. Sens. Bio-Sens. Res. 2023, 41, 100571. [Google Scholar] [CrossRef]
- Paulose, R.; Mohan, R.; Parihar, V. Nanostructured Nickel Oxide and Its Electrochemical Behaviour—A Brief Review. Nano-Struct. Nano-Objects 2017, 11, 102–111. [Google Scholar] [CrossRef]
- Ahamed, N.N.; Pattar, J.; Murthy, R.N.K.; Kumar, M.R.A.; Bhoomika, V.; Raghavendra, N.; Ravikumar, C.R. Electrochemical Studies of Nickel Oxide Nanoparticles via Solution Combustion Method Using Green and Chemical Fuels. Sustain. Chem. Environ. 2024, 5, 100063. [Google Scholar] [CrossRef]
- Ahamad, N.; Banerjee, S.; Wei, C.-C.; Lu, K.-C.; Khedulkar, A.P.; Jian, W.-B.; Mahmood, S.; Chu, C.-W.; Lin, H.-C. Flexible Non-Enzymatic Glucose Sensors: One-Step Green Synthesis of NiO Nanoporous Films via an Electro-Exploding Wire Technique. ACS Appl. Mater. Interfaces 2024, 16, 64494–64504. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, Y.; Noureen, B.; Ma, Y.; Zheng, A.; Zhou, L.; Liu, M.; Zhao, Y.; Du, L.; Zhang, W.; et al. An Electrochemical Sensor Using Nickel-Based Metal-Organic Framework towards Highly-Sensitive Detection of Multiple Heavy Metal Ions. Sens. Actuators B Chem. 2025, 444, 138352. [Google Scholar] [CrossRef]
- Mondal, R.; Ahmed, S.F.; Mukherjee, N. Highly Sensitive, Selective and Rapid in-Vitro Electrochemical Sensing of Dopamine Achieved on Oxygen Deficient Nickel Oxide/Partially Reduced Graphene Oxide (NiOx/p-rGO) Nanocomposite Platform. Inorg. Chem. Commun. 2025, 171, 113575. [Google Scholar] [CrossRef]
- Prasad, R.; Bhat, B.R. Multi-Wall Carbon Nanotube–NiO Nanoparticle Composite as Enzyme-Free Electrochemical Glucose Sensor. Sens. Actuators B Chem. 2015, 220, 81–90. [Google Scholar] [CrossRef]
- Ahmad, R.; Shah, M.A. Hydrothermally Synthesised Nickel Oxide Nanostructures on Nickel Foam and Nickel Foil for Supercapacitor Application. Ceram. Int. 2023, 49, 6470–6478. [Google Scholar] [CrossRef]
- Chatzichristidi, M.; Psycharis, V.; Katsoufis, P.; Stavridis, N.; Kontoliou, A.; Makarona, E. Facile and Rapid Microwave Synthesis of Nickel Oxide Nanoparticles towards Cost-Efficient Functional Nanocomposite Photoresists. ChemistrySelect 2025, 10, e202405657. [Google Scholar] [CrossRef]
- Nkele, A.C.; Alshoaibi, A.; Matthew, F.D.; Awada, C.; Islam, S.; Ezema, F.I. Synthesis and Characterization of Sol-Gel Processed GO/NiO Hybrid Composites for Gas Sensing and Photocatalytic Applications. J. Sol-Gel Sci. Technol. 2025, 114, 874–884. [Google Scholar] [CrossRef]
- Wilson, R.L.; Macdonald, T.J.; Lin, C.-T.; Xu, S.; Taylor, A.; Knapp, C.E.; Guldin, S.; McLachlan, M.A.; Carmalt, C.J.; Blackman, C.S. Chemical Vapour Deposition (CVD) of Nickel Oxide Using the Novel Nickel Dialkylaminoalkoxide Precursor [Ni(Dmamp′)2] (Dmamp′ = 2-Dimethylamino-2-Methyl-1-Propanolate). RSC Adv. 2021, 11, 22199–22205. [Google Scholar] [CrossRef] [PubMed]
- Ben Arbia, M.; Comini, E. Growth Processing and Strategies: A Way to Improve the Gas Sensing Performance of Nickel Oxide-Based Devices. Chemosensors 2024, 12, 45. [Google Scholar] [CrossRef]
- Rengaraj, A.; Haldorai, Y.; Kwak, C.H.; Ahn, S.; Jeon, K.-J.; Park, S.H.; Han, Y.-K.; Huh, Y.S. Electrodeposition of Flower-like Nickel Oxide on CVD-Grown Graphene to Develop an Electrochemical Non-Enzymatic Biosensor. J. Mater. Chem. B 2015, 3, 6301–6309. [Google Scholar] [CrossRef]
- Sun, D.; Li, H.; Li, M.; Li, C.; Dai, H.; Sun, D.; Yang, B. Electrodeposition Synthesis of a NiO/CNT/PEDOT Composite for Simultaneous Detection of Dopamine, Serotonin, and Tryptophan. Sens. Actuators B Chem. 2018, 259, 433–442. [Google Scholar] [CrossRef]
- Sahadevan, K.; Vinoba, M.; Revathi, S.; Jeong, S.K.; Bhagiyalakshmi, M. Facile Design of NiO-rGO/Mo2Ti2C3 Ternary Composites for Electrochemical Detection of Dopamine. Synth. Met. 2025, 312, 117876. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Adekunle, A.S.; Kumara Swamy, B.E.; Ebenso, E.E. Electrochemical Sensor for the Detection of Dopamine in Real Samples Using Polyaniline/NiO, ZnO, and Fe3O4 Nanocomposites on Glassy Carbon Electrode. J. Electroanal. Chem. 2018, 818, 236–249. [Google Scholar] [CrossRef]
- Yin, Y.; Zhu, Y.; Qian, L.; Wang, F.; Yuan, Z.; Dai, Y.; Zhang, T.; Yang, D.; Qiu, F. Modulation of Electronic Structure Caused by the Coupling between Al, P Modified NiO and Ru for Boosting Alkaline Hydrogen Evolution. Fuel 2025, 398, 135609. [Google Scholar] [CrossRef]
- Azami, M.; Wei, J.; Valizadehderakhshan, M.; Jayapalan, A.; Ayodele, O.O.; Nowlin, K. Effect of Doping Heteroatoms on the Optical Behaviors and Radical Scavenging Properties of Carbon Nanodots. J. Phys. Chem. C 2023, 127, 7360–7370. [Google Scholar] [CrossRef]
- Nunes, W.G.; Miranda, A.N.; Freitas, B.; Vicentini, R.; Oliveira, A.C.; Doubek, G.; Freitas, R.G.; Silva, L.M.D.; Zanin, H. Charge-Storage Mechanism of Highly Defective NiO Nanostructures on Carbon Nanofibers in Electrochemical Supercapacitors. Nanoscale 2021, 13, 9590–9605. [Google Scholar] [CrossRef]
- Ghanbari, K.; Babaei, Z. Fabrication and Characterization of Non-Enzymatic Glucose Sensor Based on Ternary NiO/CuO/Polyaniline Nanocomposite. Anal. Biochem. 2016, 498, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Khashaei, M.; Kafi-Ahmadi, L.; Khademinia, S.; Poursattar Marjani, A.; Nozad, E. A Facile Hydrothermal Synthesis of High-Efficient NiO Nanocatalyst for Preparation of 3,4-Dihydropyrimidin-2(1H)-Ones. Sci. Rep. 2022, 12, 8585. [Google Scholar] [CrossRef] [PubMed]
- Dudorova, D.A.; Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Volkov, I.A.; Simonenko, E.P.; Kuznetsov, N.T. Hydrothermal Synthesis of Nickel Oxide and Its Application in the Additive Manufacturing of Planar Nanostructures. Molecules 2023, 28, 2515. [Google Scholar] [CrossRef]
- Islam, M.R.; Bhuiyan, M.A.; Ahmed, M.H.; Rahaman, M. Hydrothermal Synthesis of NiO Nanoparticles Decorated Hierarchical MnO2 Nanowire for Supercapacitor Electrode with Improved Electrochemical Performance. Heliyon 2024, 10, e26631. [Google Scholar] [CrossRef] [PubMed]
- Kesmez, Ö.; Kuruca, T.; Odabaş, E.; Cihanoğlu, N.; Akarsu, E.; Demir, F. Synthesis and Characterization of Nickel Oxide Nanoparticles via Polyol-Mediated Hydrothermal Process with Antibacterial Properties. ChemistrySelect 2025, 10, e202405811. [Google Scholar] [CrossRef]
- Qian, G.; Peng, Q.; Zou, D.; Wang, S.; Yan, B. Hydrothermal Synthesis of Flake-Flower NiO and Its Gas Sensing Performance to CO. Front. Mater. 2020, 7, 216. [Google Scholar] [CrossRef]
- Cao, S.; Zeng, W.; Li, T.; Gong, J.; Zhu, Z. Hydrothermal Synthesis of NiO Nanobelts and the Effect of Sodium Oxalate. Mater. Lett. 2015, 156, 25–27. [Google Scholar] [CrossRef]
- Babu, G.A.; Ravi, G.; Mahalingam, T.; Kumaresavanji, M.; Hayakawa, Y. Influence of Microwave Power on the Preparation of NiO Nanoflakes for Enhanced Magnetic and Supercapacitor Applications. Dalton Trans. 2015, 44, 4485–4497. [Google Scholar] [CrossRef] [PubMed]
- Parada, C.; Morán, E. Microwave-Assisted Synthesis and Magnetic Study of Nanosized Ni/NiO Materials. Chem. Mater. 2006, 18, 2719–2725. [Google Scholar] [CrossRef]
- Miah, M.Y.; Halder, S.; Saikat, S.P.; Dewanjee, S.; Ashaduzzaman, M.; Bhowmik, S. Microwave-Assisted One-Step Synthesis of Polyacrylamide/NiO Nanocomposite for Biomedical Applications. RSC Adv. 2025, 15, 18971–18985. [Google Scholar] [CrossRef] [PubMed]
- Tohidiyan, Z.; Hashemi, S.; Boroujeni, K.P. Facile Microwave-Assisted Synthesis of NiO Nanoparticles and Its Effect on Soybean (Glycine max). IET Nanobiotechnol. 2019, 13, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Azhagu Raj, R.; AlSalhi, M.S.; Devanesan, S. Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum Sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties. Materials 2017, 10, 460. [Google Scholar] [CrossRef] [PubMed]
- Meher, S.K.; Justin, P.; Ranga Rao, G. Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide. ACS Appl. Mater. Interfaces 2011, 3, 2063–2073. [Google Scholar] [CrossRef]
- Pilban Jahromi, S.; Huang, N.M.; Muhamad, M.R.; Lim, H.N. Green Gelatine-Assisted Sol–Gel Synthesis of Ultrasmall Nickel Oxide Nanoparticles. Ceram. Int. 2013, 39, 3909–3914. [Google Scholar] [CrossRef]
- Yang, Q.; Sha, J.; Ma, X.; Yang, D. Synthesis of NiO Nanowires by a Sol-Gel Process. Mater. Lett. 2005, 59, 1967–1970. [Google Scholar] [CrossRef]
- El-Katori, E.E.; Kasim, E.A.; Ali, D.A. Sol–Gel Synthesis of Mesoporous NiO/ZnO Heterostructure Nanocomposite for Photocatalytic and Anticorrosive Applications in Aqueous Media. Colloids Surf. A Physicochem. Eng. Asp. 2022, 636, 128153. [Google Scholar] [CrossRef]
- Shen, Y.; Lua, A.C. Sol–Gel Synthesis of Ni and Ni Supported Catalysts for Hydrogen Production by Methane Decomposition. RSC Adv. 2014, 4, 42159–42167. [Google Scholar] [CrossRef]
- Zorkipli, N.N.M.; Kaus, N.H.M.; Mohamad, A.A. Synthesis of NiO Nanoparticles through Sol-Gel Method. Procedia Chem. 2016, 19, 626–631. [Google Scholar] [CrossRef]
- Dhas, S.D.; Maldar, P.S.; Patil, M.D.; Waikar, M.R.; Sonkawade, R.G.; Moholkar, A.V. Sol-Gel Synthesized Nickel Oxide Nanostructures on Nickel Foam and Nickel Mesh for a Targeted Energy Storage Application. J. Energy Storage 2022, 47, 103658. [Google Scholar] [CrossRef]
- Mateos, D.; Valdez, B.; Castillo, J.R.; Nedev, N.; Curiel, M.; Perez, O.; Arias, A.; Tiznado, H. Synthesis of High Purity Nickel Oxide by a Modified Sol-Gel Method. Ceram. Int. 2019, 45, 11403–11407. [Google Scholar] [CrossRef]
- Gidey, A.T.; Kuo, D.-W.; Fenta, A.D.; Chen, C.-T.; Chen, C.-T. First Conventional Solution Sol–Gel-Prepared Nanoporous Materials of Nickel Oxide for Efficiency Enhancing and Stability Extending MAPbI3 Inverted Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 6486–6499. [Google Scholar] [CrossRef]
- Salleh, N.A.; Mohammad, A.H.; Zakaria, Z.; Deghfel, B.; Yaakob, M.K.; Rahiman, W.; Kheawhom, S.; Mohamad, A.A. Microwave Assisted Synthesis of Nickel Oxide Nanoparticles at Different pH via Sol Gel Method: Experimental and First-Principles Investigations. Inorg. Chem. Commun. 2024, 164, 112415. [Google Scholar] [CrossRef]
- Alam, M.A.; Ahmed, S.; Bishwas, R.K.; Sarkar, D.; Jahan, S.A. Crystal Growth Behavior Interpret of Co-Precipitated Derived Nickel Oxide (NiO) Nanocrystals. Nano-Struct. Nano-Objects 2025, 42, 101494. [Google Scholar] [CrossRef]
- Godlaveeti, S.K.; Rajesh, N.; Ouladsmane, M.; Aljuwayid, A.M.; Riazunnisa, K.; Azharuddin, S.M.; Chintaparty, R. Structural, Optical, and Antibacterial Properties of NiO and BaO Doped NiO- Prepared by Co-Precipitation Method. BioNanoScience 2025, 15, 301. [Google Scholar] [CrossRef]
- Atul, A.K.; Srivastava, S.K.; Gupta, A.K.; Srivastava, N. Synthesis and Characterization of NiO Nanoparticles by Chemical Co-Precipitation Method: An Easy and Cost-Effective Approach. Braz. J. Phys. 2021, 52, 2. [Google Scholar] [CrossRef]
- Al Boukhari, J.; Bitar, Z.; Azab, A.A.; Awad, R.; Rekaby, M. Synthesis and Physical Properties of Pure NiO and Ni1–2xMgxMxO (M= Cu, Ru) Nanoparticles: Role of Growth Temperature. J. Alloys Compd. 2023, 969, 172500. [Google Scholar] [CrossRef]
- Li, J.; Luo, F.; Zhao, Q.; Li, Z.; Yuan, H.; Xiao, D. Coprecipitation Fabrication and Electrochemical Performances of Coral-like Mesoporous NiO Nanobars. J. Mater. Chem. A 2014, 2, 4690–4697. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, J.; Kaur, G.; Kumar, S.; Kukkar, D.; Rawat, M. CTAB Assisted Co-precipitation Synthesis of NiO Nanoparticles and Their Efficient Potential towards the Removal of Industrial Dyes. Micro Nano Lett. 2019, 14, 856–859. [Google Scholar] [CrossRef]
- Lin, H.; Wang, Z.; Han, Q.; Wang, R.; Pan, L.; Zhu, H.; Wan, M.; Mai, Y. The Growth, Properties and Application of Reactively Sputtered Nickel Oxide Thin Films in All Thin Film Electrochromic Devices. Mater. Sci. Eng. B 2021, 270, 115196. [Google Scholar] [CrossRef]
- Mei, B.; Permyakova, A.A.; Frydendal, R.; Bae, D.; Pedersen, T.; Malacrida, P.; Hansen, O.; Stephens, I.E.L.; Vesborg, P.C.K.; Seger, B.; et al. Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes. J. Phys. Chem. Lett. 2014, 5, 3456–3461. [Google Scholar] [CrossRef] [PubMed]
- Dhull, N.; Kaur, G.; Gupta, V.; Tomar, M. Development of Nanostructured Nickel Oxide Thin Film Matrix by Rf Sputtering Technique for the Realization of Efficient Bioelectrode. Vacuum 2018, 158, 68–74. [Google Scholar] [CrossRef]
- Reddy, A.M.; Reddy, A.S.; Lee, K.-S.; Reddy, P.S. Growth and Characterization of NiO Thin Films Prepared by DC Reactive Magnetron Sputtering. Solid State Sci. 2011, 13, 314–320. [Google Scholar] [CrossRef]
- Do, H.H.; Nguyen, K.B.; Nguyen, P.N.; Pham, H.P. Facile One-Step Radio Frequency Magnetron Sputtering of Ni/NiO on Stainless Steel for an Efficient Electrode for Hydrogen Evolution Reaction. Beilstein J. Nanotechnol. 2025, 16, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jia, J.; Zhao, W.; Zhang, L.; Ma, H.; Li, N.; Chen, Y. Preparation and Electrochromic Properties of NiO and ZnO-Doped NiO Thin Films. Mater. Sci. Semicond. Process. 2022, 151, 106986. [Google Scholar] [CrossRef]
- Oh, S.; Jun, Y.-K.; Kim, N.-H. Magnetron-Sputtered and Rapid-Thermally Annealed NiO:Cu Thin Films on 3D Porous Substrates for Supercapacitor Electrodes. Energies 2025, 18, 2704. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Ma, H. Effect of Sputtering Pressure and Oxygen Content on the Electrochromic Properties of NiO Films by DC Magnetron Sputtering. Phys. B Condens. Matter 2024, 677, 415663. [Google Scholar] [CrossRef]
- Lin, C.-W.; Chung, W.-C.; Zhang, Z.-D.; Hsu, M.-C. P-Channel Transparent Thin-Film Transistor Using Physical-Vapor-Deposited NiO Layer. Jpn. J. Appl. Phys. 2017, 57, 01AE01. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Wang, X. Pulsed Laser Deposition of the Porous Nickel Oxide Thin Film at Room Temperature for High-Rate Pseudocapacitive Energy Storage. Electrochem. Commun. 2012, 18, 92–95. [Google Scholar] [CrossRef]
- Farha, A.H. Structural and Optical Characteristics of NiO Films Deposited Using the PLD Technique. Mater. Sci. Technol. 2023, 39, 2900–2909. [Google Scholar] [CrossRef]
- Reddy, G.K.; Nagaraju, P.; Reddy, G.L.N.; Ghosal, P.; Reddy, M.V.R. Growth and Characterization of Electron Beam Evaporated NiO Thin Films for Room Temperature Formaldehyde Sensing. Sens. Actuators A Phys. 2022, 346, 113876. [Google Scholar]
- Hossain, M.I.; Aissa, B. Electron-Beam-Evaporated Nickel Oxide Thin Films for Application as a Hole Transport Layer in Photovoltaics. Processes 2024, 12, 2809. [Google Scholar] [CrossRef]
- Sahu, D.R.; Wu, T.-J.; Wang, S.-C.; Huang, J.-L. Electrochromic Behavior of NiO Film Prepared by E-Beam Evaporation. J. Sci. Adv. Mater. Devices 2017, 2, 225–232. [Google Scholar] [CrossRef]
- Sahu, D.R.; Lee, Y.-H.; Wu, T.-J.; Wang, S.-C.; Huang, J.-L. Synthesis and Electrochromic Property Improvement of NiO Films for Device Applications. Thin Solid Films 2020, 707, 138097. [Google Scholar] [CrossRef]
- GangaReddy, K.; Reddy, M.V.R. Physical Vapour Deposition of Zn2+ Doped NiO Nanostructured Thin Films for Enhanced Selective and Sensitive Ammonia Sensing. Mater. Sci. Semicond. Process. 2023, 154, 107198. [Google Scholar] [CrossRef]
- Benedet, M.; Maccato, C.; Pagot, G.; Invernizzi, C.; Sada, C.; Di Noto, V.; Rizzi, G.A.; Fois, E.; Tabacchi, G.; Barreca, D. Growth of NiO Thin Films in the Presence of Water Vapor: Insights from Experiments and Theory. J. Phys. Chem. C 2023, 127, 22304–22314. [Google Scholar] [CrossRef]
- Han, S.W.; Kim, I.H.; Kim, D.H.; Park, K.J.; Park, E.J.; Jeong, M.-G.; Kim, Y.D. Temperature Regulated-Chemical Vapor Deposition for Incorporating NiO Nanoparticles into Mesoporous Media. Appl. Surf. Sci. 2016, 385, 597–604. [Google Scholar] [CrossRef]
- Sialvi, M.Z.; Mortimer, R.J.; Wilcox, G.D.; Teridi, A.M.; Varley, T.S.; Wijayantha, K.G.U.; Kirk, C.A. Electrochromic and Colorimetric Properties of Nickel (II) Oxide Thin Films Prepared by Aerosol-Assisted Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2013, 5, 5675–5682. [Google Scholar] [CrossRef]
- Wang, H.; Wu, G.; Cai, X.P.; Zhao, Y.; Shi, Z.F.; Wang, J.; Xia, X.C.; Dong, X.; Zhang, B.L.; Ma, Y.; et al. Effect of Growth Temperature on Structure and Optical Characters of NiO Films Fabricated by PA-MOCVD. Vacuum 2012, 86, 2044–2047. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Mwafy, E.A. The Effect of Laser Fluence for Enhancing the Antibacterial Activity of NiO Nanoparticles by Pulsed Laser Ablation in Liquid Media. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100382. [Google Scholar] [CrossRef]
- Gondal, M.A.; Saleh, T.A.; Drmosh, Q.A. Synthesis of Nickel Oxide Nanoparticles Using Pulsed Laser Ablation in Liquids and Their Optical Characterization. Appl. Surf. Sci. 2012, 258, 6982–6986. [Google Scholar] [CrossRef]
- Hmmoodi, A.M.; Nayef, U.M.; Rasheed, M. Synthesis of NiO Nanoparticles Using Laser Ablation in Liquid for Photodetector Application. Plasmonics 2025, 20, 3127–3134. [Google Scholar] [CrossRef]
- Safa, M.; Dorranian, D.; Masoudi, A.A.; Matin, L.F. Characterizing Nickel Oxide Nanostructures Produced by Laser Ablation Method: Effects of Laser Fluence. Appl. Phys. A 2019, 125, 687. [Google Scholar] [CrossRef]
- Khashan, K.S.; Sulaiman, G.M.; Hamad, A.H.; Abdulameer, F.A.; Hadi, A. Generation of NiO Nanoparticles via Pulsed Laser Ablation in Deionised Water and Their Antibacterial Activity. Appl. Phys. A 2017, 123, 190. [Google Scholar] [CrossRef]
- Khan, S.Z.; Yuan, Y.; Abdolvand, A.; Schmidt, M.; Crouse, P.; Li, L.; Liu, Z.; Sharp, M.; Watkins, K.G. Generation and Characterization of NiO Nanoparticles by Continuous Wave Fiber Laser Ablation in Liquid. J. Nanopart. Res. 2009, 11, 1421–1427. [Google Scholar] [CrossRef]
- Rahman, A.; Guisbiers, G. Synthesis of Nickel-Based Nanoparticles by Pulsed Laser Ablation in Liquids: Correlations between Laser Beam Power, Size Distribution and Cavitation Bubble Lifetime. Metals 2024, 14, 224. [Google Scholar] [CrossRef]
- Alrebdi, T.A.; Ahmed, H.A.; Alsubhe, E.; Alkallas, F.H.; Mwafy, E.A.; Adel Pashameah, R.; Toghan, A.; Mostafa, A.M. Synthesis of NiO-PVA Nanocomposite by Laser Assisted-Method and Its Characterization as a Novel Adsorbent for Removal Phosphate from Aqueous Water. Opt. Laser Technol. 2022, 156, 108526. [Google Scholar] [CrossRef]
- Joseph, T.; Thomas, J.; Thomas, T.; Thomas, N. Electrocatalytic Activity Enhancement Using Graphene-Metal Oxide Nanocomposites for the Ultra Low Level Detection of Biomolecules. J. Electrochem. Soc. 2022, 169, 027508. [Google Scholar] [CrossRef]
- Zeng, G.; Li, W.; Ci, S.; Jia, J.; Wen, Z. Highly Dispersed NiO Nanoparticles Decorating Graphene Nanosheets for Non-Enzymatic Glucose Sensor and Biofuel Cell. Sci. Rep. 2016, 6, 36454. [Google Scholar] [CrossRef]
- Song, R.; Zhang, H.; Lv, J. NiO Nanoparticle-Decorated Graphene Oxide Nanosheets Modified Glassy Carbon Electrode for Sensitive Electrochemical Detection of Pethidine. Int. J. Electrochem. Sci. 2023, 18, 100221. [Google Scholar] [CrossRef]
- Kiran, A.; Hussain, S.; Ahmad, I.; Imran, M.; Saqib, M.; Parveen, B.; Munawar, K.S.; Mnif, W.; Huwayz, M.A.; Alwadai, N.; et al. Green Synthesis of NiO and NiO@graphene Oxide Nanomaterials Using Elettaria Cardamomum Leaves: Structural and Electrochemical Studies. Heliyon 2024, 10, e38613. [Google Scholar] [CrossRef]
- Ramu, A.G.; Umar, A.; Ibrahim, A.A.; Algadi, H.; Ibrahim, Y.S.A.; Wang, Y.; Hanafiah, M.M.; Shanmugam, P.; Choi, D. Synthesis of Porous 2D Layered Nickel Oxide-Reduced Graphene Oxide (NiO-rGO) Hybrid Composite for the Efficient Electrochemical Detection of Epinephrine in Biological Fluid. Environ. Res. 2021, 200, 111366. [Google Scholar] [CrossRef] [PubMed]
- Krishnasamy, V.; Nair, G.G.; Sha, M.S.; Kannan, K.; Al-Maadeed, S.; Muthalif, A.G.A.; Sadasivuni, K.K. A Promising Electrochemical Sensor Platform for the Detection of Dopamine Using CuO-NiO/rGO Composite. Macromol. Symp. 2023, 412, 2200151. [Google Scholar] [CrossRef]
- Gao, J.; He, P.; Yang, T.; Zhou, L.; Wang, X.; Chen, S.; Lei, H.; Zhang, H.; Jia, B.; Liu, J. Electrodeposited NiO/Graphene Oxide Nanocomposite: An Enhanced Voltammetric Sensing Platform for Highly Sensitive Detection of Uric Acid, Dopamine and Ascorbic Acid. J. Electroanal. Chem. 2019, 852, 113516. [Google Scholar] [CrossRef]
- Zhao, L.; Yu, J.; Yue, S.; Zhang, L.; Wang, Z.; Guo, P.; Liu, Q. Nickel Oxide/Carbon Nanotube Nanocomposites Prepared by Atomic Layer Deposition for Electrochemical Sensing of Hydroquinone and Catechol. J. Electroanal. Chem. 2018, 808, 245–251. [Google Scholar] [CrossRef]
- Wali, R.; Moulaee, K.; Qasymeh, M.; Maalej, R.; Neri, G. Atomic Layer Deposition of NiO-Coated CNT Nanocomposites: Tailoring Electrochemical Properties for Salivary Lactate Detection. J. Electroanal. Chem. 2024, 971, 118594. [Google Scholar] [CrossRef]
- Wan, Y.; Zheng, Y.F.; Zhou, B.; Song, X.C. An Innovative Electrochemical Sensor Ground on NiO Nanoparticles and Multi-Walled Carbon Nanotubes for Quantitative Determination of Nitrite. J. Nanosci. Nanotechnol. 2018, 18, 3585–3591. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, Y. Synthesis of NiO-, CuO-, and Co3O4-Decorated Carbon Nanotubes for Electrochemical Detection and Conversion of Glucose. ACS Appl. Energy Mater. 2022, 5, 11723–11731. [Google Scholar] [CrossRef]
- Ding, H.; Tao, W. Synthesis of NiO-CNTs Nanocomposite for Modification of Glassy Carbon Electrode and Application for Electrochemical Determination of Fentanyl as an Opioid Analgesic Drug. Int. J. Electrochem. Sci. 2021, 16, 211137. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Qi, Z.; You, B.; Wang, B.; Wu, Y.; Wang, Y.; Zhang, Z. Non-Invasive Salivary Glucose Sensing Technology and Performance Study Based on NiO/Multi-Walled Carbon Nanotube Composite Structures. Microchem. J. 2025, 215, 114491. [Google Scholar] [CrossRef]
- Ali, A.; Khalid, A.; Sajid, A.; Akyürekli, S.; Ahmed, A.Y.; Bayach, I.; Buzid, A.; Alharthi, A.F. NiO@CNTs Wrapped Graphene Oxide Nanohybrid towards Simultaneous Electrochemical Detection of Ascorbic Acid and Uric Acid. Inorg. Chem. Commun. 2025, 179, 114774. [Google Scholar] [CrossRef]
- Narayanan, K.; Murugan, K.S.; Natarajan, T.S. Ag@NiO/g-C3N4 Nanocomposite: An Efficient and High-Performance Electrochemical Sensor for Acetaminophen Detection. New J. Chem. 2025, 49, 4703–4715. [Google Scholar] [CrossRef]
- Ullah, M.; Kanjariya, P.; Rekha, M.M.; Kundlas, M.; Prasad, G.V.S.; Chahar, M.; Algahtani, A.; Tirth, V.; Zhengxin, L. Fabrication of an Electrochemical Sensor Based on G-C3N4–NiO Nanocomposite for Sensitive and Selective Detection of Hydrogen Peroxide. J. Mater. Sci. Mater. Electron. 2025, 36, 1061. [Google Scholar] [CrossRef]
- Ngo, Y.-L.T.; Chung, J.S.; Hur, S.H. Multi-Functional NiO/g-C3N4 Hybrid Nanostructures for Energy Storage and Sensor Applications. Korean J. Chem. Eng. 2020, 37, 1589–1598. [Google Scholar] [CrossRef]
- Selvarajan, S.; Suganthi, A.; Rajarajan, M. Fabrication of G-C3N4/NiO Heterostructured Nanocomposite Modified Glassy Carbon Electrode for Quercetin Biosensor. Ultrason. Sonochem. 2018, 41, 651–660. [Google Scholar] [CrossRef]
- Gong, W.; Zou, J.; Zhang, S.; Zhou, X.; Jiang, J. Nickel Oxide and Nickel Co-Doped Graphitic Carbon Nitride Nanocomposites and Its Octylphenol Sensing Application. Electroanalysis 2016, 28, 227–234. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Tian, W.; Cao, J. Graphitic Carbon Nitride Nanosheets Decorated Flower-like NiO Composites for High-Performance Triethylamine Detection. ACS Omega 2019, 4, 9645–9653. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Z.; Ai, L.; Zhou, S.; Fan, H.; Ai, S. Signal-off Photoelectrochemical Aptasensor for S. aureus Detection Based on Graphite-like Carbon Nitride Decorated with Nickel Oxide. Electroanalysis 2022, 34, 310–315. [Google Scholar] [CrossRef]
- Lotfi, Z.; Gholivand, M.B.; Shamsipur, M. Non-Enzymatic Glucose Sensor Based on a g-C3N4/NiO/CuO Nanocomposite. Anal. Biochem. 2021, 616, 114062. [Google Scholar] [CrossRef]
- Shu, Y.; Yan, Y.; Chen, J.; Xu, Q.; Pang, H.; Hu, X. Ni and NiO Nanoparticles Decorated Metal–Organic Framework Nanosheets: Facile Synthesis and High-Performance Nonenzymatic Glucose Detection in Human Serum. Available online: https://pubs.acs.org/doi/abs/10.1021/acsami.7b07501 (accessed on 30 July 2025).
- Wang, L.; Xie, Y.; Wei, C.; Lu, X.; Li, X.; Song, Y. Hierarchical NiO Superstructures/Foam Ni Electrode Derived from Ni Metal-Organic Framework Flakes on Foam Ni for Glucose Sensing. Electrochim. Acta 2015, 174, 846–852. [Google Scholar] [CrossRef]
- Jia, S.; Wang, Q.; Wang, S. Ni-MOF/PANI-Derived CN-Doped NiO Nanocomposites for High Sensitive Nonenzymic Electrochemical Detection. J. Inorg. Organomet. Polym. 2021, 31, 865–874. [Google Scholar] [CrossRef]
- Ambrogi, E.K.; Li, Y.; Chandra, P.; Mirica, K.A. Employing Triphenylene-Based, Layered, Conductive Metal–Organic Framework Materials as Electrochemical Sensors for Nitric Oxide in Aqueous Media. ACS Sens. 2025, 10, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, J.; Yang, J.; Cheng, J.; Tan, Y.; Feng, H.; Li, Y. An Electrochemical Sensor Based on MOF-Derived NiO@ZnO Hollow Microspheres for Isoniazid Determination. Microchim. Acta 2020, 187, 380. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Tu, X.; Ma, X.; Xie, Y.; Zou, J.; Huang, X.; Qu, F.; Yu, Y.; Lu, L. NiO@Ni-MOF Nanoarrays Modified Ti Mesh as Ultrasensitive Electrochemical Sensing Platform for Luteolin Detection. Talanta 2020, 215, 120891. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, Z.; Mazloum-Ardakani, M.; Asadpour, F.; Yavari, M. Highly Efficient Enzyme-Free Glutamate Sensors Using Porous Network Metal–Organic Framework-Ni-NiO-Ni-Carbon Nanocomposites. ACS Appl. Mater. Interfaces 2023, 15, 59246–59257. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, T.; Aziz, A.; Ashraf, G.; Xu, Y.; Li, G.; Zhang, T.; Asif, M.; Xiao, F.; Liu, H. Engineering MOFs Derived Metal Oxide Nanohybrids: Towards Electrochemical Sensing of Catechol in Tea Samples. Food Chem. 2022, 395, 133642. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, Y.; Gao, P.; Pu, H.; Yin, M.; Liang, X.; Yin, W.; Fa, H. Three-Dimensional NiO/Co3O4@C Composite for High-Performance Non-Enzymatic Glucose Sensor. Anal. Sci. 2023, 39, 33–42. [Google Scholar] [CrossRef]
- Feng, L.; Zou, M.; Lv, X.; Min, X.; Lin, X.; Ni, Y. Facile Synthesis of ZIF-67C@RGO/NiNPs Nanocomposite for Electrochemical Non-Enzymatic Sensing Platform of Nitrite. Microchem. J. 2022, 179, 107508. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Guo, S.; Wang, X. C-ZIF-8 Modified NiO Photocathode and Enhanced Photosensitizer Signal Amplification for Ultra-Sensitive Photoelectrochemical Detection of Lead Ions. Anal. Methods 2025, 17, 2650–2656. [Google Scholar] [CrossRef]
- Yao, W.; Guo, H.; Liu, H.; Li, Q.; Wu, N.; Li, L.; Wang, M.; Fan, T.; Yang, W. Highly Electrochemical Performance of Ni-ZIF-8/ N S-CNTs/CS Composite for Simultaneous Determination of Dopamine, Uric Acid and L-Tryptophan. Microchem. J. 2020, 152, 104357. [Google Scholar] [CrossRef]
- Zhang, W.; Zong, L.; Liu, S.; Pei, S.; Zhang, Y.; Ding, X.; Jiang, B.; Zhang, Y. An Electrochemical Sensor Based on Electro-Polymerization of Caffeic Acid and Zn/Ni-ZIF-8–800 on Glassy Carbon Electrode for the Sensitive Detection of Acetaminophen. Biosens. Bioelectron. 2019, 131, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Xie, A.; Yuan, B.; Lin, J.; Pan, J.; Li, M.; Wang, J.; Jiang, S.; Zhu, S.; Luo, S. Highly Sensitive and Selective Electrochemical Sensor Based on ZIF-67-Derived Co3O4-LaMn0.5Ni0.5O3/MWCNTs for Simultaneous Detection of Protocatechuic Acid and Ascorbic Acid. Surf. Interfaces 2023, 36, 102550. [Google Scholar] [CrossRef]
- Liang, H.; Luo, Y.; Xiao, Y.; Chen, R.; Wang, L.; Song, Y. Ni/NiO/Carbon Derived from Covalent Organic Frameworks for Enzymatic-Free Electrochemical Glucose Sensor. Ceram. Int. 2024, 50, 977–984. [Google Scholar] [CrossRef]
- Hilal, M.; Ali, Y.; Cai, Z.; Kim, H.; Abdo, H.S.; Alnaser, I.A.; Hwang, Y. Synergistic MXene@NiO-ZnO Heterostructures via Dual-Pressure Hydrothermal Synthesis for High-Performance Photoelectrochemical Glucose Sensing. Ceram. Int. 2025, 51, 16246–16256. [Google Scholar] [CrossRef]
- Saraswathi, K.A.; Reddy, M.S.B.; Jayarambabu, N.; Harish, C.M.; Venkateswara Rao, K.; Venkatappa Rao, T. NiO Embedded PANI /Ti3C2Tx MXene Detector for Electrochemical Enzyme Free Glucose Detection. Surf. Interfaces 2025, 56, 105728. [Google Scholar] [CrossRef]
- Yelmai, S.W.; Alom, N.; Han, T.K.; Saidur, R.; Jamal, M. Fabrication of High-Performance pH Sensor Based on NiO/Mxene/PANI Modified Sensing Platform. Meet. Abstr. 2023, MA2023-02, 3416. [Google Scholar] [CrossRef]
- Siva Ranjani, R.; Wilson, J.; Madhu Malar, M.; Faiyazuddin, M.; Gowri, S. Green Synthesized ZnO/NiO Nanocomposites Decorated Tragacanth Gum for Electrochemical Detection of Riboflavin. Microchem. J. 2025, 216, 114585. [Google Scholar] [CrossRef]
- Hyder, A.; Ali, A.; Buledi, J.A.; Memon, R.; Al-Anzi, B.S.; Memon, A.A.; Kazi, M.; Solangi, A.R.; Yang, J.; Thebo, K.H. A NiO-Nanostructure-Based Electrochemical Sensor Functionalized with Supramolecular Structures for the Ultra-Sensitive Detection of the Endocrine Disruptor Bisphenol S in an Aquatic Environment. Phys. Chem. Chem. Phys. 2024, 26, 10940–10950. [Google Scholar] [CrossRef]
- Nagarajan, A.; Sethuraman, V.; Sridhar, T.M.; Sasikumar, R. Development of Au@NiO Decorated Polypyrrole Composite for Non-Enzymatic Electrochemical Sensing of Cholesterol. J. Ind. Eng. Chem. 2023, 120, 460–466. [Google Scholar] [CrossRef]
- Chufamo Jikamo, S.; Haile Habtemariam, T.; Heliso Dolla, T. Polyaniline-ZnO−NiO Nanocomposite Based Non-Enzymatic Electrochemical Sensor for Malathion Detection. Electroanalysis 2023, 35, e202200317. [Google Scholar] [CrossRef]
- Chowdhury, M.S.H.; Rahman Khan, M.M.; Deb, B.; Shohag, M.R.H.; Rahman, S.; Rahman, M.d.M.; Alzahrani, K.A.; Rahman, M.M.; Bhuyan, M.M.; Jeong, J.-H. Fabrication of Poly (Ani-Co-Py)/NiO Composites with Superb Photocatalytic Performance and Effective p-Nitrophenol Sensor. J. Inorg. Organomet. Polym. 2025, 35, 1322–1335. [Google Scholar] [CrossRef]
- Thenrajan, T.; Nagappan, S.; Kundu, S.; Wilson, J. Nickel Iron Based Layered Double Hydroxides as Effective Electrochemical Sensor towards Epicatechin. Inorg. Chem. Commun. 2023, 153, 110861. [Google Scholar] [CrossRef]
- Beitollahi, H.; Dourandish, Z.; Tajik, S.; Sharifi, F.; Jahani, P.M. Electrochemical Sensor Based on Ni-Co Layered Double Hydroxide Hollow Nanostructures for Ultrasensitive Detection of Sumatriptan and Naproxen. Biosensors 2022, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Hai, B.; Zou, Y. Carbon Cloth Supported NiAl-Layered Double Hydroxides for Flexible Application and Highly Sensitive Electrochemical Sensors. Sens. Actuators B Chem. 2015, 208, 143–150. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Ashok Kumar, E.; Ahmed, F. Construction of Nickel Cobalt-Layered Double Hydroxide/Functionalized–Halloysite Nanotubes Composite for Electrochemical Detection of Organophosphate Insecticide. Chem. Eng. J. 2022, 433, 133639. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Tsao, P.-K.; Chen, K.-J.; Lin, Y.-C.; Aulia, S.; Chang, L.-Y.; Ho, K.-C.; Chang, C.; Mizuguchi, H.; Yeh, M.-H. Designing Bimetallic Ni-Based Layered Double Hydroxides for Enzyme-Free Electrochemical Lactate Biosensors. Sens. Actuators B Chem. 2021, 346, 130505. [Google Scholar] [CrossRef]
- Yang, J.; Xu, L. NiCu-Layered Double Hydroxide–Modified CuO Nanorods for Enhanced Non-Enzymatic Glucose Sensing. Microchim. Acta 2025, 192, 198. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Ahmed, F.; Arshi, N. Fabrication of Flower-like Nickel Cobalt-Layered Double Hydroxide for Electrochemical Detection of Carbendazim. Surf. Interfaces 2023, 36, 102570. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Aslam, M.; Ali, S.; Hamdy, K.; Ahmad, K.; Danishuddin. Progress in NiO Based Materials for Electrochemical Sensing Applications. Biosensors 2025, 15, 678. https://doi.org/10.3390/bios15100678
Kumar P, Aslam M, Ali S, Hamdy K, Ahmad K, Danishuddin. Progress in NiO Based Materials for Electrochemical Sensing Applications. Biosensors. 2025; 15(10):678. https://doi.org/10.3390/bios15100678
Chicago/Turabian StyleKumar, Praveen, Mohammad Aslam, Saood Ali, Khaled Hamdy, Khursheed Ahmad, and Danishuddin. 2025. "Progress in NiO Based Materials for Electrochemical Sensing Applications" Biosensors 15, no. 10: 678. https://doi.org/10.3390/bios15100678
APA StyleKumar, P., Aslam, M., Ali, S., Hamdy, K., Ahmad, K., & Danishuddin. (2025). Progress in NiO Based Materials for Electrochemical Sensing Applications. Biosensors, 15(10), 678. https://doi.org/10.3390/bios15100678