Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications
Abstract
1. Introduction
1.1. Diabetes Patients Globally
1.2. Clinical Urgency and Monitoring
1.3. The Critical Need for Advanced Glucose Biosensors
1.4. Introduction to Glucose Biosensing
1.5. Generational Advancements
1.6. Sensor Formats & Media
1.7. Enzyme and Non-Enzyme Glucose Biosensors
2. Recent Advances in Glucose Biosensors via Nanotechnology
2.1. Metal and Metal Oxide Nanoparticles
2.1.1. Ag NPs
2.1.2. Au NPs
2.1.3. Pt NPs
2.1.4. CuO NPs
2.1.5. NiO NPs
2.1.6. Cobalt Oxide NPs
2.1.7. Bimetallic Nanoparticles
2.2. Carbon-Based Nanomaterials
2.2.1. Carbon Nanotubes (CNTs)
2.2.2. Graphene and Reduced Graphene Oxide (rGO)
2.2.3. Carbon Quantum Dots (CQDs)
2.2.4. Carbon Nanofibers (C-NFs)
2.3. Metal–Organic Frameworks (MOFs) Based Nanocomposites
2.3.1. Ni-MOFs-Based Nanocomposites
2.3.2. Zn-MOF-Based Nanocomposites
2.3.3. Cu-MOF-Based Nanocomposites
2.4. Two-Dimensional Nanomaterials
2.4.1. MXenes
2.4.2. MoS2
2.4.3. Black Phosphorus (BP)
2.5. Quantum Dots and Nanoclusters
2.5.1. CdSe Quantum Dots
2.5.2. Au Nanoclusters
2.6. Hybrid Nanocomposites
2.6.1. rGO–Au–ZnO or CNT–Pt–Chitosan Hybrid Nanocomposites
2.6.2. Paper-Based Sensors
3. Emerging Trends
4. Summary and Conclusions
5. Future Outlook (2025+)
6. Methodology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention (CDC). National Diabetes Statistics Report. 2024. Available online: https://www.cdc.gov/diabetes/php/data-research/methods.html?CDC_AAref_Val=https://www.cdc.gov/diabetes/data/statistics-report/index.html (accessed on 1 September 2025).
- International Diabetes Federation: Brussels, 2025. Available online: https://diabetesatlas.org/#:~:text=The%20International%20Diabetes%20Federation%20%28IDF%29%20is%20an%20umbrella,national%20diabetes%20associations%20in%20158%20countries%20and%20territories (accessed on 1 September 2025).
- Mittal, R.; Koutras, N.; Maya, J.; Lemos, J.R.N.; Hirani, K. Blood glucose monitoring devices for type 1 diabetes: A journey from the food and drug administration approval to market availability. Front. Endocrinol. 2024, 15, 1352302. [Google Scholar] [CrossRef]
- Ogle, G.D.; Wang, F.; Haynes, A.; Gregory, G.A.; King, T.W.; Deng, K.; Dabelea, D.; James, S.; Jenkins, A.J.; Li, X.; et al. Global type 1 diabetes prevalence, incidence, and mortality estimates 2025: Results from the International Diabetes Federation Atlas, 11th Edition, and the T1D Index Version 3.0. Diabetes Res. Clin. Pract. 2025, 225, 112277. [Google Scholar] [CrossRef] [PubMed]
- Libman, I.; Haynes, A.; Lyons, S.; Pradeep, P.; Rwagasor, E.; Tung, J.Y.-L.; Jefferies, C.A.; Oram, R.A.; Dabelea, D.; Craig, M.E. ISPAD Clinical Practice Consensus Guidelines 2022: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr. Diabetes 2022, 23, 1160–1174. [Google Scholar] [CrossRef] [PubMed]
- Tomic, D.; Harding, J.L.; Jenkins, A.J.; Shaw, J.E.; Magliano, D.J. The epidemiology of type 1 diabetes mellitus in older adults. Nat. Rev. Endocrinol. 2025, 21, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Bain, S.; Kanamarlapudi, V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 3567–3602. [Google Scholar] [CrossRef]
- Harding, J.L.; Wander, P.L.; Zhang, X.; Li, X.; Karuranga, S.; Chen, H.; Sun, H.; Xie, Y.; Oram, R.A.; Magliano, D.J.; et al. The incidence of adult-onset type 1 diabetes: A systematic review from 32 countries and regions. Diabetes Care 2022, 45, 994–1006. [Google Scholar] [CrossRef]
- Iqbal, S.; Jayyab, A.A.; Alrashdi, A.M.; Reverté-Villarroya, S. The predictive ability of C-peptide in distinguishing type 1 diabetes from type 2 diabetes: A systematic review and meta-analysis. Endocr. Pract. 2023, 29, 379–387. [Google Scholar] [CrossRef]
- Yoo, E.-H.; Lee, S.-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef]
- Pullano, S.A.; Greco, M.; Bianco, M.G.; Foti, D.; Brunetti, A.; Fiorillo, A.S. Glucose biosensors in clinical practice: Principles, limits and perspectives of currently used devices. Theranostics 2022, 12, 493–511. [Google Scholar] [CrossRef]
- Bender, C.; Vestergaard, P.; Cichosz, S.L. The History, Evolution and Future of Continuous Glucose Monitoring (CGM). Diabetology 2025, 6, 17. [Google Scholar] [CrossRef]
- Oriot, P.; Klipper dit Kurz, N.; Ponchon, M.; Weber, E.; Colin, I.M.; Philips, J.C. Benefits and limitations of hypo/hyperglycemic alarms associated with continuous glucose monitoring in individuals with diabetes. Diabetes Epidemiol. Manag. 2023, 9, 100125. [Google Scholar] [CrossRef]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes Metab. J. 2019, 43, 383–397. [Google Scholar] [CrossRef]
- Tummalapalli, M.; Singh, S.; Sanwaria, S.; Gurave, P.M. Design and development of advanced glucose biosensors via tuned interactions between marine polysaccharides and diagnostic elements—A survey. Sens. Int. 2022, 3, 100170. [Google Scholar] [CrossRef]
- Johnston, L.; Wang, G.; Hu, K.; Qian, C.; Liu, G. Advances in biosensors for continuous glucose monitoring towards wearables. Front. Bioeng. Biotechnol. 2021, 9, 733810. [Google Scholar] [CrossRef] [PubMed]
- Harun-Or-Rashid, M.; Aktar, M.N.; Preda, V.; Nasiri, N. Advances in electrochemical sensors for real-time glucose monitoring. Sens. Diagn. 2024, 3, 893–913. [Google Scholar] [CrossRef]
- Ambaye, A.D.; Mamo, M.D.; Zigyalew, Y.; Mengistu, W.M.; Fito Nure, J.; Mokrani, T.; Ntsendwana, B. The development of carbon nanostructured biosensors for glucose detection to enhance healthcare services: A review. Front. Sens. 2024, 5, 1456669. [Google Scholar] [CrossRef]
- Clark, L.C., Jr. Electrochemical Device for Chemical Analysis. U.S. Patent US2913386A, 17 November 1959. [Google Scholar]
- Juska, V.B.; Pemble, M.E. A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. Sensors 2020, 20, 6013. [Google Scholar] [CrossRef]
- Malik, S.; Singh, J.; Goyat, R.; Saharan, Y.; Chaudhry, V.; Umar, A.; Ibrahim, A.A.; Akbar, S.; Ameen, S.; Baskoutas, S. Nanomaterials-based biosensor and their applications: A review. Heliyon 2023, 9, e19929. [Google Scholar] [CrossRef]
- Clark, L.J.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Lee, T.M.-H. Over-the-Counter Biosensors: Past, Present, and Future. Sensors 2008, 8, 5535–5559. [Google Scholar] [CrossRef]
- Mohamad Nor, N.; Ridhuan, N.S.; Abdul Razak, K. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors 2022, 12, 1136. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, J.; Zhao, Y.; Huang, J.; Liu, H. Advancements in electrochemical glucose sensors. Talanta 2025, 281, 126897. [Google Scholar] [CrossRef]
- Yuwen, T.; Shu, D.; Zou, H.; Yang, X.; Wang, S.; Zhang, S.; Liu, Q.; Wang, X.; Wang, G.; Zhang, Y.; et al. Carbon nanotubes: A powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J. Nanobiotechnology 2023, 21, 320. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.; Cheng, Y.; Jiang, S.P. Effect of Carbon Nanotubes on Direct Electron Transfer and Electrocatalytic Activity of Immobilized Glucose Oxidase. ACS Omega 2018, 3, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G.M. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors 2022, 22, 638. [Google Scholar] [CrossRef] [PubMed]
- Naikoo, G.A.; Arshad, F.; Hassan, I.U.; Omar, F.B.; Tambuwala, M.M.; Mustaqeem, M.; Saleh, T.A. Trends in bimetallic nanomaterials and methods for fourth-generation glucose sensors. TrAC Trends Anal. Chem. 2023, 162, 117042. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Awan, T.; Salim, H.; Arshad, F.; Hassan, I.U.; Pedram, M.Z.; Ahmed, W.; Faruck, H.L.; Aljabali, A.A.A.; Mishra, V.; et al. Fourth-generation glucose sensors composed of copper nanostructures for diabetes management: A critical review. Bioeng. Transl. Med. 2021, 7, e10248. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, J.; Zhang, G.; Lu, S.; Zhou, J. Wearable Electrochemical Glucose Sensors for Fluid Monitoring: Advances and Challenges in Non-Invasive and Minimally Invasive Technologies. Biosensors 2025, 15, 309. [Google Scholar] [CrossRef]
- Jamshidnejad-Tosaramandani, T.; Kashanian, S.; Omidfar, K.; Schiöth, H.B. The Role of Nanomaterials in the Wearable Electrochemical Glucose Biosensors for Diabetes Management. Biosensors 2025, 15, 451. [Google Scholar] [CrossRef]
- Si, P.; Huang, Y.; Wang, T.; Ma, J. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 2013, 3, 3487–3502. [Google Scholar] [CrossRef]
- Tian, K.; Prestgard, M.; Tiwari, A. A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng. C 2014, 41, 100–118. [Google Scholar] [CrossRef] [PubMed]
- Akrema; Rahis, U. Nanomaterials and Their Applications. In Metal Nanoparticles as Glucose; Springer: Singapore; Berlin/Heidelberg, Germany, 2018; pp. 143–168. [Google Scholar]
- Ren, X.; Meng, X.; Chen, D.; Tang, F.; Jiao, J. Using silver nanoparticle to enhance current response of biosensor. Biosens. Bioelectron. 2005, 21, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.; Filippo, E.; Re, M.; Palmisano, M.; Vittori-Antisari, M.; Buccolieri, A.; Manno, D. Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology 2009, 20, 165501. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Ye, J.; Tan, K.; Wang, J.; Yang, G. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism-glucose oxidase system. Anal. Chem. 2013, 85, 6241–6247. [Google Scholar] [CrossRef]
- Ghiaci, M.; Tghizadeh, M.; Ensafi, A.A.; Zandi-Atashbar, N.; Rezaei, B. Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection. J. Taiwan Inst. Chem. Eng. 2016, 63, 39–45. [Google Scholar] [CrossRef]
- Li, D.; Yu, S.; Sun, C.; Zou, C.; Yu, H.; Xu, K. U-shaped fiber-optic ATR sensor enhanced by silver nanoparticles for continuous glucose monitoring. Biosens. Bioelectron. 2015, 72, 370–375. [Google Scholar] [CrossRef]
- Feng, D.; Wang, F.; Chen, Z. Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens. Actuators B Chem. 2009, 138, 539–544. [Google Scholar] [CrossRef]
- Thanh, T.D.; Balamurugan, J.; Lee, S.H.; Kim, N.H.; Lee, J.H. Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens. Bioelectron. 2016, 81, 259–267. [Google Scholar] [CrossRef]
- Jena, B.K.; Raj, C.R. Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem. A Eur. J. 2006, 12, 2702–2708. [Google Scholar] [CrossRef]
- El-Ads, E.H.; Galal, A.; Atta, N.F. Electrochemistry of glucose at gold nanoparticles modified graphite/SrPdO3 electrode—towards a novel non-enzymatic glucose sensor. J. Electroanal. Chem. 2015, 749, 42–52. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, N.; Yu, H.; Niu, Y.; Sun, C. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 2005, 67, 15–22. [Google Scholar] [CrossRef]
- Zhou, C.; Xia, Y.; Huang, W.; Li, Z. A Rapid Anodic Fabrication of Nanoporous Gold in NH4Cl Solution for Nonenzymatic Glucose Detection. J. Electrochem. Soc. 2014, 161, H802. [Google Scholar] [CrossRef]
- Chen, L.Y.; Lang, X.Y.; Fujita, T.; Chen, M.W. Nanoporous gold for enzyme-free electrochemical glucose sensors. Scr. Mater. 2011, 65, 17–20. [Google Scholar] [CrossRef]
- Mie, Y.; Katagai, S.; Ikegami, M. Electrochemical Oxidation of Monosaccharides at Nanoporous Gold with Controlled Atomic Surface Orientation and Non-Enzymatic Galactose Sensing. Sensors 2020, 20, 5632. [Google Scholar] [CrossRef]
- Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly Sensitive Glucose Sensor Based on Pt Nanoparticle/Polyaniline Hydrogel Heterostructures. ACS Nano 2013, 7, 3540–3546. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, M.; Yan, Z.; Chen, J. Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem. J. 2020, 152, 104266. [Google Scholar] [CrossRef]
- Luhana, C.; Bo, X.-J.; Ju, J.; Guo, L.-P. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode. J. Nanoparticle Res. 2012, 14, 1158. [Google Scholar] [CrossRef]
- Cao, Z.; Zou, Y.; Xiang, C.; Sun, L.-X.; Xu, F. Amperometric Glucose Biosensor Based on Ultrafine Platinum Nanoparticles. Anal. Lett. 2007, 40, 2116–2127. [Google Scholar] [CrossRef]
- Fan, B.; Spindler, B.D.; Zhao, W.; Chan, H.; Wang, Z.; Kim, M.; Chipangura, Y.; Bühlmann, P.; Stein, A. Comparison of Copper(II) Oxide Nanostructures with Different Morphologies for Nonenzymatic Glucose Sensing. ACS Appl. Nano Mater. 2023, 6, 1475–1486. [Google Scholar] [CrossRef]
- Amirsoleimani, A.R.; Siampour, H.; Abbasian, S.; Rad, G.B.; Moshaii, A.; Zaradshan, Z. Copper oxide nanocolumns for high-sensitive non-enzymatic glucose sensing. Sens. Bio-Sens. Res. 2023, 42, 100589. [Google Scholar] [CrossRef]
- Zohaa; Arif, D.; Hassan, M.; Abdullah, M.; Miran, W.; Nasir, M.A.; Batool, S.; Baig, M.A.; Liaqat, U. An electrochemical sensor based on copper oxide nanoparticles loaded on a mesoporous MCM-41 for non-enzymatic detection of glucose. Ceram. Int. 2024, 50, 12614–12620. [Google Scholar] [CrossRef]
- Li, Q.; Yang, D.; Gao, Y.; Wang, Z.; Yin, R.; Xuan, F. Highly Sensitive and Flexible Copper Oxide/Graphene Non-Enzymatic Glucose Sensor by Laser Direct Writing. Adv. Sens. Res. 2023, 2, 2200067. [Google Scholar] [CrossRef]
- Jasim, H.A.; Dakhil, O.A.A. Highly sensitive non-enzymatic glucose sensor based on copper oxide nanorods. J. Nanoparticle Res. 2022, 24, 212. [Google Scholar] [CrossRef]
- Mamleyev, E.R.; Weidler, P.G.; Nefedov, A.; Szabó, D.V.; Islam, M.; Mager, D.; Korvink, J.G. Nano-and Microstructured Copper/Copper Oxide Composites on Laser-Induced Carbon for Enzyme-Free Glucose Sensors. ACS Appl. Nano Mater. 2021, 4, 13747–13760. [Google Scholar] [CrossRef]
- Ahamad, N.; Banerjee, S.; Wei, C.-C.; Lu, K.-C.; Khedulkar, A.P.; Jian, W.-B.; Mahmood, S.; Chu, C.-W.; Lin, H.-C. Flexible Non-Enzymatic Glucose Sensors: One-Step Green Synthesis of NiO Nanoporous Films via an Electro-Exploding Wire Technique. ACS Appl. Mater. Interfaces 2024, 16, 64494–64504. [Google Scholar] [CrossRef]
- Venkadesh, A.; Mathiyarasu, J.; Dave, S.; Radhakrishnan, S. Amine mediated synthesis of nickel oxide nanoparticles and their superior electrochemical sensing performance for glucose detection. Inorg. Chem. Commun. 2021, 131, 108779. [Google Scholar] [CrossRef]
- Erdem, C.; Koyuncu Zeybek, D.; Aydoğdu, G.; Zeybek, B.; Pekyardımcı, Ş.; Kılıç, E. Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode. Artif. Cells Nanomed. Biotechnol. 2014, 42, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Li, W.; Ci, S.; Jia, J.; Wen, Z. Highly Dispersed NiO Nanoparticles Decorating Graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell. Sci. Rep. 2016, 6, 36454. [Google Scholar] [CrossRef] [PubMed]
- Naderi Asrami, P.; Tehrani, M.S.; Azar, P.A.; Mozaffari, S.A. Impedimetric glucose biosensor based on nanostructure nickel oxide transducer fabricated by reactive RF magnetron sputtering system. J. Electroanal. Chem. 2017, 801, 258–266. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Cherng, J.-Y.; Sun, A.-C.; Chen, C.-Y. Bacteria-Templated NiO Nanoparticles/Microstructure for an Enzymeless Glucose Sensor. Int. J. Mol. Sci. 2016, 17, 1104. [Google Scholar] [CrossRef]
- Baghayeri, M.; Sedrpoushan, A.; Mohammadi, A.; Heidari, M. A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 2017, 23, 1553–1562. [Google Scholar] [CrossRef]
- Kalkozova, Z.K.; Balgimbayeva, U.A.; Gabdullin, M.T.; Gritsenko, L.V.; Suo, G.; Abdullin, K.A. A Facile Method for Synthesizing Cobalt Oxide Nanoparticles to Create a Highly Sensitive Non-Enzyme Glucose Sensor. Biosensors 2025, 15, 235. [Google Scholar] [CrossRef] [PubMed]
- Karuppiah, C.; Palanisamy, S.; Chen, S.-M.; Veeramani, V.; Periakaruppan, P. A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sens. Actuators B Chem. 2014, 196, 450–456. [Google Scholar] [CrossRef]
- Hussein, B.A.; Tsegaye, A.A.; Shifera, G.; Taddesse, A.M. A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co3O4/reduced graphene oxide nanocomposite. Sens. Diagn. 2023, 2, 347–360. [Google Scholar] [CrossRef]
- Sattarahmady, N.; Heli, H. A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. J. Exp. Nanosci. 2012, 7, 529–546. [Google Scholar] [CrossRef]
- Madhu, R.; Veeramani, V.; Chen, S.-M.; Manikandan, A.; Lo, A.-Y.; Chueh, Y.-L. Honeycomb-like porous carbon–cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl. Mater. Interfaces 2015, 7, 15812–15820. [Google Scholar] [CrossRef]
- Mondal, S.; Madhuri, R.; Sharma, P.K. Probing the shape-specific electrochemical properties of cobalt oxide nanostructures for their application as selective and sensitive non-enzymatic glucose sensors. J. Mater. Chem. C 2017, 5, 6497–6505. [Google Scholar] [CrossRef]
- Zhu, R.; Zhao, Z.; Cao, J.; Li, H.; Ma, L.; Zhou, K.; Yu, Z.; Wei, Q. Effect of Pt-Ni deposition sequence on the bimetal-modified boron-doped diamond on catalytic performance for glucose oxidation in neutral media. J. Electroanal. Chem. 2022, 907, 116084. [Google Scholar] [CrossRef]
- Ghosh, R.; Li, X.; Yates, M.Z. Nonenzymatic glucose sensor using bimetallic catalysts. ACS Appl. Mater. Interfaces 2024, 16, 17–29. [Google Scholar] [CrossRef]
- Liu, M.; Gao, T.; Li, H.; Xie, B.; Hu, C.; Guo, Y.; Xiao, D. Preparation of amorphous Ni/Co bimetallic nanoparticles to enhance the electrochemical sensing of glucose. Microchem. J. 2023, 191, 108731. [Google Scholar] [CrossRef]
- Li, R.; Deng, X.; Xia, L. Non-enzymatic sensor for determination of glucose based on PtNi nanoparticles decorated graphene. Sci. Rep. 2020, 10, 16788. [Google Scholar] [CrossRef]
- Rahmanipour, M.; Siampour, H.; Amirsoleimani, A.R.; Rezazadeh, M.; Moshaii, A. Cu–Ag bimetallic nanostructures with high glucose sensing performance fabricated by a scalable and reproducible method. Microchem. J. 2023, 193, 109208. [Google Scholar] [CrossRef]
- Gupta, P.; Gupta, V.K.; Huseinov, A.; Rahm, C.E.; Gazica, K.; Alvarez, N.T. Highly sensitive non-enzymatic glucose sensor based on carbon nanotube microelectrode set. Sens. Actuators B: Chem. 2021, 348, 130688. [Google Scholar] [CrossRef]
- Muqaddas, S.; Javed, M.; Nadeem, S.; Asghar, M.A.; Haider, A.; Ahmad, M.; Ashraf, A.R.; Nazir, A.; Iqbal, M.; Alwadai, N.; et al. Carbon nanotube fiber-based flexible microelectrode for electrochemical glucose sensors. ACS Omega 2023, 8, 2272–2280. [Google Scholar] [CrossRef] [PubMed]
- Bolaños-Mendez, D.; Fernández, L.; Uribe, R.; Cunalata-Castro, A.; González, G.; Rojas, I.; Chico-Proano, A.; Debut, A.; Celi, L.A.; Espinoza-Montero, P. Evaluation of a non-enzymatic electrochemical sensor based on Co(OH)2-functionalized carbon nanotubes for glucose detection. Sensors 2024, 24, 7707. [Google Scholar] [CrossRef] [PubMed]
- Pourasl, A.H.; Ahmadi, M.T.; Rahmani, M.; Chin, H.C.; Lim, C.S.; Ismail, R.; Tan, M.L.P. Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res. Lett. 2014, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 2004, 4, 191–195. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.J.; Baik, S.; Hyeon, T.; Kim, D.-H. Enzyme-based glucose sensor: From invasive to wearable device. Adv. Healthc. Mater. 2018, 7, 1701150. [Google Scholar] [CrossRef]
- Rdest, M.; Janas, D. Carbon nanotube wearable sensors for health diagnostics. Sensors 2021, 21, 5847. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Huang, J.-H.; Chuang, C.-C. Glucose biosensor based on multiwalled carbon nanotubes grown directly on Si. Carbon 2009, 47, 3106–3112. [Google Scholar] [CrossRef]
- Kang, B.-C.; Park, B.-S.; Ha, T.-J. Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-Nafion composites. Appl. Surf. Sci. 2019, 470, 13–18. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Hu, T. A graphene oxide-modified biosensor for non-invasive glucose monitoring in college athletes. Alex. Eng. J. 2024, 95, 321–332. [Google Scholar] [CrossRef]
- Hua, L.; Wu, X.; Wang, R. Glucose sensor based on an electrochemical reduced graphene oxide–poly(l-lysine) composite film modified GC electrode. Analyst 2012, 137, 5716–5719. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 2018, 109, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Phetsang, S.; Kidkhunthod, P.; Chanlek, N.; Jakmunee, J.; Mungkornasawakul, P.; Ounnunkad, K. Copper/reduced graphene oxide film modified electrode for non-enzymatic glucose sensing application. Sci. Rep. 2021, 11, 9302. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Y.; Gao, S.; Zhang, Z.; Gu, Y.; Liu, X. Reduced graphene oxide-coated silica nanospheres as flexible enzymatic biosensors for detection of glucose in sweat. ACS Appl. Nano Mater. 2021, 4, 12442–12452. [Google Scholar] [CrossRef]
- Chang, L.; Liu, Y.; Tian, R.; Meng, L.; Zhang, H.; Gao, Y.; Zhang, F.; Ruan, X.; Zhu, B.; Li, J.; et al. Rapid glucose detection using graphene oxide modified foam nickel electrode with optimized basic solution. Int. J. Food Prop. 2020, 23, 1506–1517. [Google Scholar] [CrossRef]
- Rajmane, S.P.; Nille, O.S.; Kolekar, G.B.; Sadale, S.B. Studies on glucose detection using graphene quantum dots prepared by hydrothermal method. Sci. Rep. 2025, 15, 25847. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Rinawati, M.; Chang, L.-Y.; Guo, Y.-T.; Chen, K.-J.; Chiu, H.-C.; Lin, Z.-H.; Huang, W.-H.; Haw, S.-C.; Yeh, M.-H. Carbon nitride quantum dots/polyaniline nanocomposites for non-invasive glucose monitoring using wearable sweat biosensor. ACS Appl. Nano Mater. 2025, 8, 2340–2351. [Google Scholar] [CrossRef]
- Wang, C.; Tan, R.; Li, L.; Liu, D. Dual-modal colorimetric and fluorometric method for glucose detection using MnO2 sheets and carbon quantum dots. Chem. Res. Chin. Univ. 2019, 35, 767–774. [Google Scholar] [CrossRef]
- Khan, N.U.; Sharma, B.P.; Tumrani, S.H.; Zahoor, M.; Soomro, R.A.; Küçükdeniz, T.; Karakuş, S.; Elsharkawy, E.R.; Lu, J.; El-Bahy, S.M.; et al. Enhanced detection of glucose with carbon quantum dot-modified copper oxide: Computational insight and machine learning modeling of electrochemical sensing. Microchem. J. 2024, 204, 110936. [Google Scholar] [CrossRef]
- Aygun, A.; Ozveren, E.; Halvaci, E.; Ikballi, D.; Elhouda Tiri, R.N.; Catal, C.; Bekmezci, M.; Ozengul, A.; Kaynak, I.; Sen, F. The performance of a very sensitive glucose sensor developed with copper nanostructure-supported nitrogen-doped carbon quantum dots. RSC Adv. 2024, 14, 34964–34970. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, A.; Celesti, C.; Iannazzo, D.; Ampelli, C.; Giusi, D.; Costantino, V.; Neri, G. Functionalization of carbon nanofibers with an aromatic diamine: Toward a simple electrochemical-based sensing platform for the selective sensing of glucose. ACS Omega 2024, 9, 27085–27092. [Google Scholar] [CrossRef] [PubMed]
- Rani, S.D.; Ramachandran, R.; Sheet, S.; Aziz, M.A.; Lee, Y.S.; Al-Sehemi, A.G.; Pannipara, M.; Xia, Y.; Tsai, S.-Y.; Ng, F.-L.; et al. NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sens. Actuators B Chem. 2020, 312, 127886. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, S.; Lu, X. Amperometric nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite made from nickel(II) hydroxide nanoplates and carbon nanofibers. Microchim. Acta 2014, 181, 365–372. [Google Scholar] [CrossRef]
- Bulut, U.; Sayin, V.O.; Altin, Y.; Cevher, S.C.; Cirpan, A.; Bedeloglu, A.C.; Soylemez, S. A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing. Microchim. Acta 2023, 184, 108148. [Google Scholar] [CrossRef]
- Vamvakaki, V.; Tsagaraki, K.; Chaniotakis, N. Carbon nanofiber-based glucose biosensor. Anal. Chem. 2006, 78, 5538–5542. [Google Scholar] [CrossRef]
- Huan, K.; Li, Y.; Deng, D.; Wang, H.; Wang, D.; Li, M.; Luo, L. Composite-controlled electrospinning of CuSn bimetallic nanoparticles/carbon nanofibers for electrochemical glucose sensor. Appl. Surf. Sci. 2022, 573, 151528. [Google Scholar] [CrossRef]
- Pavadai, R.; Arivazhagan, M.; Jakmunee, J.; Pavadai, N.; Palanisamy, R.; Honnu, G.; Kityakarn, S.; Khumphon, J.; Issro, C.; Khamboonrueang, D.; et al. Highly porous 3D Ni-MOFs as an efficient and enzyme-mimic electrochemical sensing platform for glucose in real samples of sweat and saliva in biomedical applications. ACS Omega 2025, 10, 1610–1623. [Google Scholar] [CrossRef]
- Cao, J.; Yun, J.; Zhang, N.; Wei, Y.; Yang, H.; Xu, Z. Bifunctional Ag@Ni-MOF for high performance supercapacitor and glucose sensor. Synth. Met. 2021, 282, 116931. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, P.; Wu, J.; Peng, Y.; Pang, H. Pyridine-regulated lamellar nickel-based metal–organic framework (Ni-MOF) for nonenzymatic electrochemical glucose sensor. Adv. Sci. 2023, 10, 2304102. [Google Scholar] [CrossRef]
- Zeraati, M.; Alizadeh, V.; Kazemzadeh, P.; Safinejad, M.; Kazemian, H.; Sargazi, G. A new nickel metal organic framework (Ni-MOF) porous nanostructure as a potential novel electrochemical sensor for detecting glucose. J. Porous Mater. 2022, 29, 257–267. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, S.; Li, X.; Zhang, G.; Guo, X.; Xue, H.; Pang, H. Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum. J. Mater. Chem. B 2017, 5, 5234–5239. [Google Scholar] [CrossRef]
- Matada, M.S.S.; Kuppuswamy, G.P.; Sasi, S.; Jayaraman, S.V.; Nutalapati, V.; Kumar, S.S.; Sivalingam, Y. Pyrene derivative incorporated Ni-MOF as an enzyme mimic for noninvasive salivary glucose detection toward diagnosis of diabetes mellitus. ACS Appl. Mater. Interfaces 2024, 16, 17219–17231. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.-T.; Chen, Z.; Chen, X.; Han, G.-C.; Feng, X.-Z.; Kraatz, H.-B. Enzyme-Free Glucose Sensor Based on Electrodeposition of Multi-Walled Carbon Nanotubes and Zn-Based Metal Framework-Modified Gold Electrode at Low Potential. Electrochim. Acta 2024, 483, 144009. [Google Scholar] [CrossRef]
- Firouzi Jahantigh, Y.; Mehrpooya, M.; Askari Moghadam, R.; Ganjali, M.R. Design and Fabrication of Glucose Sensor Using Metal-Organic Framework Nanomaterials. Mater. Chem. Phys. 2025, 331, 130173. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Zhu, W.; Zhang, Y.; Cao, K.; Zhang, B.; Yu, X.; Shen, Q.; Liu, C.; Wang, Q. Metal-Organic Framework Derived Porous Hollow ZnCo2S4 Improving Electrocatalytic Oxidation of Glucose. Mater. Res. Express 2023, 10, 025006. [Google Scholar] [CrossRef]
- Divyarania, K.; Sreenivasa, S.; Kumar, S.; Vinod, A.; Alharethy, F.; Jeon, B.-H.; Devie, V.S.A.; Martis, P.; Parashuram, L. Fabrication of a Novel MOF Template-Derived ZnCo2O4 Composite for the Non-Enzymatic Electrochemical Detection of Glucose. Results Chem. 2024, 8, 101604. [Google Scholar] [CrossRef]
- He, J.; Yang, H.; Zhang, Y.; Yu, J.; Miao, L.; Song, Y.; Wang, L. Smart Nanocomposites of Cu-Hemin Metal-Organic Frameworks for Electrochemical Glucose Biosensing. Sci. Rep. 2016, 6, 36637. [Google Scholar] [CrossRef]
- Guesmi, S.; Moulaee, K.; Bressi, V.; Kahri, H.; Khaskhoussi, A.; Espro, C.; Barhoumi, H.; Neri, G. Non-Enzymatic Amperometric Glucose Sensing by Novel Cu-MOF Synthesized at Room Temperature. Mater. Adv. 2024, 5, 1160–1170. [Google Scholar] [CrossRef]
- Hu, Q.; Qin, J.; Wang, X.-F.; Ran, G.-Y.; Wang, Q.; Liu, G.-X.; Ma, J.-P.; Ge, J.-Y.; Wang, H.-Y. Cu-Based Conductive MOF Grown In Situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Front. Chem. 2021, 9, 786970. [Google Scholar] [CrossRef]
- Prabisha, K.E.; Neena, P.K.; Ankitha, M.; Rasheed, P.A.; Suneesh, P.V.; Babu, T.G.S. Selenium Nanoparticles Modified Niobium MXene for Non-Enzymatic Detection of Glucose. Sci. Rep. 2025, 15, 1749. [Google Scholar] [CrossRef]
- Li, Q.-F.; Chen, X.; Wang, H.; Liu, M.; Peng, H.-L. Pt/MXene-Based Flexible Wearable Non-Enzymatic Electrochemical Sensor for Continuous Glucose Detection in Sweat. ACS Appl. Mater. Interfaces 2023, 15, 13290–13298. [Google Scholar] [CrossRef]
- Gopal, T.S.; Jeong, S.K.; Alrebdi, T.A.; Pandiaraj, S.; Alodhayb, A.; Muthuramamoorthy, M.; Grace, A.N. MXene-Based Composite Electrodes for Efficient Electrochemical Sensing of Glucose by Non-Enzymatic Method. Mater. Today Chem. 2022, 24, 100891. [Google Scholar] [CrossRef]
- Gopal, T.S.; James, J.T.; Gunaseelan, B.; Ramesh, K.; Raghavan, V.; Malathi, C.J.; Amarnath, A.K.; Kumar, V.G.; Rajasekaran, S.J.; Pandiaraj, S.; et al. MXene-Embedded Porous Carbon-Based Cu2O Nanocomposites for Non-Enzymatic Glucose Sensors. ACS Omega 2024, 9, 8448–8456. [Google Scholar]
- Zhang, W.; Jiang, S.; Yu, H.; Feng, S.; Zhang, K. Ga@MXene-Based Flexible Wearable Biosensor for Glucose Monitoring in Sweat. iScience 2025, 28, 111737. [Google Scholar] [CrossRef]
- Alshraim, A.; Gopal, T.S.; Alanazi, N.; Muthumareeswaran, M.; Alobaidi, A.A.E.; Alsaigh, R.; Aldosary, M.; Pandiaraj, S.; Grace, A.N.; Alodhayb, A.N. Cu/Cu2O/C Nanoparticles and MXene Based Composite for Non-Enzymatic Glucose Sensors. Nanotechnology 2024, 35, 365704. [Google Scholar] [CrossRef]
- Li, R.; Fan, H.; Chen, Y.; Yin, S.; Liu, G.L.; Li, Y.; Huang, L. MXene–Graphene Oxide Heterostructured Films for Enhanced Metasurface Plasmonic Biosensing in Continuous Glucose Monitoring. Adv. Sci. 2025, 12, 2410376. [Google Scholar] [CrossRef]
- Zhu, X.; Pang, X.; Zhang, Y.; Yao, S. Titanium Carbide MXenes Combined with Red-Emitting Carbon Dots as a Unique Turn-On Fluorescent Nanosensor for Label-Free Determination of Glucose. J. Mater. Chem. B 2019, 7, 7729–7735. [Google Scholar] [CrossRef]
- Ravitchandiran, A.; AlGarni, S.; AlSalhi, M.S.; Rajaram, R.; Malik, T.; Angaiah, S. ZnFe(PBA)@Ti3C2Tx nanohybrid-based highly sensitive non-enzymatic electrochemical sensor for the detection of glucose in human sweat. Sci. Rep. 2024, 14, 23835. [Google Scholar] [CrossRef]
- Ravitchandiran, A.; Dhandapani, P.; Rajendra, S.P.; AlSalhi, M.S.; Rajamohan, R.; Angaiah, S. Development of ZnFe(PBA)@Mo3C2Tx Nanohybrid based Non-Enzymatic Sensor for the Detection of Glucose in Human Sweat. Chemistry Select 2024, 9, e202401553. [Google Scholar] [CrossRef]
- Sharma, K.P.; Shin, M.; Awasthi, G.P.; Cho, S.; Yu, C. One-Step Hydrothermal Synthesis of CuS/MoS2 Composite for Use as an Electrochemical Non-Enzymatic Glucose Sensor. Heliyon 2024, 10, e23721. [Google Scholar] [CrossRef] [PubMed]
- Bano, M.; Naikoo, G.A.; BaOmar, F.; Rather, J.A.; Hassan, I.U.; Sheikh, R.A.; Kannan, P.; Tambuwala, M.M. Revolutionizing Glucose Monitoring: Enzyme-Free 2D-MoS2 Nanostructures for Ultra-Sensitive Glucose Sensors with Real-Time Health-Monitoring Capabilities. ACS Omega 2024, 9, 20021–20029. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Li, J.; Chu, X.; Xu, M.; Jin, F.; Wang, X.; Ma, L.; Fang, X.; Wei, Z.; Wang, X. High Sensitivity Glucose Detection at Extremely Low Concentrations Using a MoS2-Based Field-Effect Transistor. RSC Adv. 2018, 8, 7942–7948. [Google Scholar] [CrossRef]
- Hu, J.; Dai, J.; Huang, C.; Zeng, X.; Wei, W.; Wang, Z.; Lin, P. Organic Electrochemical Transistor with MoS2 Nanosheets Modified Gate Electrode for Sensitive Glucose Sensing. Sensors 2023, 23, 7449. [Google Scholar] [CrossRef]
- Borade, P.A.; Ali, M.A.; Jahan, S.; Sant, T.; Bogle, K.; Panat, R.; Jejurikar, S.M. MoS2 Nanosheet-Modified NiO Layers on a Conducting Carbon Paper for Glucose Sensing. ACS Appl. Nano Mater. 2021, 4, 6609–6619. [Google Scholar] [CrossRef]
- Tian, H.; Wang, H.; Wang, J.; Qu, G.; Yu, X.-F.; Jiang, G. Understanding the Intrinsic Reactivity of Black Phosphorus. Acc. Mater. Res. 2024, 5, 1472–1483. [Google Scholar] [CrossRef]
- Mohadesi, V. Sensitivity Enhancement of Plasmonic Biosensor for Glucose Level Detection Using Black Phosphorus and Copper-Based Multilayer Design. Plasmonics 2025, 1–10. [Google Scholar] [CrossRef]
- Özkahraman, E.E.; Eroğlu, Z.; Efremov, V.; Maryyam, A.; Abbasiasl, T.; Das, R.; Mirzajani, H.; Hanedar, B.A.; Beker, L.; Metin, O. High-Performance Black Phosphorus/Graphitic Carbon Nitride Heterostructure-Based Wearable Sensor for Real-Time Sweat Glucose Monitoring. Adv. Mater. Technol. 2025, 10, e00106. [Google Scholar] [CrossRef]
- Houari, F.; El Barghouti, M.; Mir, A.; Akjouj, A. Nanosensors Based on Bimetallic Plasmonic Layer and Black Phosphorus: Application to Urine Glucose Detection. Sensors 2024, 24, 5058. [Google Scholar] [CrossRef]
- Rafiee, E.; Negahdari, R. An Efficient Biosensor Based on Plasmon-Induced Transparency Effect in Plasmonic-Graphene-Black Phosphorous Absorber for Diabetes Diagnosis. Diam. Relat. Mater. 2023, 140, 110526. [Google Scholar] [CrossRef]
- Huang, C.-P.; Liu, S.-W.; Chen, T.-M.; Li, Y.-K. A New Approach for Quantitative Determination of Glucose by Using CdSe/ZnS Quantum Dots. Sens. Actuators B Chem. 2008, 130, 338–342. [Google Scholar] [CrossRef]
- Abd Rahman, S.; Ariffin, N.; Yusof, N.A.; Abdullah, J.; Mohammad, F.; Ahmad Zubir, Z.; Nik Abd Aziz, N.M.A. Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose. Sensors 2017, 17, 1537. [Google Scholar] [CrossRef]
- Duong, H.D.; Rhee, J.I. Use of CdSe/ZnS Core-Shell Quantum Dots as Energy Transfer Donors in Sensing Glucose. Talanta 2007, 73, 899–905. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, Q.; Wu, T.; Liu, L.; Ding, Y.; Yu, B. Fluorescence Enhancement of Cadmium Selenide Quantum Dots Assembled on Silver Nanoparticles and Its Application to Glucose Detection. Langmuir 2014, 30, 6324–6330. [Google Scholar] [CrossRef] [PubMed]
- Ağbulut, M.S.B.; Elibol, E.; Çadırcı, M.; Demirci, T. Fluorescent CdTe/ZnS Core/Shell Quantum Dots for Sensitive Metabolite Detection in Real Samples. J. Fluoresc. 2025, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhou, T.; Shena, J.; Zhou, S. Optical Detection of Glucose by CdS Quantum Dots Immobilized in Smart Microgels. Chem. Commun. 2009, 29, 4390–4392. [Google Scholar] [CrossRef] [PubMed]
- Rahmania, F.J.; Imae, T.; Chu, J.P. Electrochemical Nonenzymatic Glucose Sensors Catalyzed by Au Nanoclusters on Metallic Nanotube Arrays and Polypyrrole Nanowires. J. Colloid Interface Sci. 2024, 657, 567–579. [Google Scholar] [CrossRef]
- Lee, M.-J.; Choi, J.-H.; Shin, J.-H.; Yun, J.; Kim, T.; Kim, Y.-J.; Oh, B.-K. Gold Nanoclusters with Two Sets of Embedded Enzyme Nanoparticles for Applications as Electrochemical Sensors for Glucose. ACS Appl. Nano Mater. 2023, 6, 12567–12577. [Google Scholar] [CrossRef]
- Hussain, A.M.P.; Sarangi, S.N.; Kesarwani, J.A.; Sahu, S.N. Au-Nanocluster Emission-Based Glucose Sensing. Biosens. Bioelectron. 2011, 29, 60–65. [Google Scholar] [CrossRef]
- German, N.; Popov, A.; Ramanavicius, A.; Ramanaviciene, A. A Platform for the Glucose Biosensor Based on Dendritic Gold Nanostructures and Polyaniline-Gold Nanoparticles Nanocomposite. Biosensors 2025, 15, 196. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Liu, X.; Xian, Y.; Shi, G.; Jin, L. ZnO Nanorods/Au Hybrid Nanocomposites for Glucose Biosensor. Biosens. Bioelectron. 2010, 26, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ma, J.; Chang, Q.; Fan, X.; Zhang, G.; Zhang, F.; Peng, W.; Li, Y. Fabrication of a Novel ZnO–CoO/rGO Nanocomposite for Nonenzymatic Detection of Glucose and Hydrogen Peroxide. Ceram. Int. 2018, 44, 5250–5256. [Google Scholar] [CrossRef]
- Choi, Y.-B.; Kim, H.-S.; Jeon, W.-Y.; Lee, B.-H.; Shin, U.S.; Kim, H.-H. The Electrochemical Glucose Sensing Based on the Chitosan-Carbon Nanotube Hybrid. Biochem. Eng. J. 2019, 144, 227–234. [Google Scholar] [CrossRef]
- Kang, X.; Mai, Z.; Zou, X.; Cai, P.; Mo, J. Glucose Biosensors Based on Platinum Nanoparticles-Deposited Carbon Nanotubes in Sol–Gel Chitosan/Silica Hybrid. Talanta 2008, 74, 879–886. [Google Scholar] [CrossRef]
- Paik, E.-S.; Kim, Y.-R.; Hong, H.-G. Amperometric Glucose Biosensor Utilizing Zinc Oxide-Chitosan-Glucose Oxidase Hybrid Composite Films on Electrodeposited Pt-Fe(III). Anal. Sci. 2018, 34, 1271–1276. [Google Scholar] [CrossRef]
- Zalke, J.B.; Narkhede, N.P.; Rotake, D.R.; Singh, S.G. Facile Chemiresistive Biosensor Functionalized with PANI/GOx and Novel Green Synthesized Silver Nanoparticles for Glucose Sensing. Microchem. J. 2024, 200, 110339. [Google Scholar] [CrossRef]
- Khachornsakkul, K.; Rybicki, F.J.; Sonkusale, S. Nanomaterials Integrated with Microfluidic Paper-Based Analytical Devices for Enzyme-Free Glucose Quantification. Talanta 2023, 260, 124538. [Google Scholar] [CrossRef]
- Li, X.; Zhao, C.; Liu, X. A Paper-Based Microfluidic Biosensor Integrating Zinc Oxide Nanowires for Electrochemical Glucose Detection. Microsyst. Nanoeng. 2015, 1, 15014. [Google Scholar] [CrossRef]
- Chan, P.Z.; Jin, E.; Jansson, M.; Chew, H.S.J. AI-Based Noninvasive Blood Glucose Monitoring: Scoping Review. J. Med. Internet Res. 2024, 26, e58892. [Google Scholar] [CrossRef]
- Sunstrum, F.N.; Khan, J.U.; Li, N.-W.; Welsh, A.W. Wearable textile sensors for continuous glucose monitoring. Biosens. Bioelectron. 2025, 273, 117133. [Google Scholar] [CrossRef]
- Fu, W.; Yu, B.; Ji, D.; Zhou, Z.; Li, X.; Wang, R.; Lu, W.; Sun, Y.; Dai, Y. Intelligent fibers and textiles for wearable biosensors. Responsive Mater. 2024, 2, e20240018. [Google Scholar] [CrossRef]
- Moshfiq-Us-Saleheen, C.; Sutirtha, R.; Krishna Prasad, A.; Henry, L.; Richa, P. Realizing the Potential of Commercial E-Textiles for Wearable Glucose Biosensing Application. ACS Mater. Au 2024, 4, 592–603. [Google Scholar] [CrossRef]
- Hosain, M.N.; Kwak, Y.-S.; Lee, J.; Choi, H.; Park, J.; Kim, J. IoT-enabled biosensors for real-time monitoring and early detection of chronic diseases. Phys. Act. Nutr. 2024, 28, 60–69. [Google Scholar] [CrossRef]
- Kharb, S. Future directions: What LIES ahead for smart biochemical wearables in health monitoring? Front. Anal. Sci. 2025, 4, 1509815. [Google Scholar] [CrossRef]
Generations | Principle | Core Concept | Features | Limitations | Ref |
---|---|---|---|---|---|
First Generation (Enzymatic) | Relies on glucose oxidase (GOx) to catalyze glucose oxidation, generating hydrogen peroxide (H2O2) detected at the electrode. | GOx + O2 → H2O2 | Simple design, directly linked to enzyme activity | Requires high operating potentials, leading to interference from electroactive species (ascorbic acid, uric acid, acetaminophen) | [10,22,23] |
Second Generation (Enzymatic) | Uses redox mediators (e.g., ferrocene, quinones, metal complexes) to shuttle electrons between GOx and the electrode | Artificial mediators (e.g., ferrocene) facilitate electron transfer | Reduced applied potential, enhanced selectivity, faster response, less prone to interference | Stability issues of mediators, potential toxicity, and leaching of mediators over time | [24,25] |
Third Generation (Enzymatic) | Achieves direct electrical communication between the redox center of GOx and the electrode without mediators | Direct electron transfer via nanomaterials (graphene, CNTs)– recent nanotechnology studies | High specificity, reduced background interference, real-time, and continuous monitoring | Immobilization of enzymes, maintaining enzyme activity and stability on nanostructured surfaces. | [26,27,28] |
Fourth Generation (Enzymatic) | They often rely on nano-biosensing elements (nanoparticles, nanotubes, nanowires) and DNA-based sensors to enhance electron transfer and bio-recognition efficiency. | Move beyond classical enzyme–electrode systems by incorporating nanostructures and molecular probes. Enable CGM through minimally invasive or non-invasive methods. | High sensitivity and low LOD. Miniaturization for portability. Real-time, continuous monitoring with reduced sample volumes. | Biofluid variability Short sensor lifespan Interference issues Skin and wearability challenges Cost and accessibility | [29,30] |
Fifth Generation (Non-enzymatic) | Built upon advances in non-invasive biosensing, wireless communication, and smart data analytics, these biosensors integrate wearable or implantable devices with digital health platforms | Fully integrated, smart biosensing systems that merge biochemical sensing with AI-driven data interpretation. Seamless wireless data transmission to smartphones, cloud platforms, or healthcare providers. | Non-invasive, painless, and continuous monitoring. Wireless communication and cloud integration for remote patient management. Personalized medicine approach. Integration with robotics and automated drug delivery systems. Predictive healthcare. | High cost and complexity Data privacy and security Dependence on infrastructure Power supply limitations User adaptability | [31,32] |
S. No | Category | Types | Important Information |
---|---|---|---|
1. | Sensor Formats | Electrochemical Sensors | These sensors typically use a three-electrode system (working, reference, and counter electrodes) to measure the electrical current or potential changes caused by the reaction of glucose with an enzyme or a reagent. |
Enzymatic Sensors | These sensors utilize enzymes like glucose oxidase (GOx) or glucose dehydrogenase (GDH) to catalyze the oxidation of glucose, generating a measurable signal. GOx is commonly used for detecting glucose in blood and other bodily fluids | ||
Amperometric Sensors | These sensors measure the current produced during the electrochemical reaction of glucose with the enzyme or reagent, providing a quantitative measurement of glucose concentration. | ||
Optical Sensors | These sensors use optical signals, such as fluorescence or absorbance changes, to detect glucose. Examples include sensors based on Förster Resonance Energy Transfer (FRET) | ||
Metal–Organic Framework (MOF) Sensors | These sensors utilize the unique properties of MOFs, such as high surface area and tunable chemistry, to enhance the sensitivity and selectivity of glucose detection. | ||
2. | Media and Substrates | Whole Blood | Glucose biosensors are often designed to work directly with whole blood samples, offering a convenient way to monitor glucose levels in real-time. |
Interstitial fluid | CGM devices often measure glucose in the interstitial fluid, the fluid that surrounds cells, which is closely correlated with blood glucose levels | ||
Buffer Solutions | Enzymatic glucose sensors often utilize buffer solutions, such as phosphate buffer, to maintain a stable pH environment for the enzyme reaction. |
Type | Materials Used | Mechanism | Selectivity | Stability | Shelf Life | Advantages | Limitations |
---|---|---|---|---|---|---|---|
Enzyme-Based Glucose Biosensors | Biological Component (Recognition Layer): (GOx), (GDH) Electrode/Transducer Materials: Noble metals: Pt, Au Carbon-based: Carbon nanotubes (CNTs), graphene, glassy carbon electrodes Conducting polymers: Polyaniline (PANI), Polypyrrole (PPy) Metal oxide supports: ZnO, TiO2, Fe3O4 nanoparticles | 1. GOx mechanism (most common): Glucose + O2 → Gluconic acid + H2O2 The H2O2 produced is electrochemically oxidized at the electrode, generating a current proportional to glucose concentration. 2. GDH mechanism: Glucose + NAD+ → Gluconolactone + NADH The produced NADH can be detected electrochemically. | Very high (due to enzyme specificity) | Sensitive to pH, temperature, and humidity | Limited | High selectivity (due to enzyme specificity for glucose) High sensitivity (amplified signal due to enzyme catalysis). | Enzyme instability (sensitive to pH, temperature, and humidity). High cost due to enzyme immobilization and preservation. Limited shelf life. |
Non-Enzyme-Based Glucose Biosensors | Metal Nanostructures: Platinum (Pt), Gold (Au), Palladium (Pd), Silver (Ag) Transition Metal Oxides: Copper oxide (CuO), Nickel oxide (NiO), Cobalt oxide (Co3O4), Manganese oxide (MnO2) Carbon-Based Materials: Graphene, CNTs, carbon nanofibers (CNFs) Hybrid Nanocomposites: Metal oxide + CNT/Graphene for synergistic catalysis | Relies on direct electrocatalytic oxidation of glucose at the electrode surface. Example with NiO: Ni2+ ⇌ Ni3+ (electrochemical activation) Glucose is oxidized to gluconolactone by Ni3+ Ni3+ is reduced back to Ni2+, completing the cycle. The current response corresponds to glucose concentration. | Moderate (may suffer interference) | High stability in harsh conditions | Longer | No enzyme required → improved stability and longer shelf life. Can operate in harsh conditions (temperature, pH). Cheaper and easier fabrication. | Lower selectivity (other sugars, uric acid, and ascorbic acid may interfere). Higher operating potential is often needed (may increase background signals). Sensitivity is sometimes lower than enzyme-based systems. |
Nature of NPs | NPs Used | Combinations | LOD |
---|---|---|---|
Metal NPs | Ag NPs | Ag NPs | |
Ag NPs capped with PVA | |||
Ag NPs | 0.2–100 μM | ||
Ag NPs decorated with ligands | 0.2–100 μM | ||
Ag NPs with ATR optics | 3.7 × 10−4 mol. L−1 | ||
Au NPs | Au NPs with Chitosan | ||
AuNPs-anchored nitrogen-doped graphene | |||
Self-assembled Au NPs | |||
Graphite/SrPdO3 electrode modified by Au NPs | 10.1 μ.mol. L−1 | ||
Modified gold electrode (Au NPs) | |||
Nanoporous Au in NH4Cl Solution | 2.5 μM | ||
Nanoporous Au | 3 μM | ||
Nanoporous Au | 5.0 mM | ||
Pt NPs | Pt NPs with Polyaniline as Hydrogel | 0.7 μM | |
Pl NPs/polyaniline–montmorillonite (PANI-MMT) | 0.1 μM | ||
Hollow carbon spheres decorated with PL NPs (Pt/HCSs) | 1.8 μM | ||
Ultrafine Pl NPs | 5 μM | ||
Metal oxide NPs | CuO NPs | CuO NPs | 0.05–5 mM |
Cu2O/CuO NPs | 0.052 μM | ||
CuO/MCM41 | 16 nm | ||
CuO/Graphene composite | |||
CuO nanowire | 0.45 μM | ||
CuO urchins + Cu microsperoids | |||
NiO NPs | NiO NPs | 0.25 μM | |
NiO NPs/GCE | 5.5 μM | ||
NiO NPs/Carbon paste electrode | 0.11 μM.L−1 | ||
NiO/Graphene nanosheet | 5.0 μM | ||
NiO thin film/F-doped SnO2 | 24 μM | ||
Bacteria-induced hollow cylinder NiO nanomaterials | 0.9 μM | ||
NiO NPs/functionalized SBA 15 | 0.023 μM | ||
Co3O4 NPs | Co3O4 NPs | 5 μM | |
Co3O4 NPs/Graphene | 0.06 μM | ||
Co3O4 NPs/ZnO/rGO nanocomposite | 0.043 μM | ||
Co3O4 NPs/Glassy carbon | 0.15 μM | ||
Co3O4 NPs/Pongan seed shell activated carbon | 21 nm | ||
Co3O4 nanoflower | 0.04 μM | ||
Bimetallic NPs | Pt-Ni | Pt-Ni modified boron-doped diamond (BDD) | |
Cu-Ni | Cu-Ni | ||
Ni-Co | Ni-Co | ||
Pt-Ni | Pt-Ni dispersed in Graphene | 16 uM | |
Cu-Ag | Cu-Ag |
S. No | Sensor Material | Outputs |
---|---|---|
1 | 3D Ni-TMAF | High sensitivity (203.89 μA μM−1.cm−2), LOD 0.33 μM, <3 s response. |
2 | Ag@Ni-MOF | Enhanced conductivity and stability, sensitivity 160.08 μA cm−2.mM−1, LOD 5 μM. |
3 | 2D Ni-MOFs | Ultrathin, fast response, large linear range. |
4 | Ni-MOF nanobelts | Efficient nonenzymatic glucose oxidation, LOD 0.25 μM. |
5 | Ni-MOF EGFET | Rapid, high-affinity glucose detection in saliva, following Michaelis–Menten kinetics. |
S. No | Sensor Material | Outputs |
---|---|---|
1 | Cu-hemin MOF-based sensor | Achieved a wide linear detection range (9.10 μM to 36.0 mM) and a low LOD of 2.73 μM, outperforming other GOx-based sensors. |
2 | Cu-MOF/CF sensor | Demonstrated an ultra-low LOD of 0.076 μM and a high sensitivity of 30,030 mA μM−1 cm−2 over a wide detection range (0.001–0.95 mM). |
3 | Cs/Cu-MOF/SPCE sensor | Displayed a high sensitivity of 1378.11 μA cm−2 mM−1, an LOD of 2 μM, and excellent recovery (95.4% to 108.7%) for glucose detection in saliva samples. |
S. No | Sensor Material | Outputs |
---|---|---|
1 | Nb2CTx-selenium NPs sensor. | Detected glucose from 2 to 30 mM with a LOD of 1.1 mM and sensitivity of 4.15 µA mM−1 cm−2. |
2 | Wearable Pt/MXene sensor | Provided a glucose detection range of 0–8 mmol/L and enhanced stability Via hydrogel integration. |
3 | Cu2O-MXene composite sensor | Demonstrated a linear range (0.01–30 mM), sensitivity of 11.061 µA mM−1 cm−2, and LOD of 2.83 μM. |
4 | Cu2O/M/AC sensor | Exhibited two linear ranges (0.004–13.3 mM and 15.3–28.4 mM) with a LOD of 1.96 μM. |
5 | Liquid metal-MXene hydrogel sensor | Achieved a low LOD (0.77 μM) and broad glucose detection range (10–1000 μM). |
6 | Copper oxide-MXene composite sensor | Provided a wide glucose detection range (0.001–26.5 mM) with a sensitivity of 762.53 μA mM−1 cm−2 and LOD of 0.103 μM. |
7 | MGMSPR sensor (MXene-Graphene oxide) | Detected glucose with an LOD of 106.8 µM using a metasurface-based biosensor. |
8 | Fluorescent turn-on Ti3C2-RCDs sensor | Achieved a detection range from 0.1 to 20 mM and LOD of 50 μM. |
9 | ZnFe(PBA)@Ti3C2Tx nanohybrid | Improved sensitivity of 973.42 µA mM−1 cm−2 with the limit of detection (LOD) of 3.036 µM (S/N = 3) and linear detection range (LDR) from 0.01 to 1 mM. |
10 | ZnFe(PBA)@Mo3C2Tx | Excellent analytical performance with a sensitivity of 818.285 μA mM−1 cm−2 and the limit of detection (LOD) of 1.6 μM (S/N = 3) |
S. No | Sensor Material | Outputs |
---|---|---|
1 | CuS/MoS2 composite sensor | Sensitivity of 252.71 μA mM−1 cm−2, LOD of 1.52 μM for glucose oxidation in alkaline solutions. |
2 | MoS2-GCE interface sensor | Linear range of 0.01–0.20 μM and LOD of 22.08 ng mL−1, suitable for flexible, disposable glucose sensors. |
3 | MoS2-based FET | Sensitivity of 260.75 mA mM−1, LOD of 300 nM, fast response time (<1 s), wide detection range (300 nM–30 mM). |
4 | OECT with MoS2 nanosheets | LOD of 100 nM, significant improvement over non-modified devices. |
5 | NiO-MoS2 hybrid paper electrode | LOD of 10 μM, enzyme-free glucose detection through oxidation at MoS2-NiO hybrid sites. |
S. No | Sensor Material | Outputs |
---|---|---|
1 | BP-based Biosensor | Sensitivity > 500°/RIU, quality factor > 140 for glucose detection, leveraging the unique properties of BP in a cost-effective design. |
2 | BP-gCN Heterostructure | Achieved glucose sensitivity of 4.75 µA mM−1 cm−2, improved electrochemical performance, and integrated into a wearable skin patch for real-time glucose monitoring. |
3 | Bilayer sandwiched TiO2/SiO2 with a BK7 prism and an Ag/Au layer, covered by a BP layer | Sensitivity of 240 deg/RIU and quality factor of 34.7 RIU−1, suitable for glucose detection in urine with a refractive index variation of 10−3. |
4 | PIT-based Biosensor | Sensitivity factor of 2686.5 nm/RIU, FOM of 134.325 RIU−1, excellent performance for glucose detection, enabling early diabetes diagnosis. |
S. No | Sensor Material | Outputs |
---|---|---|
1 | GOx-CdSe/ZnS QDs Sensor | Linear glucose detection ranges of 0.2–10 mM and 2–30 mM, with visual glucose concentration determination Via QD fluorescence. |
2 | CdSe/ZnS Core–Shell QDs Sensor | Fluorescence quenching for glucose detection, demonstrating high sensitivity and suitability for real samples. |
3 | GOx-HRP QD-FRET Probes | Linear detection range of 0–5.0 g/L for glucose, with minimal interference from temperature, pH, and ions. |
4 | Ag NPs-CdSe QDs Sensor | Fluorescence enhancement and quenching with glucose, achieving a detection limit of 1.86 mM. |
5 | CdTe/ZnS QDs for Metabolite Detection | High glucose sensitivity with a detection limit of 0.33 mM and excellent stability. |
6 | CdS QDs in Glucose-Sensitive Microgels | A fluorescence quenching glucose sensor with a range of 1–25 mM glucose. |
S. No | Sensor Material | Outputs |
---|---|---|
1 | Au NCs in Biosensors | Enhance electro-catalytic activity and fluorescence detection for glucose, improving sensitivity and response times. |
2 | Au NCs on MeNTA and PPyNW | Demonstrates better electrocatalytic performance with a broader linear range, LOD limit, and stability against interference. |
3 | Au NC-DENPs | Dual-enzyme NPs offer high sensitivity (18,944 μA/mM cm2) and a low LOD (2.58 nM) for glucose. |
4 | Enzyme-Free GR Electrode Biosensors | Show good stability, sensitivity, and detection limits for glucose, with long-term performance. |
S. No | Sensor Material | Outputs |
---|---|---|
1 | ZnO/Au Hybrid Biosensor | Exhibited high electron transfer, good biocompatibility, and a wide linear range (0.1–33.0 μM) for glucose with a low detection limit of 10 nM. |
2 | ZnO–CoO/rGO Nanocomposite | Showed high conductivity and active sites for multi-functional glucose and H2O2 detection, with sensitivities of 168.7 μA mM−1 cm−2 and 183.3 μA mM−1 cm−2, respectively. |
3 | ZnO/Co3O4/rGO Sensor | Demonstrated high sensitivity (1551.38 μA mM−1.cm−2), low LOD (0.043 μM), and fast response for glucose determination |
4 | CS-CNT85 Biosensor | Featured a fast electron transfer constant and stable performance without interference from physiological substances. |
5 | Pt NPs–CNT–CS/Silica Sensor | Achieved a wide linear range (1.2 × 10−6 to 6.0 × 10−3 M) and fast glucose detection with minimal interference. |
6 | GOx-ZnO/CS Composite Sensor | Showed rapid glucose detection (within 10 s) with a sensitivity of 30.70 μA mM−1.cm−2 and good storage stability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajamohan, R.; Sun, S. Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications. Biosensors 2025, 15, 658. https://doi.org/10.3390/bios15100658
Rajamohan R, Sun S. Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications. Biosensors. 2025; 15(10):658. https://doi.org/10.3390/bios15100658
Chicago/Turabian StyleRajamohan, Rajaram, and Seho Sun. 2025. "Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications" Biosensors 15, no. 10: 658. https://doi.org/10.3390/bios15100658
APA StyleRajamohan, R., & Sun, S. (2025). Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications. Biosensors, 15(10), 658. https://doi.org/10.3390/bios15100658