Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies
Abstract
:1. Introduction
2. Structural Elements of Allergen Microarrays
3. Microarray Substrates
4. Matrices and Methods for Allergen Immobilization
5. Allergens Used in Microarrays
6. Optical Labels for the Detection of Allergen-Specific Antibodies
7. Conclusions
- –
- Solid substrates with nanoengineered surfaces (such as PCs or thin reflective layers for signal amplification) are characterized by minimal autofluorescence and simple, reproducible functionalization procedures. It is also necessary to further develop the technology for producing these nanostructured substrates to reduce the cost of their production and obtain substrates with reproducible structural and other characteristics.
- –
- Matrices for the functionalization of the solid substrate surface should provide permanent immobilization of a sufficient amount of allergens, have a low autofluorescence level, and minimally affect the optical properties and structure of the solid substrate. The main problem is that, due to the different physicochemical properties of the allergens, such as the affinity for immobilization on the surface, the amounts of allergens immobilized on the substrate may vary significantly on different microarrays, and an ideal matrix should have the same immobilization specificity for different allergens.
- –
- Detection can be performed by label-free or label-based techniques. The most popular currently available commercial products are microarrays with fluorescent labels due to their high sensitivity, large dynamic range, and comparatively inexpensive equipment for detection. The most promising techniques combine label-free detection for standardization of the amount of immobilized allergens and the use of optical tags for sIgE detection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutowska-Ślesik, J.; Samoliński, B.; Krzych-Fałta, E. The increase in allergic conditions based on a review of literature. Postep. Dermatol. I. Alergol. 2023, 40, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dribin, T.E.; Schnadower, D.; Spergel, J.M.; Campbell, R.L.; Shaker, M.; Neuman, M.I.; Michelson, K.A.; Capucilli, P.S.; Camargo, C.A., Jr.; Brousseau, D.C.; et al. Severity grading system for acute allergic reactions: A multidisciplinary Delphi study. J. Allergy Clin. Immunol. 2021, 148, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Sudharson, S.; Kalic, T.; Hafner, C.; Breiteneder, H. Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019–03/2021. Allergy 2021, 76, 3359–3373. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.H.; Valenta, R.; Jardetzky, T.; Verhasselt, V.; Durham, S.R.; Würtzen, P.A.; van Neerven, R.J.J. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 2021, 76, 3627–3641. [Google Scholar] [CrossRef] [PubMed]
- Bignardi, D.; Comite, P.; Mori, I.; Ferrero, F.; Fontana, V.; Bruzzone, M.; Mussap, M.; Ciprandi, G. Allergen-specific IgE: Comparison between skin prick test and serum assay in real life. Allergol. Sel. 2019, 3, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Codreanu, F.; Moneret-Vautrin, D.A.; Morisset, M.; Guénard, L.; Rancé, F.; Kanny, G.; Lemerdy, P. The risk of systemic reactions to skin prick-tests using food allergens: CICBAA data and literature review. Eur. Ann. Allergy Clin. Immunol. 2006, 38, 52–54. [Google Scholar] [PubMed]
- Lin, M.S.; Tanner, E.; Lynn, J.; Friday, G.A., Jr. Nonfatal systemic allergic reactions induced by skin testing and immunotherapy. Ann. Allergy 1993, 71, 557–562. [Google Scholar] [PubMed]
- Lockey, R.F.; Benedict, L.M.; Turkeltaub, P.C.; Bukantz, S.C. Fatalities from immunotherapy (IT) and skin testing (ST). J. Allergy Clin. Immunol. 1987, 79, 660–677. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Domínguez, A.; Berings, M.; Rohrbach, A.; Huang, H.J.; Curin, M.; Gevaert, P.; Matricardi, P.M.; Valenta, R.; Vrtala, S. Molecular profiling of allergen-specific antibody responses may enhance success of specific immunotherapy. J. Allergy Clin. Immunol. 2020, 146, 1097–1108. [Google Scholar] [CrossRef]
- Westman, M.; Lupinek, C.; Bousquet, J.; Andersson, N.; Pahr, S.; Baar, A.; Bergström, A.; Holmström, M.; Stjärne, P.; Lødrup Carlsen, K.C.; et al. Early childhood IgE reactivity to pathogenesis-related class 10 proteins predicts allergic rhinitis in adolescence. J. Allergy Clin. Immunol. 2015, 135, 1199–1206. [Google Scholar] [CrossRef]
- Pfundt, R.; Kwiatkowski, K.; Roter, A.; Shukla, A.; Thorland, E.; Hockett, R.; DuPont, B.; Fung, E.T.; Chaubey, A. Clinical performance of the CytoScan Dx Assay in diagnosing developmental delay/intellectual disability. Genet. Med. 2016, 18, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhu, H. Protein Array-based Approaches for Biomarker Discovery in Cancer. Genom. Proteom. Bioinform. 2017, 15, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Dodig-Crnković, T.; Schwenk, J.M.; Tao, S.-C. Current applications of antibody microarrays. Clin. Proteom. 2018, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Song, G.; Bai, Y.; Song, N.; Zhao, J.; Liu, J.; Hu, C. Applications of Protein Microarrays in Biomarker Discovery for Autoimmune Diseases. Front. Immunol. 2021, 12, 645632. [Google Scholar] [CrossRef] [PubMed]
- Pomponi, D.; Bernardi, M.L.; Liso, M.; Palazzo, P.; Tuppo, L.; Rafaiani, C.; Santoro, M.; Labrada, A.; Ciardiello, M.A.; Mari, A.; et al. Allergen micro-bead array for IgE detection: A feasibility study using allergenic molecules tested on a flexible multiplex flow cytometric immunoassay. PLoS ONE 2012, 7, e35697. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J. A novel method of digital ELISA using single molecule amplification enables sub-attomolar detection limits for blood-based proteomics and biomarker measurements. J. Immunol. 2023, 210, 251.13. [Google Scholar] [CrossRef]
- Xu, Q.; Lam, K.S. Protein and Chemical Microarrays-Powerful Tools for Proteomics. J. Biomed. Biotechnol. 2003, 2003, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Gerdtsson, A.S.; Dexlin-Mellby, L.; Delfani, P.; Berglund, E.; Borrebaeck, C.A.; Wingren, C. Evaluation of Solid Supports for Slide- and Well-Based Recombinant Antibody Microarrays. Microarrays 2016, 5, 16. [Google Scholar] [CrossRef]
- Piruska, A.; Nikcevic, I.; Lee, S.H.; Ahn, C.; Heineman, W.R.; Limbach, P.A.; Seliskar, C.J. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab. A Chip. 2005, 5, 1348–1354. [Google Scholar] [CrossRef]
- Cretich, M.; di Carlo, G.; Longhi, R.; Gotti, C.; Spinella, N.; Coffa, S.; Galati, C.; Renna, L.; Chiari, M. High Sensitivity Protein Assays on Microarray Silicon Slides. Anal. Chem. 2009, 81, 5197–5203. [Google Scholar] [CrossRef]
- Cretich, M.; Breda, D.; Damin, F.; Borghi, M.; Sola, L.; ünlü, M.S.; Burastero, S.; Chiari, M. Allergen microarrays on high-sensitivity silicon slides. Anal. Bioanal. Chem. 2010, 398, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Petralia, S.; Vicario, N.; Calabrese, G.; Parenti, R.; Conoci, S. An Advanced, Silicon-Based Substrate for Sensitive Nucleic Acids Detection. Sensors 2018, 18, 3138. [Google Scholar] [CrossRef]
- Tan, Y.; Halsey, J.F.; Tang, T.; Wetering, S.V.; Taine, E.; Cleve, M.V.; Cunningham, B.T. Application of photonic crystal enhanced fluorescence to detection of low serum concentrations of human IgE antibodies specific for a purified cat allergen (Fel D1). Biosens. Bioelectron. 2016, 77, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ukleja-Sokołowska, N.; Lis, K.; Żbikowska-Gotz, M.; Adamczak, R.; Kuźmiński, A.; Bartuzi, Z. Clinical utility of immunological methods based on the singleplex and multiplex ImmunoCap systems for diagnosis of shrimp allergy. J. Int. Med. Res. 2021, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dzoro, S.; Mittermann, I.; Resch-Marat, Y.; Vrtala, S.; Nehr, M.; Hirschl, A.M.; Wikberg, G.; Lundeberg, L.; Johansson, C.; Scheynius, A.; et al. House dust mites as potential carriers for IgE sensitization to bacterial antigens. Allergy 2018, 73, 115–124. [Google Scholar] [CrossRef]
- Verardo, D.; Liljedahl, L.; Richter, C.; Agnarsson, B.; Axelsson, U.; Prinz, C.N.; Höök, F.; Borrebaeck, C.A.K.; Linke, H. Fluorescence Signal Enhancement in Antibody Microarrays Using Lightguiding Nanowires. Nanomaterials 2021, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Verardo, D.; Lindberg, F.W.; Anttu, N.; Niman, C.S.; Lard, M.; Dabkowska, A.P.; Nylander, T.; Månsson, A.; Prinz, C.N.; Linke, H. Nanowires for Biosensing: Lightguiding of Fluorescence as a Function of Diameter and Wavelength. Nano Lett. 2018, 18, 4796–4802. [Google Scholar] [CrossRef]
- Verardo, D.; Agnarsson, B.; Zhdanov, V.P.; Höök, F.; Linke, H. Single-Molecule Detection with Lightguiding Nanowires: Determination of Protein Concentration and Diffusivity in Supported Lipid Bilayers. Nano Lett. 2019, 19, 6182–6191. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.-X.; Huo, R.-P.; Song, X.-L.; Liu, Q.-L.; Jiang, Y.; Li, Y.-H.; Dong, L.-L.; Cheng, J.-X. Fluorescence enhancement of surface plasmon coupled emission by Au nanobipyramids and its modulation effect on multi-wavelength radiation. Anal. Chim. Acta 2023, 1271, 341460. [Google Scholar] [CrossRef]
- Yuk, J.S.; McDonagh, C.; MacCraith, B.D. Demonstration of a surface plasmon-coupled emission (SPCE)-based immunoassay in the absence of a spacer layer. Anal. Bioanal. Chem. 2010, 398, 1947–1954. [Google Scholar] [CrossRef]
- Monroe, M.R.; Reddington, A.P.; Collins, A.D.; LaBoda, C.; Cretich, M.; Chiari, M.; Little, F.F.; Ünlü, M.S. Multiplexed Method to Calibrate and Quantitate Fluorescence Signal for Allergen-Specific IgE. Anal. Chem. 2011, 83, 9485–9491. [Google Scholar] [CrossRef] [PubMed]
- Avci, O.; Ünlü, N.L.; Özkumur, A.Y.; Ünlü, M.S. Interferometric Reflectance Imaging Sensor (IRIS)—A Platform Technology for Multiplexed Diagnostics and Digital Detection. Sensors 2015, 15, 17649–17665. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.J.; Campana, R.; Akinfenwa, O.; Curin, M.; Sarzsinszky, E.; Karsonova, A.; Riabova, K.; Karaulov, A.; Niespodziana, K.; Elisyutina, O.; et al. Microarray-Based Allergy Diagnosis: Quo Vadis? Front. Immunol. 2020, 11, 594978. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.I.; Tan, Y.; Shamimuzzaman, M.; George, S.; Cunningham, B.T.; Vodkin, L. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon-substrate photonic crystal protein arrays. Plant Physiol. 2015, 167, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Pokhriyal, A.; Lu, M.; Chaudhery, V.; Huang, C.S.; Schulz, S.; Cunningham, B.T. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection. Opt. Express 2010, 18, 24793–24808. [Google Scholar] [CrossRef] [PubMed]
- Nijdam, A.J.; Zianni, M.R.; Herderick, E.E.; Cheng, M.M.; Prosperi, J.R.; Robertson, F.A.; Petricoin, E.F.; Liotta, L.A.; Ferrari, M. Application of physicochemically modified silicon substrates as reverse-phase protein microarrays. J. Proteome Res. 2009, 8, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Tortajada-Genaro, L.A.; Casañ-Raga, N.; Mas, S.; Ibañez-Echevarria, E.; Morais, S.; Maquieira, Á. Reversed-phase allergen microarrays on optical discs for multiplexed diagnostics of food allergies. Microchim. Acta 2023, 190, 166. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.Y.; Heimburg-Molinaro, J.; Cummings, R.D. Tools for generating and analyzing glycan microarray data. Beilstein J. Org. Chem. 2020, 16, 2260–2271. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zheng, Y.; Liu, S.; Liu, G.; Li, Z.; Dong, W. Comparison of the sensitivity of Western blotting between PVDF and NC membranes. Sci. Rep. 2021, 11, 12022. [Google Scholar] [CrossRef]
- Fici, D.A.; McCormick, W.; Brown, D.W.; Herrmann, J.E.; Kumar, V.; Awdeh, Z.L. A protein multiplex microarray substrate with high sensitivity and specificity. J. Immunol. Methods 2010, 363, 60–66. [Google Scholar] [CrossRef]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef]
- Feng, B.; Huang, S.; Ge, F.; Luo, Y.; Jia, D.; Dai, Y. 3D antibody immobilization on a planar matrix surface. Biosens. Bioelectron. 2011, 28, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Feyzkhanova, G.U.; Filippova, M.A.; Talibov, V.O.; Dementieva, E.I.; Maslennikov, V.V.; Reznikov, Y.P.; Offermann, N.; Zasedatelev, A.S.; Rubina, A.Y.; Fooke-Achterrath, M. Development of hydrogel biochip for in vitro allergy diagnostics. J. Immunol. Methods 2014, 406, 51–57. [Google Scholar] [CrossRef]
- Jeon, H.; Jung, J.H.; Kim, Y.; Kwon, Y.; Kim, S.T. Allergen Microarrays for In Vitro Diagnostics of Allergies: Comparison with ImmunoCAP and AdvanSure. Ann. Lab. Med. 2018, 38, 338–347. [Google Scholar] [CrossRef]
- Kalli, M.; Blok, A.; Jiang, L.; Starr, N.; Alcocer, M.J.C.; Falcone, F.H. Development of a protein microarray-based diagnostic chip mimicking the skin prick test for allergy diagnosis. Sci. Rep. 2020, 10, 18208. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhu, X.; Landry, J.P.; Cui, Z.; Li, Q.; Dang, Y.; Mi, L.; Zheng, F.; Fei, Y. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry. Sensors 2016, 16, 378. [Google Scholar] [CrossRef]
- Suzuki, K.; Hiyoshi, M.; Tada, H.; Bando, M.; Ichioka, T.; Kamemura, N.; Kido, H. Allergen diagnosis microarray with high-density immobilization capacity using diamond-like carbon-coated chips for profiling allergen-specific IgE and other immunoglobulins. Anal. Chim. Acta 2011, 706, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Ravi, S.; Krishnamurthy, V.R.; Caves, J.M.; Haller, C.A.; Chaikof, E.L. Maleimide-thiol coupling of a bioactive peptide to an elastin-like protein polymer. Acta Biomater. 2012, 8, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Ströhle, G.; Li, H. Comparison of blocking reagents for antibody microarray-based immunoassays on glass and paper membrane substrates. Anal. Bioanal. Chem. 2023, 415, 1967–1977. [Google Scholar] [CrossRef]
- Li, B.W.; Zhang, Y.; Wang, Y.C.; Xue, Y.; Nie, X.Y. Rapid Fabrication of Protein Microarrays via Autogeneration and on-Chip Purification of Biotinylated Probes. ACS Synth. Biol. 2020, 9, 2267–2273. [Google Scholar] [CrossRef]
- Chatterjee, D.K.; Sitaraman, K.; Baptista, C.; Hartley, J.; Hill, T.M.; Munroe, D.J. Protein microarray on-demand: A novel protein microarray system. PLoS ONE 2008, 3, e3265. [Google Scholar] [CrossRef] [PubMed]
- Kilb, N.; Burger, J.; Roth, G. Protein microarray generation by in situ protein expression from template DNA. Eng. Life Sci. 2014, 14, 352–364. [Google Scholar] [CrossRef]
- Ohyama, K.; Omura, K.; Ito, Y. A Photo-immobilized Allergen Microarray for Screening of Allergen-specific IgE. Allergol. Int. 2005, 54, 627–631. [Google Scholar] [CrossRef]
- Heffler, E.; Puggioni, F.; Peveri, S.; Montagni, M.; Canonica, G.W.; Melioli, G. Extended IgE profile based on an allergen macroarray: A novel tool for precision medicine in allergy diagnosis. World Allergy Organ. J. 2018, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Guilleaume, B.; Buness, A.; Schmidt, C.; Klimek, F.; Moldenhauer, G.; Huber, W.; Arlt, D.; Korf, U.; Wiemann, S.; Poustka, A. Systematic comparison of surface coatings for protein microarrays. Proteomics 2005, 5, 4705–4712. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, R.G. Microarray Technology Applied to Human Allergic Disease. Microarrays 2017, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- Altmann, F. Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo J. Int. 2016, 25, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Buzzulini, F.; Da Re, M.; Scala, E.; Martelli, P.; Conte, M.; Brusca, I.; Villalta, D. Evaluation of a new multiplex assay for allergy diagnosis. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 493, 73–78. [Google Scholar] [CrossRef]
- Hayat, S.M.G.; Farahani, N.; Golichenari, B.; Sahebkar, A. Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know. Curr. Pharm. Des. 2018, 24, 718–725. [Google Scholar] [CrossRef]
- Mattanovich, D.; Branduardi, P.; Dato, L.; Gasser, B.; Sauer, M.; Porro, D. Recombinant protein production in yeasts. Methods Mol. Biol. 2012, 824, 329–358. [Google Scholar] [CrossRef]
- Wallner, M.; Gruber, P.; Radauer, C.; Maderegger, B.; Susani, M.; Hoffmann-Sommergruber, K.; Ferreira, F. Lab scale and medium scale production of recombinant allergens in Escherichia coli. Methods 2004, 32, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, M.; Alcocer, M. Recombinant Allergens Production in Yeast. Methods Mol. Biol. 2017, 1592, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G.; Gadermaier, G.; Pertl, H.; Siegert, M.; Oksman-Caldentey, K.M.; Ritala, A.; Himly, M.; Obermeyer, G.; Ferreira, F. Production of recombinant allergens in plants. Phytochem. Rev. Proc. Phytochem. Soc. Eur. 2008, 7, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, U.; Gattringer, M.; Farkas, A.M.; Hock, K.; Pilat, N.; Iacomini, J.; Valenta, R.; Wekerle, T. The site of allergen expression in hematopoietic cells determines the degree and quality of tolerance induced through molecular chimerism. Eur. J. Immunol. 2013, 43, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xu, J.Y.; Hu, H.; Ye, B.C.; Tan, M. Systematic Proteomic Analysis of Protein Methylation in Prokaryotes and Eukaryotes Revealed Distinct Substrate Specificity. Proteomics 2018, 18, 1700300. [Google Scholar] [CrossRef]
- VanDrisse, C.M.; Escalante-Semerena, J.C. Protein Acetylation in Bacteria. Annu. Rev. Microbiol. 2019, 73, 111–132. [Google Scholar] [CrossRef] [PubMed]
- Macek, B.; Gnad, F.; Soufi, B.; Kumar, C.; Olsen, J.V.; Mijakovic, I.; Mann, M. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell. Proteom. MCP 2008, 7, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Baneyx, F.; Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 2004, 22, 1399–1408. [Google Scholar] [CrossRef]
- Jhamb, K.; Sahoo, D.K. Production of soluble recombinant proteins in Escherichia coli: Effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour. Technol. 2012, 123, 135–143. [Google Scholar] [CrossRef]
- Grossman, T.H.; Kawasaki, E.S.; Punreddy, S.R.; Osburne, M.S. Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 1998, 209, 95–103. [Google Scholar] [CrossRef]
- Oganesyan, N.; Ankoudinova, I.; Kim, S.H.; Kim, R. Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization. Protein Expr. Purif. 2007, 52, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Semisotnov, G.V.; Rodionova, N.A.; Razgulyaev, O.I.; Uversky, V.N.; Gripas’, A.F.; Gilmanshin, R.I. Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 1991, 31, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876–2890. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V. Affinity Tags for Protein Purification. Curr. Protein Pept. Sci. 2020, 21, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Nag, N.; Khan, H.; Tripathi, T. Chapter 1—Strategies to improve the expression and solubility of recombinant proteins in E. coli. In Advances in Protein Molecular and Structural Biology Methods; Tripathi, T., Dubey, V.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–12. [Google Scholar]
- Sequeira, A.F.; Turchetto, J.; Saez, N.J.; Peysson, F.; Ramond, L.; Duhoo, Y.; Blémont, M.; Fernandes, V.O.; Gama, L.T.; Ferreira, L.M.A.; et al. Gene design, fusion technology and TEV cleavage conditions influence the purification of oxidized disulphide-rich venom peptides in Escherichia coli. Microb. Cell Factories 2017, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Jenny, R.J.; Mann, K.G.; Lundblad, R.L. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr. Purif. 2003, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haavik, S.; Paulsen, B.S.; Wold, J.K. Purification of a basic glycoprotein allergen from pollen of timothy by high-performance liquid chromatography. J. Chromatogr. 1985, 321, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Sewekow, E.; Kessler, L.C.; Seidel-Morgenstern, A.; Rothkötter, H.J. Isolation of soybean protein P34 from oil bodies using hydrophobic interaction chromatography. BMC Biotechnol. 2008, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Portnoy, J.; Olson, I.; Pacheco, F.; Barnes, C. Affinity purification of a major Alternaria allergen using a monoclonal antibody. Ann. Allergy 1990, 65, 109–114. [Google Scholar]
- Laffer, S.; Hogbom, E.; Roux, K.H.; Sperr, W.R.; Valent, P.; Bankl, H.C.; Vangelista, L.; Kricek, F.; Kraft, D.; Grönlund, H.; et al. A molecular model of type I allergy: Identification and characterization of a nonanaphylactic anti-human IgE antibody fragment that blocks the IgE-FcepsilonRI interaction and reacts with receptor-bound IgE. J. Allergy Clin. Immunol. 2001, 108, 409–416. [Google Scholar] [CrossRef]
- You, P.Y.; Li, F.C.; Liu, M.H.; Chan, Y.H. Colorimetric and Fluorescent Dual-Mode Immunoassay Based on Plasmon-Enhanced Fluorescence of Polymer Dots for Detection of PSA in Whole Blood. ACS Appl. Mater. Interfaces 2019, 11, 9841–9849. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, S.J.; Petchpud, W.N.; Hui, A.; McLaughlin, C.S. Development of a sensitive, colorometric microarray assay for allergen-responsive human IgE. J. Immunol. Methods 2005, 300, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Wassmann-Otto, A.; Heratizadeh, A.; Wichmann, K.; Werfel, T. Microarray Analysis Confirms ImmunoCAP-Fluorescence Enzyme Immunoassay Results on Specific IgE in Patients with Atopic Dermatitis and Suspected Birch Pollen-Related Food Allergy. Int. Arch. Allergy Immunol. 2022, 183, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Hormsombut, T.; Rijiravanich, P.; Surareungchai, W.; Kalasin, S. Highly sensitive and selective antibody microarrays based on a Cy5-antibody complexes coupling ES-biochip for E. coli and Salmonella detection. RSC Adv. 2022, 12, 24760–24768. [Google Scholar] [CrossRef] [PubMed]
- Durbin, S.V.; Wright, W.S.; Gildersleeve, J.C. Development of a Multiplex Glycan Microarray Assay and Comparative Analysis of Human Serum Anti-Glycan IgA, IgG, and IgM Repertoires. ACS Omega 2018, 3, 16882–16891. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.H., 2nd; Hargrave, A.; Morgan, A.; Kilmer, G.; Hommema, E.; Nahrahari, J.; Webb, B.; Wiese, R. Antibody microarray analysis of inflammatory mediator release by human leukemia T-cells and human non small cell lung cancer cells. J. Biomol. Tech. JBT 2007, 18, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Westwood, M.; Ramaekers, B.; Lang, S.; Armstrong, N.; Noake, C.; de Kock, S.; Joore, M.; Severens, J.; Kleijnen, J. ImmunoCAP® ISAC and Microtest for multiplex allergen testing in people with difficult to manage allergic disease: A systematic review and cost analysis. Health Technol. Assess. 2016, 20, 1–178. [Google Scholar] [CrossRef] [PubMed]
- Popescu, F.D.; Vieru, M. Precision medicine allergy immunoassay methods for assessing immunoglobulin E sensitization to aeroallergen molecules. World J. Methodol. 2018, 8, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Lupinek, C.; Wollmann, E.; Baar, A.; Banerjee, S.; Breiteneder, H.; Broecker, B.M.; Bublin, M.; Curin, M.; Flicker, S.; Garmatiuk, T.; et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: The MeDALL allergen-chip. Methods 2014, 66, 106–119. [Google Scholar] [CrossRef]
- Lis, K.; Bartuzi, Z. Selected Technical Aspects of Molecular Allergy Diagnostics. Curr. Issues Mol. Biol. 2023, 45, 5481–5493. [Google Scholar] [CrossRef]
- El-Haibi, C.P.; Singh, R.; Gupta, P.; Sharma, P.K.; Greenleaf, K.N.; Singh, S.; Lillard, J.W., Jr. Antibody Microarray Analysis of Signaling Networks Regulated by Cxcl13 and Cxcr5 in Prostate Cancer. J. Proteom. Bioinform. 2012, 5, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Louneva, N.; Cao, K.; Wang, L.S.; Han, L.Y.; Wolk, D.A.; Negash, S.; Leurgans, S.E.; Schneider, J.A.; Buchman, A.S.; et al. Cellular, synaptic, and biochemical features of resilient cognition in Alzheimer’s disease. Neurobiol. Aging 2013, 34, 157–168. [Google Scholar] [CrossRef]
- Feyzkhanova, G.; Voloshin, S.; Smoldovskaya, O.; Arefieva, A.; Filippova, M.; Barsky, V.; Pavlushkina, L.; Butvilovskaya, V.; Tikhonov, A.; Reznikov, Y.; et al. Development of a microarray-based method for allergen-specific IgE and IgG4 detection. Clin. Proteom. 2017, 14, 1–13. [Google Scholar] [CrossRef]
- Dottorini, T.; Sole, G.; Nunziangeli, L.; Baldracchini, F.; Senin, N.; Mazzoleni, G.; Proietti, C.; Balaci, L.; Crisanti, A. Serum IgE reactivity profiling in an asthma affected cohort. PLoS ONE 2011, 6, e22319. [Google Scholar] [CrossRef]
- Williams, P.; Önell, A.; Baldracchini, F.; Hui, V.; Jolles, S.; El-Shanawany, T. Evaluation of a novel automated allergy microarray platform compared with three other allergy test methods. Clin. Exp. Immunol. 2016, 184, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rousserie, G.; Sukhanova, A.; Even-Desrumeaux, K.; Fleury, F.; Chames, P.; Baty, D.; Oleinikov, V.; Pluot, M.; Cohen, J.H.; Nabiev, I. Semiconductor quantum dots for multiplexed bio-detection on solid-state microarrays. Crit. Rev. Oncol. Hematol. 2010, 74, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Linkov, P.A.; Vokhmintcev, K.V.; Samokhvalov, P.S.; Nabiev, I.R. Ultrasmall quantum dots for fluorescent bioimaging in vivo and in vitro. Opt. Spectrosc. 2017, 122, 8–11. [Google Scholar] [CrossRef]
- Grazon, C.; Chern, M.; Lally, P.; Baer, R.C.; Fan, A.; Lecommandoux, S.; Klapperich, C.; Dennis, A.M.; Galagan, J.E.; Grinstaff, M.W. The quantum dot vs. organic dye conundrum for ratiometric FRET-based biosensors: Which one would you chose? Chem. Sci. 2022, 13, 6715–6731. [Google Scholar] [CrossRef]
- Slavica, B. Applicability of Quantum Dots in Biomedical Science. In Ionizing Radiation Effects and Applications; Boualem, D., Ed.; IntechOpen: Rijeka, Croatia, 2017; pp. 21–39. [Google Scholar]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775. [Google Scholar] [CrossRef]
- Giraud, G.; Schulze, H.; Bachmann, T.T.; Campbell, C.J.; Mount, A.R.; Ghazal, P.; Khondoker, M.R.; Ross, A.J.; Ember, S.W.J.; Ciani, I.; et al. Fluorescence lifetime imaging of quantum dot labeled DNA microarrays. Int. J. Mol. Sci. 2009, 10, 1930–1941. [Google Scholar] [CrossRef]
- Montón, H.; Nogués, C.; Rossinyol, E.; Castell, O.; Roldán, M. QDs versus Alexa: Reality of promising tools for immunocytochemistry. J. Nanobiotechnol. 2009, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Clapp, A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 2011, 11, 11036–11055. [Google Scholar] [CrossRef] [PubMed]
- Hezinger, A.F.; Tessmar, J.; Göpferich, A. Polymer coating of quantum dots--a powerful tool toward diagnostics and sensorics. Eur. J. Pharm. Biopharm. 2008, 68, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, P.; Samokhvalov, P.; Sukhanova, A.; Nabiev, I. Biosensors Based on Inorganic Composite Fluorescent Hydrogels. Nanomaterials 2023, 13, 1748. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Udaka, H.; Fukuda, T. Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies. J. Pharm. Biomed. Anal. 2017, 143, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Najib, M.; Selvam, K.; Khalid, M.F.; Ozsoz, M.; Aziah, I. Quantum Dot-Based Lateral Flow Immunoassay as Point-of-Care Testing for Infectious Diseases: A Narrative Review of Its Principle and Performance. Diagnostics 2022, 12, 2158. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, P.; Nifontova, G.; Samokhvalov, P.; Karaulov, A.; Sukhanova, A.; Nabiev, I. Nontoxic Fluorescent Nanoprobes for Multiplexed Detection and 3D Imaging of Tumor Markers in Breast Cancer. Pharmaceutics 2023, 15, 946. [Google Scholar] [CrossRef] [PubMed]
- Uprety, B.; Abrahamse, H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front. Chem. 2022, 10, 946574. [Google Scholar] [CrossRef] [PubMed]
- Zanetti-Domingues, L.C.; Tynan, C.J.; Rolfe, D.J.; Clarke, D.T.; Martin-Fernandez, M. Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS ONE 2013, 8, e74200. [Google Scholar] [CrossRef]
- Liang, R.Q.; Li, W.; Li, Y.; Tan, C.Y.; Li, J.X.; Jin, Y.X.; Ruan, K.C. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res. 2005, 33, e17. [Google Scholar] [CrossRef]
- Zhou, J.; Belov, L.; Huang, P.Y.; Shin, J.-S.; Solomon, M.J.; Chapuis, P.H.; Bokey, L.; Chan, C.; Clarke, C.; Clarke, S.J.; et al. Surface antigen profiling of colorectal cancer using antibody microarrays with fluorescence multiplexing. J. Immunol. Methods 2010, 355, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Lafont, F.; Ayadi, N.; Charlier, C.; Weigel, P.; Nabiev, I.; Benhelli-Mokrani, H.; Fleury, F. Assessment of DNA-PKcs kinase activity by quantum dot-based microarray. Sci. Rep. 2018, 8, 10968. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; D’Aurelio, R.; Piekarska, M.; Temblay, J.; Pleasants, M.; Trinh, L.; Rodgers, T.L.; Tothill, I.E. Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors 2018, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.A.; Peczuh, M.W.; Kumar, C.V.; Rusling, J.F. Ultrasensitive carbohydrate-peptide SPR imaging microarray for diagnosing IgE mediated peanut allergy. Analyst 2014, 139, 5728–5733. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Kang, T.; Jin, G. Joint detection of tumor markers with imaging ellipsometry biosensor. Thin Solid. Film. 2014, 571, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, R.L.; Laguna, M.F.; Fernández, F.; Santamaria, B.; Sanza, F.J.; Maigler, M.V.; Álvarez-Millán, J.J.; Canalejas-Tejero, V.; Holgado, M. A Proof-of-Concept of Label-Free Biosensing System for Food Allergy Diagnostics in Biophotonic Sensing Cells: Performance Comparison with ImmunoCAP. Sensors 2018, 18, 2686. [Google Scholar] [CrossRef]
- Kozak, K.R.; Amneus, M.W.; Pusey, S.M.; Su, F.; Luong, M.N.; Luong, S.A.; Reddy, S.T.; Farias-Eisner, R. Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: Potential use in diagnosis and prognosis. Proc. Natl. Acad. Sci. USA 2003, 100, 12343–12348. [Google Scholar] [CrossRef]
Substrate Material | Substrate Structure | Characteristics | Ref. |
---|---|---|---|
Glass vs. silicon with a SiO2 layer | Silicon slide with a 90 nm SiO2 layer |
| [33] |
Silicon slide with a SiO2 layer of a varying thickness (20–150 nm) |
| [20] | |
Silicon slide with an 80 nm SiO2 layer |
| [21] | |
Glass vs. silicon PC | The PC consists of a periodic surface structure (period, 360 nm; height, 40 nm) fabricated in a SiO2 layer (thickness, 800 nm) on a silicon substrate and then coated with a thin film of TiO2 |
| [34] |
Glass vs. quartz PC | The PC device consists of a periodic surface structure (period, 400 nm; height, 40 nm) fabricated in a quartz substrate and then coated with a thin film of TiO2 (thickness, 160 nm) |
| [35] |
Nitrocellulose-coated glass vs. physicochemically modified silicon substrate | Silicon roughening by reactive ion etching and chemical modification by MPTMS |
| [36] |
Immobilization Method | Matrix | Characteristics |
---|---|---|
2D adsorption | Polycarbonate, PVDF, NC, etc. | Non-permanent immobilization; background signal may be enhanced |
3D adsorption | Hydrogels, nanoparticles, etc. | High allergen content; good preservation of allergen conformation |
Covalent bonding | Maleimide, NHS, carboxylic esters, etc. | Irreversible immobilization, but allergen conformation and activity may be altered |
Affinity interaction | Glutathione, Ni2+-NTA, etc. | Oriented conjugation is possible, but allergen amount is poorly controlled |
Allergen Type | Advantages | Drawbacks |
---|---|---|
Recombinant allergens | Possibility of unlimited production; lower cost of obtaining compared to purified native allergens (in some cases); precision control of the amount to be printed on the microarray | Limited number of isolated and characterized allergens; possible problems with activity due to PTM and folding |
Purified native allergens | Almost guaranteed biological activity; stable characteristics of stock solutions; precision control of the amount to be printed on the microarray | Difficulties with isolation and purification; limited sources |
Allergen extracts | High biological activity (in most cases); possibility of including currently unidentified allergens | Variability of allergen content in different extracts; possible contaminations; limited sources; possible problems with immobilization; reduced number of immobilized allergens and, hence, decreased detection sensitivity. |
Label-Free Technique | Measurement Principle | Description | Ref. |
---|---|---|---|
SPR | Detection of changes in the refractive index of the detection area. When molecules are bound to the metal surface, the refractive index increases, thus changing the angle of incidence. | The limit of detection of a β-lactoglobulin SPR sensor is 0.164 µg/mL. | [115] |
SPRi | SPRi is used to monitor changes in the refractive index and shifts of the position of the resonance angle as a result of a surface binding event or mass accumulation. SPRi monitors the variations in reflectivity occurring at a fixed angle (working angle) with time. | To enhance the SPRi signal, magnetic beads coupled with secondary anti-IgE antibodies are used. As a result, IgE detection limits of 0.5–1 pg/mL have been achieved. | [116] |
Ellipsometry | The change in the polarization of light reflected from the sample surface is measured from the amplitude ratio of two perpendicularly polarized beams. | Simultaneous quantitative detection of three tumor markers has been performed using an ellipsometry biosensor. A 2–5 ng/mL limit of detection has been achieved. | [117] |
Interferometry | The read-out platform employs a label-free format by reading the interferometric signal of each of the BICELLs and measuring the binding events that take place on them. | The improved nitrocellulose-based sensing surface of BICELLs ensures a limit of detection as low as 0.7 kU/L, close to that of ImmunoCAP® (0.35 kU/L). | [118] |
Mass spectrometry | A nitrogen laser desorbs the protein/energy-absorbing molecule mixture from the array surface, enabling the detection of the proteins captured by the array by mass spectroscopy methods. | New biomarkers can be discovered in complicated samples. However, the method is not quantitative. | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolov, P.; Evsegneeva, I.; Karaulov, A.; Sukhanova, A.; Nabiev, I. Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies. Biosensors 2024, 14, 353. https://doi.org/10.3390/bios14070353
Sokolov P, Evsegneeva I, Karaulov A, Sukhanova A, Nabiev I. Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies. Biosensors. 2024; 14(7):353. https://doi.org/10.3390/bios14070353
Chicago/Turabian StyleSokolov, Pavel, Irina Evsegneeva, Alexander Karaulov, Alyona Sukhanova, and Igor Nabiev. 2024. "Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies" Biosensors 14, no. 7: 353. https://doi.org/10.3390/bios14070353
APA StyleSokolov, P., Evsegneeva, I., Karaulov, A., Sukhanova, A., & Nabiev, I. (2024). Allergen Microarrays and New Physical Approaches to More Sensitive and Specific Detection of Allergen-Specific Antibodies. Biosensors, 14(7), 353. https://doi.org/10.3390/bios14070353