Exploring the Application of Terahertz Metamaterials Based on Metallic Strip Structures in Detection of Reverse Micelles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reverse Micelles
2.2. THz Spectroscopy
2.3. Design of Metamaterial Structure
3. Results
3.1. Effect of the Length of Metallic Strips
3.2. Effect of the Rotation of Metallic Strips
3.3. THz Spectroscopy Detection of Refractive Index Liquids Using Metamaterial Sensor
3.4. THz Spectroscopy Detection of Integrating Metamaterial Sensor and Reverse Micelles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, S.; Xu, X.; Hu, F.; Chen, Z.; Wang, Y.; Zhang, L.; Peng, Z.; Li, D.; Zeng, L.; Chen, Y. Using antibody modified terahertz metamaterial biosensor to detect concentration of carcinoembryonic antigen. IEEE J. Sel. Top. Quantum Electron. 2020, 27, 6900207. [Google Scholar] [CrossRef]
- Akter, N.; Hasan, M.; Pala, N. A review of THz technologies for rapid sensing and detection of viruses including SARS-CoV-2. Biosensors 2021, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Zhang, Z.; Zhao, X.; Zhang, T. Terahertz spectroscopy and machine learning algorithm for non-destructive evaluation of protein conformation. Opt. Quantum Electron. 2020, 52, 225. [Google Scholar] [CrossRef]
- Tan, H.; Piletic, I.; Fayer, M. Orientational dynamics of water confined on a nanometer length scale in reverse micelles. J. Chem. Phys. 2005, 122, 174501. [Google Scholar] [CrossRef] [PubMed]
- Nazarov, M.; Cherkasova, O.; Shkurinov, A. A comprehensive study of albumin solutions in the extended terahertz frequency range. J. Infrared Millim. Terahertz Waves 2018, 39, 840–853. [Google Scholar] [CrossRef]
- Zhang, J.; Mu, N.; Liu, L.; Xie, J.; Feng, H.; Yao, J.; Chen, T.; Zhu, W. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron. 2021, 185, 113241. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Dai, Z.; Fu, Z.; Chen, J.; Wang, F.; Yang, J. Tunable Terahertz Band Notch Filter with Single-Band and Dual-Band Switching Characteristics Based on Metallic Strip Structures. Opt. Commun. 2023, 527, 128975. [Google Scholar] [CrossRef]
- Liu, W.; Dai, Z.; Yang, J.; Sun, Q.; Gong, C.; Zhang, N.; Ueno, K.; Misawa, H. Ultrabroad and angle tunable THz filter based on multiplexed metallic bar resonators. IEEE Photonics Technol. Lett. 2018, 30, 2103–2106. [Google Scholar] [CrossRef]
- Fu, Z.; Dai, Z.; Chen, X.; Chen, J.; Sun, Y.; Yang, J.; Wang, F. Design and application of terahertz metamaterial sensor based on bull’s-eye-shaped resonator in detection of hexadecane. Infrared Phys. Technol. 2024, 137, 105157. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Ying, Y. Mechanisms and applications of terahertz metamaterial sensing: A review. Nanoscale 2017, 9, 13864–13878. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, J.; Yuan, Z.; Lin, Y.; Shang, W.; Chin, L.; Zhang, M. Terahertz Metamaterials for Biosensing Applications: A Review. Biosensors 2023, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Bai, J.; Zhang, S. Low concentration noroxin detection using terahertz spectroscopy combined with metamaterial. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119101. [Google Scholar] [CrossRef] [PubMed]
- Varvdekar, B.; Prabhakant, A.; Krishnan, M. Response of Terahertz Protein Vibrations to Ligand Binding: Calmodulin–Peptide Complexes as a Case Study. J. Chem. Inf. Model. 2022, 62, 1669–1679. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Green, N.; Rotaru, M.; Pu, S. Detecting and identifying DNA via the THz backbone frequency using a metamaterial-based label-free biosensor. Terahertz RF Millim. Submillimeter-Wave Technol. Appl. X 2017, 10103, 211–218. [Google Scholar]
- Zhou, R.; Wang, C.; Huang, Y.; Huang, K.; Wang, Y.; Xu, W.; Xie, L.; Ying, Y. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosens. Bioelectron. 2021, 188, 113336. [Google Scholar] [CrossRef]
- Weisenstein, C.; Richter, M.; Wigger, A.; Bosserhoff, A.; Haring, P. Multifrequency investigation of single-and double-stranded DNA with scalable metamaterial-based THz biosensors. Biosensors 2022, 12, 483. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, J.; de la Chapelle, M.; Huang, G.; Wang, Y.; Zhang, J.; Xu, D.; Yao, J.; Yang, X.; Fu, W. A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification. Biosens. Bioelectron. 2021, 175, 112874. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Yang, S.; Huang, G.; Yang, L.; Zhang, Y.; Tian, H.; Xie, F.; de la Chapelle, M.; Yang, X.; Fu, W. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification. Biosens. Bioelectron. 2021, 188, 113314. [Google Scholar] [CrossRef] [PubMed]
- Niessen, K.; Xu, M.; George, D.; Chen, M.; Ferré-D’Amaré, A.; Snell, E.; Cody, V.; Pace, J.; Schmidt, M.; Markelz, A. Protein and RNA dynamical fingerprinting. Nat. Commun. 2019, 10, 1026. [Google Scholar] [CrossRef]
- Tao, H.; Strikwerda, A.; Liu, M.; Mondia, J.; Ekmekci, E.; Fan, K.; Kaplan, D.; Padilla, W.; Zhang, X.; Averitt, R.; et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl. Phys. Lett. 2010, 97, 261909. [Google Scholar] [CrossRef]
- Shih, K.; Pitchappa, P.; Jin, L.; Chen, C.; Singh, R.; Lee, C. Nanofluidic terahertz metasensor for sensing in aqueous environment. Appl. Phys. Lett. 2018, 113, 071105. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X.; Wang, Y.; Ma, G.; Liu, Y.; Wang, B.; Mao, H. Highly sensitive detection of plant growth regulators by using terahertz time-domain spectroscopy combined with metamaterials. Opt. Express 2021, 29, 36535–36545. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Guan, M.; Xu, M.; Fang, W.; Zhang, Y.; Zhao, C.; Zeng, Y. Design and application of terahertz metamaterial sensor based on DSRRs in clinical quantitative detection of carcinoembryonic antigen. Opt. Express 2020, 28, 16834–16844. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Li, Y.; Zheng, J.; Qiu, J.; Song, J.; Xu, F.; Qin, B. A Novel Method for Carbendazim High-Sensitivity Detection Based on the Combination of Metamaterial Sensor and Machine Learning. Materials 2022, 15, 6093. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, Y.; Zhu, Y.; Gu, W. Sensing Performance of Triple-Band Terahertz Metamaterial Absorber Based on Snowflake-Shaped Resonators. Photonics 2022, 9, 777. [Google Scholar] [CrossRef]
- Park, S.; Ahn, Y. Detection of Polystyrene Microplastic Particles in Water Using Surface-Functionalized Terahertz Microfluidic Metamaterials. Appl. Sci. 2022, 12, 7102. [Google Scholar] [CrossRef]
- Xu, J.; Liao, D.; Gupta, M.; Zhu, Y.; Zhuang, S.; Singh, R.; Chen, L. Terahertz microfluidic sensing with dual-torus toroidal metasurfaces. Adv. Opt. Mater. 2021, 9, 2100024. [Google Scholar] [CrossRef]
- Xu, W.; Xie, L.; Zhu, J.; Tang, L.; Singh, R.; Wang, C.; Ma, Y.; Chen, H.; Ying, Y. Terahertz biosensing with a graphenemetamaterial heterostructure platform. Carbon 2019, 141, 247–252. [Google Scholar] [CrossRef]
- Liu, J.; Fan, L.; Su, J.; Yang, S.; Luo, H.; Shen, X.; Ding, F. Study on a terahertz biosensor based on graphene-metamaterial. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 280, 121527. [Google Scholar] [CrossRef]
- Cao, L.; Jia, S.; Thomson, M.; Meng, F.; Roskos, H. Can a terahertz metamaterial sensor be improved by ultra-strong coupling with a high-Q photonic resonator? Opt. Express 2022, 30, 13659–13672. [Google Scholar] [CrossRef]
- Bayram, I.; Decker, E. Underlying mechanisms of synergistic antioxidant interactions during lipid oxidation. Trends Food Sci. Technol. 2023, 133, 219–230. [Google Scholar] [CrossRef]
- Mallamace, F.; Corsaro, C.; Baglioni, P.; Fratini, E.; Chen, S. The dynamical crossover phenomenon in bulk water, confined water and protein hydration water. J. Phys. Condens. Matter 2012, 24, 064103. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Huang, X.; Zhou, R.; Berne, B. Dynamics of water confined in the interdomain region of a multidomain protein. J. Phys. Chem. B 2006, 110, 3704–3711. [Google Scholar] [CrossRef]
- Rasaiah, J.; Garde, S.; Hummer, G. Water in nonpolar confinement: From nanotubes to proteins and beyond. Annu. Rev. Phys. Chem. 2008, 59, 713–740. [Google Scholar] [CrossRef] [PubMed]
- Arsene, M.; Răut, I.; Călin, M.; Jecu, M.; Doni, M.; Gurban, A. Versatility of reverse micelles: From biomimetic models to nano (bio) sensor design. Processes 2021, 9, 345. [Google Scholar] [CrossRef]
- Luisi, P.; Giomini, M.; Pileni, M.; Robinson, B. Reverse micelles as hosts for proteins and small molecules. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 1988, 947, 209–246. [Google Scholar] [CrossRef]
- Pileni, M. Reverse micelles as microreactors. J. Phys. Chem. 1993, 97, 6961–6973. [Google Scholar] [CrossRef]
- Silber, J.; Biasutti, A.; Abuin, E.; Lissi, E. Interactions of small molecules with reverse micelles. Adv. Colloid Interface Sci. 1999, 82, 189–252. [Google Scholar] [CrossRef]
- Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S. Terahertz absorption spectroscopy of protein-containing reverse micellar solution. Chem. Phys. Lett. 2012, 519, 105–109. [Google Scholar] [CrossRef]
- Yang, J.; Tang, C.; Wang, Y.; Chang, C.; Zhang, J.; Hu, J.; Lü, J. The terahertz dynamics interfaces to ion–lipid interaction confined in phospholipid reverse micelles. Chem. Commun. 2019, 55, 15141–15144. [Google Scholar] [CrossRef]
- Tang, C.; Yang, J.; Wang, Y.; Cheng, J.; Li, X.; Chang, C.; Hu, J.; Lü, J. Integrating terahertz metamaterial and water nanodroplets for ultrasensitive detection of amyloid β aggregates in liquids. Sens. Actuators B Chem. 2021, 329, 129113. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Qian, J.; Wang, Y.; Li, X.; Lü, J. Terahertz refractive phenotype of living cells. Front. Bioeng. Biotechnol. 2023, 10, 1105249. [Google Scholar] [CrossRef] [PubMed]
- Razzari, L.; Toma, A.; Shalaby, M.; Clerici, M.; Zaccaria, R.; Liberale, C.; Marras, S.; Al-Naib, I.; Das, G.; Angelis, F.; et al. Extremely large extinction efficiency and field enhancement in terahertz resonant dipole nanoantennas. Opt. Express 2011, 9, 26088–26094. [Google Scholar] [CrossRef] [PubMed]
- Razzari, L.; Toma, A.; Clerici, M.; Shalaby, M.; Das, G.; Liberale, C.; Chirumamilla, M.; Zaccaria, R.; Angelis, F.; Peccianti, M.; et al. Terahertz dipole nanoantenna arrays: Resonance characteristics. Plasmonics 2013, 8, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Novotny, L. Effective Wavelength Scaling for Optical Antennas. Phys. Rev. Lett. 2007, 98, 266802. [Google Scholar] [CrossRef]
- Ueno, K.; Nozawa, S.; Misawa, H. Surface-enhanced terahertz spectroscopy using gold rod structures resonant with terahertz waves. Opt. Express 2015, 23, 28584–28592. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Chen, J.; Chen, X.; Sun, Y.; Wang, F.; Yang, J. Exploring the Application of Terahertz Metamaterials Based on Metallic Strip Structures in Detection of Reverse Micelles. Biosensors 2024, 14, 338. https://doi.org/10.3390/bios14070338
Fu Z, Chen J, Chen X, Sun Y, Wang F, Yang J. Exploring the Application of Terahertz Metamaterials Based on Metallic Strip Structures in Detection of Reverse Micelles. Biosensors. 2024; 14(7):338. https://doi.org/10.3390/bios14070338
Chicago/Turabian StyleFu, Ziqin, Jin Chen, Xiangxue Chen, Yu Sun, Fengchao Wang, and Jing Yang. 2024. "Exploring the Application of Terahertz Metamaterials Based on Metallic Strip Structures in Detection of Reverse Micelles" Biosensors 14, no. 7: 338. https://doi.org/10.3390/bios14070338
APA StyleFu, Z., Chen, J., Chen, X., Sun, Y., Wang, F., & Yang, J. (2024). Exploring the Application of Terahertz Metamaterials Based on Metallic Strip Structures in Detection of Reverse Micelles. Biosensors, 14(7), 338. https://doi.org/10.3390/bios14070338