Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis of Hapten
2.3. Preparation of Antigen
2.4. Preparation of mAb
2.5. Establishment of ic-ELISA Analysis
2.5.1. Determination of Optimum Concentration of Coating Antigen
2.5.2. Determination of Optimum Concentration of mAb
2.5.3. Development of ic-ELISA Standard Curve
2.6. Analysis of Galla Chinensis by ic-ELISA
3. Results and Discussion
3.1. Synthesis and Characterization of Hapten and Antigen
3.2. Production and Characterization of mAb
3.3. Development of ic-ELISA Analysis
3.4. Analysis of Galla Chinensis by ic-ELISA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.-J. Antimelanogenic and Antioxidant Properties of Gallic Acid. Biol. Pharm. Bull. 2007, 30, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Couto, A.G.; Kassuya, C.A.L.; Calixto, J.B.; Petrovick, P.R. Anti-inflammatory, Antiallodynic Effects and Quantitative Analysis of Gallic Acid in Spray Dried Powders from Phyllanthus niruri Leaves, Stems, Roots and Whole Plant. Rev. Bras. Farmacogn. 2013, 23, 124–131. [Google Scholar] [CrossRef]
- Kubo, I.; Fujita, K.; Nihei, K.; Masuoka, N. Non-antibiotic Antibacterial Activity of Dodecyl Gallate. Bioorg. Med. Chem. 2003, 11, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, U.T.; Kekillioglu, A.; Mert, R. Determination of Gallic Acid by Differential Pulse Polarography: Application to Fruit Juices. J. Anal. Chem. 2013, 68, 1064–1069. [Google Scholar] [CrossRef]
- Chikere, C.O.; Hobben, E.; Faisal, N.H.; Kong-Thoo-Lin, P.; Fernandez, C. Electroanalytical Determination of Gallic Acid in Red and White Wine Samples Using Cobalt Oxide Nanoparticles-modified Carbon-paste Electrodes. Microchem. J. 2021, 160, 105668. [Google Scholar] [CrossRef]
- Ng, L.K.; Lafontaine, P.; Harnois, J. Gas Chromatographic-mass Spectrometric Analysis of Acids and Phenols in Distilled Alcohol Beverages-Application of Anion-exchange Disk Extraction Combined with In-vial Elution and Silylation. J. Chromatogr. A 2000, 873, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, Y.; Wang, J.; Hua, J.; Wang, J.; Yang, Y.; Dong, C.; Zhou, Q.; Jiang, Y.; Deng, Y.; et al. Rutin, γ-Aminobutyric Acid, Gallic Acid, and Caffeine Negatively Affect the Sweet-Mellow Taste of Congou Black Tea Infusions. Molecules 2019, 24, 4221. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zheng, Y.; Han, H. Content of Organic Acid in Mango and Its Effect on Digestive Function of Mice and Rats. Food Res. Dev. 2021, 42, 26–30. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Penteado, J.C.P.; Magalhaes, D.; Masini, J.C. Didacyic Experiment on Gas Chaomatography: An Environmental and Analytical Approach. Quim. Nova 2008, 31, 2190–2193. [Google Scholar] [CrossRef]
- Yu, R.; Wang, H.; Fang, Z.; Yan, Z.; Wang, H. Study and Application of the Heavy Metal Ions Rapid Testing Technology. J. Environ. Eng. Technol. 2011, 1, 438–442. [Google Scholar]
- Liang, P.; Dong, P.; Wang, Y.; Sun, A.; Qian, D.; Li, X.; Xin, G. Research Advances of Application of Immunology Technique in Rapid Detection for Food Safety. J. Food Saf. Qual. 2018, 9, 2085–2089. [Google Scholar]
- Gao, L.; Shi, H.; Wen, D.; Guo, M.; Yang, Z.; Zou, H. Simultaneous Determination of Rutin and Gallic Acid in Sesbania spinosa Leaves by High Performance Liquid Chromatography. Phys. Test. Chem. Anal. (Part B Chem. Anal.) 2021, 57, 339–343. [Google Scholar] [CrossRef]
- Huang, X.; Wang, L.; Qin, Y.; Xu, X. Determination of the Content of Gallic Acid, Berberine Hydrochloride, Palmatine Hydrochloride and Forsyth in Ningmitai Capsules by LC-MS. Chin. J. Pharm. Anal. 2018, 38, 979–985. [Google Scholar] [CrossRef]
- Lian, H.; Li, J.; Zhang, C.; Wei, H.; Xiang, G. Electrochemical Detection of Gallic Acid in Green Tea by Zinc Oxide Modified Electrode. South-Cent. Agric. Sci. Technol. 2024, 45, 43–46. [Google Scholar]
- Song, R.; Cheng, Y.; Tian, Y.; Zhang, Z.-J. A Validated Solid-phase Extraction HPLC Method for the Simultaneous Determination of Gallic Acid, Catechin and Epicatechin in Rhubarb Decoction. Chin. J. Nat. Med. 2012, 10, 275–278. [Google Scholar] [CrossRef]
- Alfei, S.; Marengo, B.; Domenicotti, C. Development of a Fast, Low-Cost, Conservative and Ecological Method for Quantifying Gallic Acid in Polymeric Formulations by FTIR Spectroscopy in Solution. Chemistryselect 2020, 5, 4381–4388. [Google Scholar] [CrossRef]
- Zhai, H.; Yang, B.; Huang, Q.; Chen, Z. Rapid Determination of Gallic Acid in Galla Chinensis by Capillary Electrophoresis. Chin. J. Anal. Lab. 2007, 26, 35–37. [Google Scholar]
- Zhao, J. Development and Application of Enzyme-Linked Immunosorbent Assay Based on Specific Monoclonal Antibodies and Nanobodies against Naringenin. Master’s Thesis, Southwest University, El Paso, TX, USA, 2021. [Google Scholar]
- Peng, D.; Wang, Y.; Feng, L.; Cao, G.; Tao, Y.; Liu, Z.; Yuan, Z. Preparation of Broadly Specific Monoclonal Antibodies for Simultaneous Determination of Fluoroquinolone Residues in Eggs. Food Anal. Methods 2016, 9, 3520–3531. [Google Scholar] [CrossRef]
- Cordell, J. Developing Monoclonal Antibodies for Immunohistochemistry. Cells 2022, 11, 243. [Google Scholar] [CrossRef] [PubMed]
Detection Methods | cLOD (mg/L) | Linear Range (mg/L) | Ref. |
---|---|---|---|
HPLC | 0.03 | 0.26–5.18 | [13] |
GC | 0.0025 | 0.50–5.00 | [14] |
DNP | 0.051 | 0.17–8.51 | [4] |
EC | 0.152 | 1.02–111.94 | [15] |
Solid-phase Extraction HPLC (SPE-HPLC) | 4.66 | 4.66–233.00 | [16] |
FTIR | 11.89 | / | [17] |
Capillary Electrophoresis (CE) | 1.00 | 3.00–100.00 | [18] |
Dilution Factor | P/N Value | ||||
---|---|---|---|---|---|
MSZ 1-1 | MSZ 1-2 | MSZ 1-3 | MSZ 1-4 | MSZ 1-5 | |
1/1k | 59.20 | 78.88 | 76.04 | 72.12 | 92.48 |
1/3k | 18.88 | 34.31 | 25.15 | 13.77 | 17.81 |
1/9k | 7.43 | 11.79 | 7.89 | 5.50 | 4.96 |
1/27k | 2.64 | 3.59 | 2.32 | 2.09 | 1.86 |
1/81k | 1.62 | 1.86 | 1.48 | 1.33 | 1.24 |
1/243k | 1.23 | 1.07 | 0.77 | 1.23 | 0.73 |
1/729k | 0.21 | 0.17 | 0.00 | 0.42 | 0.21 |
Dilution Factor | P/N Value | ||||
---|---|---|---|---|---|
MSZ 2-1 | MSZ 2-2 | MSZ 2-3 | MSZ 2-4 | MSZ 2-5 | |
1/1k | 1.76 | 1.60 | 1.48 | 1.56 | 1.08 |
1/3k | 1.15 | 1.27 | 1.12 | 1.08 | 1.04 |
1/9k | 1.53 | 1.26 | 1.33 | 1.45 | 1.04 |
1/27k | 0.77 | 0.85 | 0.73 | 0.69 | 0.65 |
1/81k | 0.50 | 0.39 | 0.36 | 0.29 | 0.25 |
1/243k | 0.08 | 0.13 | 0.17 | 0.13 | 0.17 |
1/729k | 0.07 | 0.12 | 0.15 | 0.11 | 0.14 |
GA Analogs | Cross Reaction Rate (%) |
---|---|
Gallic acid | 100 |
Syringic acid | <0.09 |
Protocatechuic acid | <0.09 |
Benzoic acid | <0.09 |
Caffeic acid | <0.09 |
Ferulic acid | <0.09 |
Eugenol | <0.09 |
Gallicin | <0.09 |
Dilution Factor | Solution Concentration (ng/mL) | Solution Detection Value (ng/mL) | Sample Content (mg/g) | Coefficient of Variation (%) |
---|---|---|---|---|
2 × 104 | 1551.05 | 1618 ± 46 | 324 ± 9 | 2.85 |
5 × 104 | 620.42 | 678 ± 26 | 339 ± 13 | 3.88 |
105 | 310.21 | 328 ± 18 | 328 ± 18 | 5.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Zheng, X.; Tao, R.; Li, L.; Wang, F.; Sun, Y.; Fan, B. Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid. Biosensors 2024, 14, 182. https://doi.org/10.3390/bios14040182
Duan J, Zheng X, Tao R, Li L, Wang F, Sun Y, Fan B. Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid. Biosensors. 2024; 14(4):182. https://doi.org/10.3390/bios14040182
Chicago/Turabian StyleDuan, Jiajing, Xiuxia Zheng, Ran Tao, Long Li, Fengzhong Wang, Yufeng Sun, and Bei Fan. 2024. "Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid" Biosensors 14, no. 4: 182. https://doi.org/10.3390/bios14040182
APA StyleDuan, J., Zheng, X., Tao, R., Li, L., Wang, F., Sun, Y., & Fan, B. (2024). Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid. Biosensors, 14(4), 182. https://doi.org/10.3390/bios14040182