Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis of Hapten
2.3. Preparation of Antigen
2.4. Preparation of mAb
2.5. Establishment of ic-ELISA Analysis
2.5.1. Determination of Optimum Concentration of Coating Antigen
2.5.2. Determination of Optimum Concentration of mAb
2.5.3. Development of ic-ELISA Standard Curve
2.6. Analysis of Galla Chinensis by ic-ELISA
3. Results and Discussion
3.1. Synthesis and Characterization of Hapten and Antigen
3.2. Production and Characterization of mAb
3.3. Development of ic-ELISA Analysis
3.4. Analysis of Galla Chinensis by ic-ELISA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.-J. Antimelanogenic and Antioxidant Properties of Gallic Acid. Biol. Pharm. Bull. 2007, 30, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Couto, A.G.; Kassuya, C.A.L.; Calixto, J.B.; Petrovick, P.R. Anti-inflammatory, Antiallodynic Effects and Quantitative Analysis of Gallic Acid in Spray Dried Powders from Phyllanthus niruri Leaves, Stems, Roots and Whole Plant. Rev. Bras. Farmacogn. 2013, 23, 124–131. [Google Scholar] [CrossRef]
- Kubo, I.; Fujita, K.; Nihei, K.; Masuoka, N. Non-antibiotic Antibacterial Activity of Dodecyl Gallate. Bioorg. Med. Chem. 2003, 11, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, U.T.; Kekillioglu, A.; Mert, R. Determination of Gallic Acid by Differential Pulse Polarography: Application to Fruit Juices. J. Anal. Chem. 2013, 68, 1064–1069. [Google Scholar] [CrossRef]
- Chikere, C.O.; Hobben, E.; Faisal, N.H.; Kong-Thoo-Lin, P.; Fernandez, C. Electroanalytical Determination of Gallic Acid in Red and White Wine Samples Using Cobalt Oxide Nanoparticles-modified Carbon-paste Electrodes. Microchem. J. 2021, 160, 105668. [Google Scholar] [CrossRef]
- Ng, L.K.; Lafontaine, P.; Harnois, J. Gas Chromatographic-mass Spectrometric Analysis of Acids and Phenols in Distilled Alcohol Beverages-Application of Anion-exchange Disk Extraction Combined with In-vial Elution and Silylation. J. Chromatogr. A 2000, 873, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, Y.; Wang, J.; Hua, J.; Wang, J.; Yang, Y.; Dong, C.; Zhou, Q.; Jiang, Y.; Deng, Y.; et al. Rutin, γ-Aminobutyric Acid, Gallic Acid, and Caffeine Negatively Affect the Sweet-Mellow Taste of Congou Black Tea Infusions. Molecules 2019, 24, 4221. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Zheng, Y.; Han, H. Content of Organic Acid in Mango and Its Effect on Digestive Function of Mice and Rats. Food Res. Dev. 2021, 42, 26–30. [Google Scholar] [CrossRef]
- Stalikas, C.D. Extraction, Separation, and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Penteado, J.C.P.; Magalhaes, D.; Masini, J.C. Didacyic Experiment on Gas Chaomatography: An Environmental and Analytical Approach. Quim. Nova 2008, 31, 2190–2193. [Google Scholar] [CrossRef]
- Yu, R.; Wang, H.; Fang, Z.; Yan, Z.; Wang, H. Study and Application of the Heavy Metal Ions Rapid Testing Technology. J. Environ. Eng. Technol. 2011, 1, 438–442. [Google Scholar]
- Liang, P.; Dong, P.; Wang, Y.; Sun, A.; Qian, D.; Li, X.; Xin, G. Research Advances of Application of Immunology Technique in Rapid Detection for Food Safety. J. Food Saf. Qual. 2018, 9, 2085–2089. [Google Scholar]
- Gao, L.; Shi, H.; Wen, D.; Guo, M.; Yang, Z.; Zou, H. Simultaneous Determination of Rutin and Gallic Acid in Sesbania spinosa Leaves by High Performance Liquid Chromatography. Phys. Test. Chem. Anal. (Part B Chem. Anal.) 2021, 57, 339–343. [Google Scholar] [CrossRef]
- Huang, X.; Wang, L.; Qin, Y.; Xu, X. Determination of the Content of Gallic Acid, Berberine Hydrochloride, Palmatine Hydrochloride and Forsyth in Ningmitai Capsules by LC-MS. Chin. J. Pharm. Anal. 2018, 38, 979–985. [Google Scholar] [CrossRef]
- Lian, H.; Li, J.; Zhang, C.; Wei, H.; Xiang, G. Electrochemical Detection of Gallic Acid in Green Tea by Zinc Oxide Modified Electrode. South-Cent. Agric. Sci. Technol. 2024, 45, 43–46. [Google Scholar]
- Song, R.; Cheng, Y.; Tian, Y.; Zhang, Z.-J. A Validated Solid-phase Extraction HPLC Method for the Simultaneous Determination of Gallic Acid, Catechin and Epicatechin in Rhubarb Decoction. Chin. J. Nat. Med. 2012, 10, 275–278. [Google Scholar] [CrossRef]
- Alfei, S.; Marengo, B.; Domenicotti, C. Development of a Fast, Low-Cost, Conservative and Ecological Method for Quantifying Gallic Acid in Polymeric Formulations by FTIR Spectroscopy in Solution. Chemistryselect 2020, 5, 4381–4388. [Google Scholar] [CrossRef]
- Zhai, H.; Yang, B.; Huang, Q.; Chen, Z. Rapid Determination of Gallic Acid in Galla Chinensis by Capillary Electrophoresis. Chin. J. Anal. Lab. 2007, 26, 35–37. [Google Scholar]
- Zhao, J. Development and Application of Enzyme-Linked Immunosorbent Assay Based on Specific Monoclonal Antibodies and Nanobodies against Naringenin. Master’s Thesis, Southwest University, El Paso, TX, USA, 2021. [Google Scholar]
- Peng, D.; Wang, Y.; Feng, L.; Cao, G.; Tao, Y.; Liu, Z.; Yuan, Z. Preparation of Broadly Specific Monoclonal Antibodies for Simultaneous Determination of Fluoroquinolone Residues in Eggs. Food Anal. Methods 2016, 9, 3520–3531. [Google Scholar] [CrossRef]
- Cordell, J. Developing Monoclonal Antibodies for Immunohistochemistry. Cells 2022, 11, 243. [Google Scholar] [CrossRef] [PubMed]
Detection Methods | cLOD (mg/L) | Linear Range (mg/L) | Ref. |
---|---|---|---|
HPLC | 0.03 | 0.26–5.18 | [13] |
GC | 0.0025 | 0.50–5.00 | [14] |
DNP | 0.051 | 0.17–8.51 | [4] |
EC | 0.152 | 1.02–111.94 | [15] |
Solid-phase Extraction HPLC (SPE-HPLC) | 4.66 | 4.66–233.00 | [16] |
FTIR | 11.89 | / | [17] |
Capillary Electrophoresis (CE) | 1.00 | 3.00–100.00 | [18] |
Dilution Factor | P/N Value | ||||
---|---|---|---|---|---|
MSZ 1-1 | MSZ 1-2 | MSZ 1-3 | MSZ 1-4 | MSZ 1-5 | |
1/1k | 59.20 | 78.88 | 76.04 | 72.12 | 92.48 |
1/3k | 18.88 | 34.31 | 25.15 | 13.77 | 17.81 |
1/9k | 7.43 | 11.79 | 7.89 | 5.50 | 4.96 |
1/27k | 2.64 | 3.59 | 2.32 | 2.09 | 1.86 |
1/81k | 1.62 | 1.86 | 1.48 | 1.33 | 1.24 |
1/243k | 1.23 | 1.07 | 0.77 | 1.23 | 0.73 |
1/729k | 0.21 | 0.17 | 0.00 | 0.42 | 0.21 |
Dilution Factor | P/N Value | ||||
---|---|---|---|---|---|
MSZ 2-1 | MSZ 2-2 | MSZ 2-3 | MSZ 2-4 | MSZ 2-5 | |
1/1k | 1.76 | 1.60 | 1.48 | 1.56 | 1.08 |
1/3k | 1.15 | 1.27 | 1.12 | 1.08 | 1.04 |
1/9k | 1.53 | 1.26 | 1.33 | 1.45 | 1.04 |
1/27k | 0.77 | 0.85 | 0.73 | 0.69 | 0.65 |
1/81k | 0.50 | 0.39 | 0.36 | 0.29 | 0.25 |
1/243k | 0.08 | 0.13 | 0.17 | 0.13 | 0.17 |
1/729k | 0.07 | 0.12 | 0.15 | 0.11 | 0.14 |
GA Analogs | Cross Reaction Rate (%) |
---|---|
Gallic acid | 100 |
Syringic acid | <0.09 |
Protocatechuic acid | <0.09 |
Benzoic acid | <0.09 |
Caffeic acid | <0.09 |
Ferulic acid | <0.09 |
Eugenol | <0.09 |
Gallicin | <0.09 |
Dilution Factor | Solution Concentration (ng/mL) | Solution Detection Value (ng/mL) | Sample Content (mg/g) | Coefficient of Variation (%) |
---|---|---|---|---|
2 × 104 | 1551.05 | 1618 ± 46 | 324 ± 9 | 2.85 |
5 × 104 | 620.42 | 678 ± 26 | 339 ± 13 | 3.88 |
105 | 310.21 | 328 ± 18 | 328 ± 18 | 5.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Zheng, X.; Tao, R.; Li, L.; Wang, F.; Sun, Y.; Fan, B. Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid. Biosensors 2024, 14, 182. https://doi.org/10.3390/bios14040182
Duan J, Zheng X, Tao R, Li L, Wang F, Sun Y, Fan B. Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid. Biosensors. 2024; 14(4):182. https://doi.org/10.3390/bios14040182
Chicago/Turabian StyleDuan, Jiajing, Xiuxia Zheng, Ran Tao, Long Li, Fengzhong Wang, Yufeng Sun, and Bei Fan. 2024. "Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid" Biosensors 14, no. 4: 182. https://doi.org/10.3390/bios14040182
APA StyleDuan, J., Zheng, X., Tao, R., Li, L., Wang, F., Sun, Y., & Fan, B. (2024). Development of a Monoclonal Antibody-Based Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Gallic Acid. Biosensors, 14(4), 182. https://doi.org/10.3390/bios14040182