Dual-Mode Graphene Field-Effect Transistor Biosensor with Isothermal Nucleic Acid Amplification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Fabrication of Graphene Field-Effect Transistor Devices
2.3. RNA Extraction of Clinical Samples
2.4. Loop-Mediated Isothermal Amplification Assay
Measurement and Characterization
3. Results and Discussion
3.1. Characterization of Transferred Graphene
3.2. Optimization of the LAMP Assay
3.3. Detection of SARS-CoV-2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Cui, C.; Zhang, K.; Liu, J.; Xu, J.; Nisenbaum, E.; Huang, Y.; Qin, G.; Chen, B.; Hoffer, M.; et al. COVID19: A systematic approach to early identification and healthcare worker protection. Front. Public Health 2020, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents 2020, 55, 105924. [Google Scholar] [CrossRef] [PubMed]
- Acter, T.; Uddin, N.; Das, J.; Akhter, A.; Choudhury, T.R.; Kim, S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci. Total Environ. 2020, 730, 138996. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Tindale, L.C.; Stockdale, J.E.; Coombe, M.; Garlock, E.S.; Lau, W.Y.V.; Saraswat, M.; Zhang, L.; Chen, D.; Wallinga, J.; Colijn, C. Evidence for transmission of COVID-19 prior to symptom onset. eLife 2020, 9, e57149. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Respiratory Medicine. Patterns of respiratory infections after COVID-19. Lancet Respir. Med. 2023, 12, 1. [Google Scholar] [CrossRef]
- Lee, J.S.; Ahn, J.J.; Kim, S.J.; Yu, S.Y.; Koh, E.J.; Kim, S.H.; Sung, H.S.; Huh, J.W.; Hwang, S.Y. POCT detection of 14 respiratory viruses using multiplex RT-PCR. Biochip J. 2021, 15, 371–380. [Google Scholar] [CrossRef]
- Kim, H.; Huh, H.J.; Park, E.; Chung, D.R.; Kang, M. Multiplex molecular point-of-care test for syndromic infectious diseases. Biochip J. 2021, 15, 14–22. [Google Scholar] [CrossRef]
- Padhi, A.; Kumar, S.; Gupta, E.; Saxena, S.K. Laboratory Diagnosis of Novel Coronavirus Disease 2019 (COVID-19) Infection. In Coronavirus Disease 2019 (COVID-19) Epidemiology, Pathogenesis, Diagnosis, and Therapeutics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 95–107. [Google Scholar] [CrossRef]
- Kubina, R.; Dziedzic, A. Molecular and serological tests for COVID-19 a comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics. Diagnostics 2020, 10, 434. [Google Scholar] [CrossRef]
- D’Cruz, R.J.; Currier, A.W.; Sampson, V.B. Laboratory testing methods for novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Front. Cell Dev. Biol. 2020, 8, 468. [Google Scholar] [CrossRef]
- Lee, Y.S.; Choi, J.W.; Kang, T.; Chung, B.G. Deep learning-assisted droplet digital PCR for quantitative detection of human coronavirus. Biochip J. 2023, 17, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, J.H. Current advances in paper-based biosensor technologies for rapid COVID-19 diagnosis. Biochip J. 2022, 16, 376–396. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kang, M.; Park, E.; Chung, D.R.; Kim, J.; Hwang, E.S. A simple and multiplex loop-mediated isothermal amplification (LAMP) assay for rapid detection of SARS-CoV. Biochip J. 2019, 13, 341–351. [Google Scholar] [CrossRef]
- Kim, H.E.; Schuck, A.; Lee, S.H.; Lee, Y.; Kang, M.; Kim, Y.S. Sensitive electrochemical biosensor combined with isothermal amplification for point-of-care COVID-19 tests. Biosens. Bioelectron. 2021, 182, 113168. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Kim, S. Inhibition of non-specific amplification in loop-mediated isothermal amplification via tetramethylammonium chloride. Biochip J. 2022, 16, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.E.; Schuck, A.; Park, H.; Huh, H.J.; Kang, M.; Kim, Y.S. Gold nanostructures modified carbon-based electrode enhanced with methylene blue for point-of-care COVID-19 tests using isothermal amplification. Talanta 2023, 265, 124841. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.U.; Saito, M.; Hossain, M.M.; Rao, S.R.; Furui, S.; Hino, A.; Takamura, Y.; Takagi, M.; Tamiya, E. Electrochemical genosensor for the rapid detection of GMO using loop-mediated isothermal amplification. Analyst 2009, 134, 966–972. [Google Scholar] [CrossRef]
- Hashimoto, K.; Inada, M.; Ito, K. A novel voltammetric approach for real-time electrochemical detection of targeted nucleic acid sequences using LAMP. Anal. Biochem. 2017, 539, 113–117. [Google Scholar] [CrossRef]
- Xie, S.; Chai, Y.; Yuan, Y.; Bai, L.; Yuan, R. Development of an electrochemical method for Ochratoxin A detection based on aptamer and loop-mediated isothermal amplification. Biosens. Bioelectron. 2014, 55, 324–329. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef]
- Naik, J.D.; Gorre, P.; Akuri, N.G.; Kumar, S.; Al-Shidaifat, A.A.; Song, H. High-performance graphene FET integrated front-end amplifier using pseudo-resistor technique for neuro-prosthetic diagnosis. Biochip J. 2022, 16, 270–279. [Google Scholar] [CrossRef]
- Han, D.; Chand, R.; Kim, Y.S. Microscale loop-mediated isothermal amplification of viral DNA with real-time monitoring on solution-gated graphene FET microchip. Biosens. Bioelectron. 2017, 93, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Ang, P.K.; Chen, W.; Wee, A.T.S.; Loh, K.P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.; Choi, Y.; Park, W. All-graphene strain sensor on soft substrate. Carbon 2017, 116, 753–759. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Jariwala, D.; Filippone, S.A.; Karmel, H.J.; Johns, J.E.; Alaboson, J.M.; Marks, T.J.; Lauhon, L.J.; Hersam, M.C. Quantitatively enhanced reliability and uniformity of high-kappa dielectrics on graphene enabled by self-assembled seeding layers. Nano Lett. 2013, 13, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.E.; Schuck, A.; Lee, J.H.; Kim, Y.-S. Solution-gated graphene field effect transistor for TP53 DNA sensor with coplanar electrode array. Sens. Actuators B Chem. 2019, 291, 96–101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.E.; Schuck, A.; Park, H.; Chung, D.R.; Kang, M.; Kim, Y.-S. Dual-Mode Graphene Field-Effect Transistor Biosensor with Isothermal Nucleic Acid Amplification. Biosensors 2024, 14, 91. https://doi.org/10.3390/bios14020091
Kim HE, Schuck A, Park H, Chung DR, Kang M, Kim Y-S. Dual-Mode Graphene Field-Effect Transistor Biosensor with Isothermal Nucleic Acid Amplification. Biosensors. 2024; 14(2):91. https://doi.org/10.3390/bios14020091
Chicago/Turabian StyleKim, Hyo Eun, Ariadna Schuck, Hyeonseek Park, Doo Ryeon Chung, Minhee Kang, and Yong-Sang Kim. 2024. "Dual-Mode Graphene Field-Effect Transistor Biosensor with Isothermal Nucleic Acid Amplification" Biosensors 14, no. 2: 91. https://doi.org/10.3390/bios14020091
APA StyleKim, H. E., Schuck, A., Park, H., Chung, D. R., Kang, M., & Kim, Y. -S. (2024). Dual-Mode Graphene Field-Effect Transistor Biosensor with Isothermal Nucleic Acid Amplification. Biosensors, 14(2), 91. https://doi.org/10.3390/bios14020091