Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction
Abstract
1. Introduction
2. Materials and Methods
2.1. Architecture
2.2. Materials
2.3. Simulation Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maldonado, J.; Luna-Moreno, D.; Rodríguez-Delgado, J.M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M.M. Progress in Plasmonic Sensors as Monitoring Tools for Aquaculture Quality Control. Biosensors 2023, 13, 90. [Google Scholar] [CrossRef]
- Das, C.M.; Yang, F.; Yang, Z.X.; Liu, X.C.; Hoang, Q.T.; Xu, Z.J.; Neermunda, S.; Kong, K.V.; Ho, H.P.; Ju, L.A.; et al. Computational Modeling for Intelligent Surface Plasmon Resonance Sensor Design and Experimental Schemes for Real-Time Plasmonic Biosensing: A Review. Adv. Theory Simul. 2023, 6, 2200886. [Google Scholar] [CrossRef]
- Murugan, D.; Tintelott, M.; Narayanan, M.S.; Vu, X.T.; Kurkina, T.; Rodriguez-Emmenegger, C.; Schwaneberg, U.; Dostalek, J.; Ingebrandt, S.; Pachauri, V. Recent Advances in Grating Coupled Surface Plasmon Resonance Technology. Adv. Opt. Mater. 2024, 12, 2401862. [Google Scholar] [CrossRef]
- Jing, J.Y.; Liu, K.; Jiang, J.F.; Xu, T.H.; Wang, S.; Liu, T.G. Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core. Opto-Electron. Adv. 2023, 6, 220072. [Google Scholar] [CrossRef]
- Schasfoort, R.B.M.; Tudos, A.J. Handbook of Surface Plasmon Resonance; The Royal Society of Chemistry: Cambridge, UK, 2008; pp. 1–13. [Google Scholar]
- Stockman, M.I. Nanoplasmonics: Fundamentals and Applications; Springer: Dordrecht, The Netherlands, 2015; pp. 3–103. [Google Scholar]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007; pp. 49–74. [Google Scholar]
- Liu, H.H.; Hu, D.J.J.; Sun, Q.Z.; Wei, L.; Li, K.W.; Liao, C.G.; Li, B.Z.; Zhao, C.; Dong, X.Y.; Tang, Y.H.; et al. Specialty optical fibers for advanced sensing applications. Opto-Electron. Sci. 2023, 2, 220025. [Google Scholar] [CrossRef]
- Homola, J.; Piliarik, M. Surface Plasmon Resonance (SPR) Sensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Koresawa, H.; Seki, K.; Nishimoto, K.; Hase, E.; Tokizane, Y.; Yano, T.A.; Kajisa, T.; Minamikawa, T.; Yasui, T. Real-time hybrid angular-interrogation surface plasmon resonance sensor in the near-infrared region for wide dynamic range refractive index sensing. Sci. Rep. 2023, 13, 15655. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.J.; Zhou, J.; Wang, X.L.; Cai, Z.W.; Shao, Y.H. Wavelength-scanning surface plasmon resonance microscopy: A novel tool for real time sensing of cell-substrate interactions. Biosens. Bioelectron. 2019, 145, 111717. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Yu, X.T.; Ouyang, Q.L.; Shao, Y.H.; Song, J.; Qu, J.L.; Yong, K.T. Highly anisotropic black phosphorous graphene hybrid architecture for ultrasensitive plasmonic biosensing: Theoretical insight. 2D Mater. 2018, 5, 025015. [Google Scholar] [CrossRef]
- Kawata, S. Near-Field Optics and Surface Plasmon Polaritons; Springer: New York, NY, USA, 2001; pp. 1–23. [Google Scholar]
- Piliarik, M.; Bocková, M.; Homola, J. Surface Plasmon Resonance Biosensor for Parallelized Detection of Protein Biomarkers in Diluted Blood Plasma. Biosens. Bioelectron. 2010, 26, 1656–1661. [Google Scholar] [CrossRef]
- Zhang, X.; Tsuji, S.; Kitaoka, H.; Kobayashi, H.; Tamai, M.; Honjoh, K.I.; Miyamoto, T. Simultaneous Detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a Very Low Level Using Simultaneous Enrichment Broth and Multichannel SPR Biosensor. J. Food Sci. 2017, 82, 2357–2363. [Google Scholar] [CrossRef]
- Hasan, G.; Erol, O.; Guzin, K.; Mehmet, C.; Elif, E.; Ahmet, E.T.; Sencer, A.; Yildiz, U.; Caglar, E.; Aykutlu, D. A Smartphone Based Surface Plasmon Resonance Imaging (SPRI) Platform for on-Site Biodetection. Sens. Actuators B Chem. 2017, 239, 571–577. [Google Scholar]
- Du, W.; Zhao, F. Silicon Carbide Based Surface Plasmon Resonance Waveguide Sensor with a Bimetallic Layer for Improved Sensitivity. Mater. Lett. 2017, 186, 224–226. [Google Scholar] [CrossRef]
- Zhu, Q.F.; Shen, Y.T.; Chen, Z.; Chen, B.H.; Dai, E.W.; Pan, W.Q. Anisotropic Sensing Performance in a High-Sensitivity Surface Plasmon Resonance Sensor Based on Few-Layer Black Phosphorus. Sensors 2024, 24, 3851. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Liu, J.; Xu, W.; Deng, D.; Han, L. Enhanced Goos-Hänchen Shift of SPR Sensor with TMDCs and Doped PANI/Chitosan Composites for Heavy Metal Ions Detection in Aquatic Environment. Plasmonics 2023, 18, 1129–1141. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, X.T.; Zhang, L.Z.; Liu, X.J.; Zeng, Y.J.; Zhang, X.D. Design and Simulation of a Ratiometric SPR Sensor Based on a 2D van der Waals Heterojunction for Refractive Index Measurement. Nanomaterials 2023, 13, 515. [Google Scholar] [CrossRef]
- Li, W.; Zhao, W.; Cheng, S.; Zhang, H.; Yi, Z.; Sun, T.; Wu, P.; Zeng, Q.; Raza, R. Tunable metamaterial absorption device based on Fabry–Perot resonance as temperature and refractive index sensing. Opt. Lasers Eng. 2024, 181, 108368. [Google Scholar] [CrossRef]
- Cheng, S.B.; Li, W.X.; Zhang, H.F.; Akhtar, M.N.; Yi, Z.; Zeng, Q.D.; Ma, C.; Sun, T.Y.; Wu, P.H.; Ahmad, S. High sensitivity five band tunable metamaterial absorption device based on block like Dirac semimetals. Opt. Commun. 2024, 569, 130816. [Google Scholar] [CrossRef]
- Agarwal, S.; Raparia, R.; Kumar, V.; Srivastava, R.; Prajapati, Y.K. Analytical Study of SPR Sensor with Black Phosphorus and Tungsten Diselenide Heterostructure for Milk Adulteration Detection. Plasmonics 2024, 19. [Google Scholar] [CrossRef]
- Venkatesan, K.K.; Samikannu, S. SARS-CoV-2 Detection Using Black Phosphorus-MXene-Black Phosphorus Heterostructure Surface Plasmon Resonance Biosensor. Plasmonics 2024, 1–9. [Google Scholar] [CrossRef]
- Maurya, P.; Kushwaha, A.; Verma, R. High Performance SPR Gas Sensor by Using Heterostructure of 2D Materials Graphene/Black Phosphorous/MoS. Sens. Imaging 2024, 25, 66. [Google Scholar] [CrossRef]
- Mohan, V.; Pal, A.; Sharma, S. Numerical Simulation of a High Sensitivity Spr Sensor for Rapid Malaria Diagnosis using BP and Graphene 2D Materials. Plasmonics 2024, 1–12. [Google Scholar] [CrossRef]
- Raj, S.; Sahu, A.; Kumar, D.; Kumar, B.; Gupta, S.K. Design and analysis of SPR-based refractive index sensor with enhanced sensitivity based on graphene/BP heterostructure. Opt. Quantum Electron. 2024, 56, 1323. [Google Scholar]
- Kumar, S.; Yadav, A.; Malomed, B.A. Bimetal Thin Film, Semiconductors, and 2D Nanomaterials in SPR Biosensors: An Approach to Enhanced Urine Glucose Sensing. IEEE Trans. NanoBiosci. 2024, 23, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.K.; Upadhyay, S.; Kumar, A.; Chaurasia, N.R.; Srivastava, S.K. A study of highly sensitive surface plasmon resonance biosensor for the detection of SARS-CoV-2 virus. Opt. Quantum Electron. 2024, 56, 1663. [Google Scholar] [CrossRef]
- Tsukagoshi, T.; Kuroda, Y.; Noda, K.; Binh-Khiem, N.; Kan, T.; Shimoyama, I. Compact Surface Plasmon Resonance System with Au/Si Schottky Barrier. Sensors 2018, 18, 399. [Google Scholar] [CrossRef]
- Gorodkiewicz, E.; Lukaszewski, Z. Recent Progress in Surface Plasmon Resonance Biosensors (2016 to Mid-2018). Biosensors 2018, 8, 132. [Google Scholar] [CrossRef]
- Wang, Y.D.; Niu, Z.J.; Xu, C.C.; Zhan, M.H.; Koh, K.; Niu, J.F.; Chen, H.X. 2D MOF-enhanced SPR sensing platform: Facile and ultrasensitive detection of Sulfamethazine via supramolecular probe. J. Hazard. Mater. 2023, 456, 131642. [Google Scholar] [CrossRef]
- Du, F.S.; Zheng, K.; Zeng, S.W.; Yuan, Y.F. Sensitivity Enhanced Plasmonic Biosensor Using Bi2Se3-Graphene Heterostructures: A Theoretical Analysis. Nanomaterials 2022, 12, 4078. [Google Scholar] [CrossRef]
- Wu, L.M.; Guo, J.; Wang, Q.K.; Lu, S.B.; Dai, X.Y.; Xiang, Y.J.; Fan, D.Y. Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B Chem. 2017, 249, 542–548. [Google Scholar] [CrossRef]
- Mikhail, N.P. Refractiveindex.info database of optical constants. Sci. Data 2024, 11, 94. [Google Scholar]
- Alam, M.K.; Zaman, M.U.; Nasser, R.A.; Ali, R.; Abdullah, S.A.; Ali, A. Bismuth telluride, graphene, and silver based surface plasmon resonance biosensor for dental application. Opt. Quantum Electron. 2023, 55, 474. [Google Scholar] [CrossRef]
Layer | Materials | Refractive Index at = 632.8 nm | Reference | |
---|---|---|---|---|
Real Part (n) | Imaginary Part (k) | |||
Layer I | BK7 prism | 1.515 | --- | [34] |
Layer II | Glass substrate | 1.515 | --- | [34] |
Layer III | Silver | 0.056206 | 4.2776i | [35] |
Layer IV | BP * | 2.77 | 0.507i | |
2.716 | 0.033 | [12] | ||
6.1 | --- | |||
Layer V | Graphene | 3 | 1.1487 | [12] |
Layer VI | Sensing medium | 1.330 + Δnbio | ---- | [12] |
Ag Thickness (nm) | BP Thickness (L1) | Graphene Thickness (L2) | Sensitivity (deg/RIU) (φ = 90, Δnbio = 0.05) | FOM (RIU−1) |
---|---|---|---|---|
40 | 0 | 0 | 123.6 | 57.0 |
40 | 5 | 1 | 231.0 | 35.2 |
43 | 5 | 1 | 245.0 | 39.4 |
45 | 5 | 1 | 252.2 | 41.8 |
47 | 5 | 1 | 256.4 | 43.3 |
50 | 5 | 1 | 258.6 | 44.0 |
53 | 5 | 1 | 257.8 | 43.2 |
Biosensor Structure | Incident Wavelength (nm) | Sensitivity (deg/RIU) | Reference |
---|---|---|---|
Bimetallic/BP/WSe2 | 633 | 237.2 | 23 |
Ag/BP-MXene-BP | 633 | 295.67 | 24 |
Ag/graphene/BP | 633 | 236.64 | 25 |
Ag/BP/Cu-Pt/graphene | 633 | 351.66 | 26 |
Cu/Ni/Graphene/BP | 633 | 410 | 27 |
Au/Ag/GaN/BP | 633 | 440 | 28 |
Ag/BiFeO3/BP | 633 | 356.19 | 29 |
Ag/BP/graphene | 632.8 | 258.6 | This work |
Ag Thickness (nm) | BP Thickness (Number of Layers) | Dynamic Detection Range (∆θ = 5 deg, φ = 80 deg) | Dynamic Detection Range (∆θ = 5 deg, φ = 75 deg) | Sensitivity (deg/RIU) (∆θ = 5 deg, φ = 75 deg) | FOM (RIU−1) |
---|---|---|---|---|---|
40 | 5 | 1.330–1.359 | 1.335–1.364 | 172.4 | 27.7 |
43 | 5 | 1.330–1.358 | 1.335–1.363 | 176.1 | 31.1 |
45 | 5 | 1.330–1.358 | 1.335–1.363 | 178.6 | 33.2 |
47 | 5 | 1.330–1.357 | 1.335–1.362 | 180.0 | 35.4 |
50 | 5 | 1.330–1.357 | 1.335–1.362 | 182.6 | 38.1 |
53 | 5 | 1.330–1.356 | 1.335–1.362 | 185.2 | 40.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Ouyang, J.; Li, Z.; Shi, C.; Wang, L.; Zhou, J.; Chang, M. Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction. Biosensors 2024, 14, 601. https://doi.org/10.3390/bios14120601
Yu X, Ouyang J, Li Z, Shi C, Wang L, Zhou J, Chang M. Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction. Biosensors. 2024; 14(12):601. https://doi.org/10.3390/bios14120601
Chicago/Turabian StyleYu, Xiantong, Jing Ouyang, Zhao Li, Chaojun Shi, Longfei Wang, Jun Zhou, and Min Chang. 2024. "Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction" Biosensors 14, no. 12: 601. https://doi.org/10.3390/bios14120601
APA StyleYu, X., Ouyang, J., Li, Z., Shi, C., Wang, L., Zhou, J., & Chang, M. (2024). Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction. Biosensors, 14(12), 601. https://doi.org/10.3390/bios14120601