The First N,O-Chelated Diphenylboron-Based Fluorescent Probe for Peroxynitrite and Its Bioimaging Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Spectral Measurements
2.3. Cell Imaging Experiments
2.4. Imaging of ONOO− in Zebrafish
3. Discussion and Results
3.1. Design Strategy of DPB Probe
3.2. Spectral Response Behaviors of DPB Probe to ONOO−
3.3. Mechanism of Recognition of ONOO− by DPB
3.4. Bioimaging in Living Cells
3.5. Bioimaging of ONOO− in Zebrafish
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sies, H.; Mailloux, R.J.; Jakob, U. Fundamentals of redox regulation in biology. Nat. Rev. Mol. Cell Bio. 2024, 25, 701–719. [Google Scholar] [CrossRef] [PubMed]
- Tretter, V.; Hochreiter, B.; Zach, M.L.; Krenn, K.; Klein, K.U. Understanding Cellular Redox Homeostasis: A Challenge for Precision Medicine. Int. J. Mol. Sci. 2021, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Bio. 2022, 23, 499–515. [Google Scholar] [CrossRef]
- Kozlov, A.V.; Javadov, S.; Sommer, N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants 2024, 13, 602. [Google Scholar] [CrossRef]
- Cheung, E.C.; Vousden, K.H. The role of ROS in tumour development and progression. Nat. Rev. Cancer 2022, 22, 280–297. [Google Scholar] [CrossRef]
- Beckman, J.S.; Beckman, T.W.; Chen, J.; Marshall, P.A.; Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Nat. Acad. Sci. USA 1990, 87, 1620–1624. [Google Scholar] [CrossRef]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Nat. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef]
- Cui, W.-L.; Wang, M.-H.; Yang, Y.-H.; Wang, J.-Y.; Zhu, X.; Zhang, H.; Ji, X. Recent advances and perspectives in reaction-based fluorescent probes for imaging peroxynitrite in biological systems. Coordin. Chem. Rev. 2023, 474, 214848. [Google Scholar] [CrossRef]
- Miao, Z.; Cao, S.; Sun, Y. Recent applications and research of fluorescent probes in liver diseases: A comprehensive review. Inorg. Chem. Commun. 2023, 156, 111269. [Google Scholar] [CrossRef]
- Sun, J.; Cao, X.; Lu, W.; Wei, Y.; Kong, L.; Chen, W.; Shao, X.; Wang, Y. Recent advances in fluorescent probes of peroxynitrite: Structural, strategies and biological applications. Theranostics 2023, 13, 1716–1744. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, H.; Yang, W.; Zheng, Z.; Wang, X.; Tian, Z.; Wang, D.; Kan, D.; Zhang, D.; Tang, Z. Peroxynitrite imaging in ferroptosis-mediated drug-induced liver injury with a near-infrared fluorescence probe. Anal. Chim. Acta 2024, 1309, 342673. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Shi, X.; Hu, X.; Xu, L.; Liu, X.; Gao, G.; Wang, R.; Liang, G. A chemiluminescent probe for imaging peroxynitrite in inflammatory cells and tissues. Anal. Chem. 2023, 95, 6496–6500. [Google Scholar] [CrossRef] [PubMed]
- Rajasekar, M.; Baskaran, P.; Mary, J.; Meenambigai, S.; Selvam, M. Review of current developments in rhodamine derivatives-based photoresponsive chemosensors for ion detection. Inorg. Chem. Commun. 2024, 162, 112143. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Huo, F.; Yin, C. Organic small molecule fluorescent probes based cascade reaction: Design strategies, biomedical applications and prospects. Coordin. Chem. Rev. 2024, 506, 215713. [Google Scholar] [CrossRef]
- Rajasekar, M.; Agash, S.G.S.; Narendran, C.; Rajasekar, K. Recent trends in fluorescent-based copper(II) chemosensors and their biomaterial applications. Inorg. Chem. Commun. 2023, 151, 110609. [Google Scholar] [CrossRef]
- Kamali, S.; Arabahmadi, R.; Amani, S. Molecular half-subtractor and memory device based on a new Schiff-based colorimetric sensor for anions detection and computational studies. Inorg. Chem. Commun. 2023, 158, 111452. [Google Scholar] [CrossRef]
- Lin, S.; Ye, C.; Lin, Z.; Huang, L.; Li, D. Recent progress of near-infrared fluorescent probes in the determination of reactive oxygen species for disease diagnosis. Talanta 2024, 268, 125264. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, D.; Ye, Y.; Zhao, Y. Recent advances in multifunctional fluorescent probes for viscosity and analytes. Coordin. Chem. Rev. 2022, 453, 214336. [Google Scholar] [CrossRef]
- Maity, D.; Bari, S.; Ghosh, P.; Roy, P. Turning a fluorescent probe for Al3+ into a pH sensor by introducing Cl-substitution. Inorg. Chem. Commun. 2022, 144, 109822. [Google Scholar] [CrossRef]
- Quan, W.; Song, W.; Zhang, Q.; Huang, H.; Lin, W. Advances and perspectives in fluorescent probes for imaging hepatopathy-related biomarkers. Coordin. Chem. Rev. 2023, 497, 215407. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Xiu, T.; Wang, H.; Li, P.; Tang, B. Fluorescence probes for sensing and imaging within Golgi apparatus. Coordina. Chem. Rev. 2024, 502, 215618. [Google Scholar] [CrossRef]
- Liu, G.; Xie, X.; Li, Y.; Zhang, J.; Jiao, X.; Dou, X.; Wang, X.; Tang, B. Responsive fluorescence probes for peroxynitrite: Design strategies, reaction mechanisms, and bioimaging applications. TrAC-Trend Anal. Chem. 2023, 169, 117371. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Kim, H.; Peng, X.; Yoon, J. Activatable Near-Infrared Versatile Fluorescent and Chemiluminescent Dyes Based on the Dicyanomethylene-4H-pyran Scaffold: From Design to Imaging and Theranostics. Angew. Chem. Int. Ed. 2024, 63, e202311764. [Google Scholar] [CrossRef]
- Hiranmartsuwan, P.; Wangngae, S.; Nootem, J.; Kamkaew, A.; Daengngern, R.; Wattanathana, W.; Chansaenpak, K. BODIPY-Based Fluorescent Probes for Selective Visualization of Endogenous Hypochlorous Acid in Living Cells via Triazolopyridine Formation. Biosensors 2022, 12, 923. [Google Scholar] [CrossRef]
- Wang, K.; Yao, T.; Xue, J.; Guo, Y.; Xu, X. A Novel Fluorescent Probe for the Detection of Hydrogen Peroxide. Biosensors 2023, 13, 658. [Google Scholar] [CrossRef]
- Baruah, M.; Jana, A.; Pareek, N.; Singh, S.; Samanta, A. A Ratiometric Fluorescent Probe for Hypochlorite and Lipid Droplets to Monitor Oxidative Stress. Biosensors 2023, 13, 662. [Google Scholar] [CrossRef]
- Han, C.; Sun, S.-B.; Ji, X.; Wang, J.-Y. Recent advances in 1,8-naphthalimide-based responsive small-molecule fluorescent probes with a modified C4 position for the detection of biomolecules. TrAC-Trend. Anal. Chem. 2023, 167, 117242. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Y.; Li, H.; Shi, W.; Li, X.; Ma, H. New rhodamines with changeable π-conjugation for lengthening fluorescence wavelengths and imaging peroxynitrite. Chem 2022, 8, 287–295. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Li, C.; Zhang, H. Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review. Biosensors 2023, 13, 159. [Google Scholar] [CrossRef]
- Sun, X.; Guo, F.; Ye, Q.; Zhou, J.; Han, J.; Guo, R. Fluorescent Sensing of Glutathione and Related Bio-Applications. Biosensors 2023, 13, 16. [Google Scholar] [CrossRef]
- Jin, C.; Yang, X.; Zhao, W.; Zhao, Y.; Wang, Z.; Tan, J. Synthesis, properties and emerging applications of multi-boron coordinated chromophores. Coordin. Chem. Rev. 2024, 513, 215892. [Google Scholar] [CrossRef]
- Bumagina, N.A.; Antina, E.V. Review of advances in development of fluorescent BODIPY probes (chemosensors and chemodosimeters) for cation recognition. Coordin. Chem. Rev. 2024, 505, 215688. [Google Scholar] [CrossRef]
- Prchalova, E.; Sukupova, M.; Malinak, D.; Andrys, R.; Sivak, L.; Pekarik, V.; Skarka, A.; Svobodova, J.; Prchal, L.; Fresser, L.; et al. BODIPY-labelled acetylcholinesterase reactivators can be encapsulated into ferritin nanovehicles for enhanced bioavailability in the CNS. Biomed. Pharmacother. 2023, 167, 115490. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-B.; Cao, X.; Zhang, S.; Zhang, K.; Cheng, Y.; Wang, J.; Zhao, J.; Zhou, L.; Liang, X.-J.; Yoon, J. BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications. Adv. Mater. 2023, 35, 2207546. [Google Scholar] [CrossRef]
- Poddar, M.; Misra, R. Recent advances of BODIPY based derivatives for optoelectronic applications. Coordin. Chem. Rev. 2020, 421, 213462. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Teymourinia, H.; Hosseininezhad, S.; Ramazani, A. DFT and TD-DFT optoelectronic study on hybrid alizarin-carbazol based dyes incorporated on titanium dioxide (TiO2) for dye sensitized solar cell application. Inorg. Chem. Commun. 2024, 162, 112153. [Google Scholar] [CrossRef]
- Reina, G.; Beneventi, G.M.; Kaur, R.; Biagiotti, G.; Cadranel, A.; Ménard-Moyon, C.; Nishina, Y.; Richichi, B.; Guldi, D.M.; Bianco, A. Graphene Oxide-BODIPY Conjugates as Highly Fluorescent Materials. Chem.-Eur. J. 2023, 29, e202300266. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, X.; Tian, H. A facile way to obtain near-infrared room-temperature phosphorescent soft materials based on Bodipy dyes. Chem. Sci. 2020, 11, 482–487. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, D.; Fang, Y.; Dehaen, W. Design and synthesis of a BOAHY-derived tracker for fluorescent labeling of mitochondria. Spectrochim. Acta Part A 2023, 303, 123201. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhao, X.; Escudero, D.; Meervelt, L.V.; Zheng, D.; Fang, Y.; Dehaen, W. The first BOAHY-based probe for ClO−: Synthesis, spectral investigations and selective recognition behaviour. Dye. Pigment. 2024, 221, 111826. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16 Revision B. 01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Sathyamoorthi, G.; Boyer, J.H.; Allik, T.H.; Chandra, S. Laser active cyanopyrromethene–BF2 complexes. Heteroat. Chem. 1994, 5, 403–407. [Google Scholar] [CrossRef]
- Murali, A.C.; Nayak, P.; Venkatasubbaiah, K. Recent advances in the synthesis of luminescent tetra-coordinated boron compounds. Dalton Trans. 2022, 51, 5751–5771. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, Y.; Van Hecke, K.; Pereshivko, O.P.; Peshkov, V.A. Studies on Functionalization of N,O-Chelated Isoquinoline-Enol Boron Complexes. Eur. J. Org. Chem. 2019, 2019, 2490–2497. [Google Scholar] [CrossRef]
- Bodhi, T.K.K.; Tamizhselvi, R.; Mohandoss, S.; Napoleon, A.A. Novel benzohydrazide-based Schiff base for highly selective and sensitive colorimetric detection of Hg2+ ions; DFT analysis and test strips applications. Inorg. Chem. Commun. 2024, 159, 111649. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Li, L.; Liu, H.; Fang, Y.; Liu, X. The First N,O-Chelated Diphenylboron-Based Fluorescent Probe for Peroxynitrite and Its Bioimaging Applications. Biosensors 2024, 14, 515. https://doi.org/10.3390/bios14110515
Ye X, Li L, Liu H, Fang Y, Liu X. The First N,O-Chelated Diphenylboron-Based Fluorescent Probe for Peroxynitrite and Its Bioimaging Applications. Biosensors. 2024; 14(11):515. https://doi.org/10.3390/bios14110515
Chicago/Turabian StyleYe, Xiaoping, Longxuan Li, Hong Liu, Yuyu Fang, and Xiaoya Liu. 2024. "The First N,O-Chelated Diphenylboron-Based Fluorescent Probe for Peroxynitrite and Its Bioimaging Applications" Biosensors 14, no. 11: 515. https://doi.org/10.3390/bios14110515
APA StyleYe, X., Li, L., Liu, H., Fang, Y., & Liu, X. (2024). The First N,O-Chelated Diphenylboron-Based Fluorescent Probe for Peroxynitrite and Its Bioimaging Applications. Biosensors, 14(11), 515. https://doi.org/10.3390/bios14110515