A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices
Abstract
:1. Introduction
- (1)
- Production cost: The cost of manufacturing flexible devices can be high, limiting their widespread adoption. Efforts should be made to develop cost-effective manufacturing processes.
- (2)
- Functional expansion: While there have been advancements in the functionality of flexible devices, further expansion is needed to meet the diverse needs of different applications.
- (3)
- Flexibility and stretchability: Improving the flexibility and stretchability of flexible products will enhance their durability and usability in various environments.
- (4)
- Power consumption and detection accuracy: Flexible sensors should aim for lower power consumption without compromising detection accuracy to extend the battery life and enhance their performance.
- (5)
- Biocompatibility: The biocompatibility of flexible substrates is crucial for their use in biomedical applications. Research should focus on developing biocompatible materials and ensuring their safety for use in contact with the human body.
- (6)
- Application range: Expanding the application range of flexible devices will enable their utilization in various industries and sectors, leading to increased market demand.
- (7)
- Capacity of flexible batteries: Enhancing the capacity and efficiency of flexible batteries will enable longer device operation and reduce the need for frequent recharging.
- (8)
- Integration of multi-layer flexible electronic devices: Developing methods for seamlessly integrating multiple layers of flexible electronic devices will enhance their overall functionality and performance.
2. Simple Flexible Device Preparation
2.1. Self-Supporting Flexible Device Preparation
2.1.1. Filtration into Film
2.1.2. Self-Assembly
2.1.3. Spinning
2.2. Device Preparation Based on Flexible Substrates
2.2.1. Scraping, Spin Coating, and Spray Plating
2.2.2. Deposition
2.2.3. Printing Manufacturing
Screen Printing
Gravure Printing
Inkjet Printing
2.2.4. Etching
2.2.5. Laser
2.3. Preparation of Flexible Energy Storage Devices Based on Flexible Electrolytes
3. Stacking Process: Complex Multilayer Flexible Device Preparation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, S.Y.; Tang, D.C.; Zhao, Z.Q.; Yi, R. Literature Review on Development of Flexible Electronics Industry. Mech. Manuf. Autom. 2022, 51, 106–110+126. [Google Scholar] [CrossRef]
- Jia, Y.; Bian, S.G. Development status and trends of flexible electronics technology. China Sci. Technol. 2021, 1, 17–20. [Google Scholar]
- Cui, Z. Printed electronics: Past, present and future. Sci. Technol. Rev. 2017, 35, 14–20. [Google Scholar]
- Cui, Z.; Wang, Z. Study on Development Trend of Flexible Printed Electronic Technology. Integr. Circuit Appl. 2019, 36, 26–29. [Google Scholar] [CrossRef]
- Luo, Y.F.; Wang, M.; Wan, C.J.; Cai, P.Q.; Loh, X.J.; Chen, X.D. Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics. Adv. Mater. 2020, 32, 2001903. [Google Scholar] [CrossRef]
- Yang, J. Flexible Electronics: Flexible and Emerging Electronic Technology. Hangzhou Technol. 2022, 53, 40–42. [Google Scholar]
- Ma, L.; Gu, J.A. Optimized Design of Wiring Scheme for Conductive Layer in Bending Area of a Flexible OLED. Russ. Phys. J. 2021, 64, 450–462. [Google Scholar] [CrossRef]
- Takenouchi, M.; Mukai, M.; Furukawa, T.; Maruo, S. Fabrication of Flexible Wiring with Intrinsically Conducting Polymers Using Blue-Laser Microstereolithography. Polymers 2022, 14, 4949. [Google Scholar] [CrossRef]
- Islam, M.T.; Alam, T.; Yahya, I.; Cho, M. Flexible Radio-Frequency Identification (RFID) Tag Antenna for Sensor Applications. Sensors 2018, 18, 4212. [Google Scholar] [CrossRef]
- Ozek, E.A.; Tanyeli, S.; Yapici, M.K. Flexible Graphene Textile Temperature Sensing RFID Coils Based on Spray Printing. IEEE Sens. J. 2021, 21, 26382–26388. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, C.; Cheng, S.Y.; Xu, Z.Q.; Sun, X.; Xu, Y.H.; Chen, J.J.; Jiang, Z.; Liang, K.; Feng, Z.S. Flexible RFID Tag Metal Antenna on Paper-Based Substrate by Inkjet Printing Technology. Adv. Funct. Mater. 2019, 29, 1902579. [Google Scholar] [CrossRef]
- Han, S.T.; Peng, H.Y.; Sun, Q.J.; Venkatesh, S.; Chung, K.S.; Lau, S.C.; Zhou, Y.; Roy, V.A.L. An Overview of the Development of Flexible Sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef]
- Liu, J.H.; Liu, M.L.; Bai, Y.; Zhang, J.H.; Liu, H.W.; Zhu, W.B. Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring. Sensors 2020, 20, 4009. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.L.; Li, X.Y.; Shi, Y.; Li, L.H.; Wang, W.; He, L.; Liu, R.P. Recent Developments for Flexible Pressure Sensors: A Review. Micromachines 2018, 9, 580. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Cho, Y.; Yu, K.J. Novel Nano-Materials and Nano-Fabrication Techniques for Flexible Electronic Systems. Micromachines 2018, 9, 263. [Google Scholar] [CrossRef]
- Wang, P.P.; Hu, M.M.; Wang, H.; Chen, Z.; Feng, Y.P.; Wang, J.Q.; Ling, W.; Huang, Y. The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Adv. Sci. 2020, 7, 2001116. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, H.Y. Recent Development of Flexible and Stretchable Antennas for Bio-Integrated Electronics. Sensors 2018, 18, 4364. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Leow, W.R.; Chen, X.D. 3D Printing of Flexible Electronic Devices. Small Methods 2018, 2, 1700259. [Google Scholar] [CrossRef]
- Yan, Z.Q.; Zhao, Y.X.; Liu, D.; Zhang, Z.D.; Zheng, Y.Q.; Cui, J.; Zhang, Y.J.; Xue, C.Y. Thermoelectric properties of flexible PEDOT: PSS-based films tuned by SnSe via the vacuum filtration method. RSC Adv. 2020, 10, 43840–43846. [Google Scholar] [CrossRef]
- Ahmed, A.; Sharma, S.; Adak, B.; Hossain, M.M.; LaChance, A.M.; Mukhopadhyay, S.; Sun, L.Y. Two-dimensional MXenes: New frontier of wearable and flexible electronics. Infomat 2022, 4, e12295. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Q.Q.; Wu, D.L.; Jiang, Y.; Liu, Z.J.; Chen, B.; Zhu, M.S.; Schmidt, O.G. Flexible MXene films for batteries and beyond. Carbon Energy 2022, 4, 598–620. [Google Scholar] [CrossRef]
- Wang, J.F.; He, J.B.; Kan, D.X.; Chen, K.Y.; Song, M.S.; Huo, W.T. MXene Film Prepared by Vacuum-Assisted Filtration: Properties and Applications. Crystals 2022, 12, 1034. [Google Scholar] [CrossRef]
- Tambasov, I.A.; Voronin, A.S.; Evsevskaya, N.P.; Volochaev, M.N.; Fadeev, Y.V.; Simunin, M.M.; Aleksandrovsky, A.S.; Smolyarova, T.E.; Abelian, S.R.; Tambasova, E.V.; et al. Thermoelectric properties of low-cost transparent single wall carbon nanotube thin films obtained by vacuum filtration. Phys. E-Low-Dimens. Syst. Nanostructures 2019, 114, 113619. [Google Scholar] [CrossRef]
- Innocenzi, P. Mesoporous ordered films via self-assembly: Trends and perspectives. Chem. Sci. 2022, 13, 13264–13279. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Suh, A.; Park, G.; Yoon, D.K.; Kim, S.Y. Nanoscratch-Directed Self-Assembly of Block Copolymer Thin Films. ACS Appl. Mater. Interfaces 2021, 13, 5772–5781. [Google Scholar] [CrossRef]
- Pula, P.; Leniart, A.; Majewski, P.W. Solvent-assisted self-assembly of block copolymer thin films. Soft Matter 2022, 18, 4042–4066. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Wang, Y.Y.; Zeng, G.J.; Li, G.; Dong, X.H.; Wen, T. Confined Self-Assemblies of Chiral Block Copolymers in Thin Films. ACS Macro Lett. 2021, 10, 1300–1305. [Google Scholar] [CrossRef]
- Jin, H.M.; Lee, S.H.; Kim, J.Y.; Son, S.W.; Kim, B.H.; Lee, H.K.; Mun, J.H.; Cha, S.K.; Kim, J.S.; Nealey, P.F.; et al. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. Acs Nano 2016, 10, 3435–3442. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, Z.Q. Flexible and self-assembly anisotropic FeCo nanochain-polymer composite films for highly stretchable magnetic device. Compos. Sci. Technol. 2018, 164, 8–16. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Wang, S.; Wan, F.; Tie, Z.W.; Niu, Z.Q. Scalable 3D Self-Assembly of MXene Films for Flexible Sandwich and Microsized Supercapacitors. Adv. Funct. Mater. 2021, 31, 2101302. [Google Scholar] [CrossRef]
- Claver, U.P.; Zhao, G. Recent Progress in Flexible Pressure Sensors Based Electronic Skin. Adv. Eng. Mater. 2021, 23, 2001187. [Google Scholar] [CrossRef]
- Ma, Y.J.; Zhang, Y.C.; Cai, S.S.; Han, Z.Y.; Liu, X.; Wang, F.L.; Cao, Y.; Wang, Z.H.; Li, H.F.; Chen, Y.H.; et al. Flexible Hybrid Electronics for Digital Healthcare. Adv. Mater. 2020, 32, e1902062. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.W.; Trotsyuk, A.A.; Niu, S.M.; Henn, D.; Chen, K.; Shih, C.C.; Larson, M.R.; Mermin-Bunnell, A.M.; Mittal, S.; Lai, J.C.; et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 2023, 41, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.F.; Wang, A.H.; Li, J.L.; Li, Q.; Han, Q.Q.; Zheng, X.F.; Cao, H.Y.; Bai, S. Preparation of conductive and transparent dipeptide hydrogels for wearable biosensor. Bio-Des. Manuf. 2022, 5, 153–162. [Google Scholar] [CrossRef]
- Ye, D.; Ding, Y.J.; Duan, Y.Q.; Su, J.T.; Yin, Z.P.; Huang, Y.A. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics. Small 2018, 14, e1703521. [Google Scholar] [CrossRef]
- Ji, S.H.; Cho, J.H.; Jeong, Y.H.; Yun, J.D.; Yun, J.S. The synthesis of flexible zeolite nanofibers by a polymer surface thermal etching process. Appl. Surf. Sci. 2017, 416, 178–182. [Google Scholar] [CrossRef]
- Kim, K.W.; Ji, S.H.; Park, B.S.; Yun, J.S. High surface area flexible zeolite fibers based on a core-shell structure by a polymer surface wet etching process. Mater. Des. 2018, 158, 98–105. [Google Scholar] [CrossRef]
- Wang, M.; Ma, C.; Uzabakiriho, P.C.; Chen, X.; Chen, Z.R.; Cheng, Y.; Wang, Z.R.; Zhao, G. Stencil Printing of Liquid Metal upon Electrospun Nanofibers Enables High-Performance Flexible Electronics. Acs Nano 2021, 15, 19364–19376. [Google Scholar] [CrossRef]
- Agcayazi, T.; Chatterjee, K.; Bozkurt, A.; Ghosh, T.K. Flexible Interconnects for Electronic Textiles. Adv. Mater. Technol. 2018, 3, 1700277. [Google Scholar] [CrossRef]
- Xiang, S.W.; Qin, L.; Wei, X.F.; Fan, X.; Li, C.M. Fabric-Type Flexible Energy-Storage Devices for Wearable Electronics. Energies 2023, 16, 4047. [Google Scholar] [CrossRef]
- Ma, N.; Wang, S.C.; Li, H.D.; Xu, X.Q.; Huang, L.J.; Wang, Y.; Strizhak, P.E.; Tang, J.G. Direct fabrication of graphene oxide fiber by injection spinning for flexible and wearable electronics. J. Mater. Sci. 2020, 55, 12065–12081. [Google Scholar] [CrossRef]
- Yoshinaga, K.; Horie, Y.; Ichigi, A.; Bin Mukhlish, M.Z.; Nomiyama, T. Conductive self-standing nanofiber fabric of fluorine-doped tin oxide prepared by electrospinning for use in flexible electronics. J. Mater. Sci. Mater. Electron. 2021, 32, 11823–11834. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, Z.T.; Xu, J.; Li, J.; Yan, K.; Cheng, W.; Xin, M.; Zhu, T.S.; Du, J.H.; Chen, S.X.; et al. Versatile self-assembled electrospun micro-pyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 2022, 13, 5839. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.L.; Deb, N.; Wolfe, R.M.W.; Lo, C.K.; Engmann, S.; Richter, L.J.; Reynolds, J.R. Simple transfer from spin coating to blade coating through processing aggregated solutions. J. Mater. Chem. A 2017, 5, 20687–20695. [Google Scholar] [CrossRef]
- Li, J.B.; Munir, R.; Fan, Y.Y.; Niu, T.Q.; Liu, Y.C.; Zhong, Y.F.; Yang, Z.; Tian, Y.S.; Liu, B.; Sun, J.; et al. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells. Joule 2018, 2, 1313–1330. [Google Scholar] [CrossRef]
- Pokuri, B.S.S.; Sit, J.; Wodo, O.; Baran, D.; Ameri, T.; Brabec, C.J.; Moule, A.J.; Ganapathysubramanian, B. Nanoscale Morphology of Doctor Bladed versus Spin-Coated Organic Photovoltaic Films. Adv. Energy Mater. 2017, 7, 1701269. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, H.; Jia, Z.R.; Cai, F.F.; Li, J.; Yuan, J.; Meng, L.; Peng, H.J.; Zhang, Z.J.; Zou, Y.P.; et al. Spin-coated 10.46% and blade-coated 9.52% of ternary semitransparent organic solar cells with 26.56% average visible transmittance. Sol. Energy 2020, 204, 660–666. [Google Scholar] [CrossRef]
- Schlemmer, W.; Zankel, A.; Niegelhell, K.; Hobisch, M.; Sussenbacher, M.; Zajki-Zechmeister, K.; Weissl, M.; Reishofer, D.; Plank, H.; Spirk, S. Deposition of Cellulose-Based Thin Films on Flexible Substrates. Materials 2018, 11, 2433. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.F.; Hong, L.; Zhang, T.; Xu, Y.; Xian, K.H.; Gao, B.W.; Qin, J.Z.; Zhang, J.Q.; Wei, Z.X.; et al. Achieving Over 15% Efficiency in Organic Photovoltaic Cells via Copolymer Design. Adv. Mater. 2019, 31, e1808356. [Google Scholar] [CrossRef]
- Moreira, J.; Vale, A.C.; Alves, N.M. Spin-coated freestanding films for biomedical applications. J. Mater. Chem. B 2021, 9, 3778–3799. [Google Scholar] [CrossRef]
- Wang, S.H.; Xu, J.; Wang, W.C.; Wang, G.J.N.; Rastak, R.; Molina-Lopez, F.; Chung, J.W.; Niu, S.M.; Feig, V.R.; Lopez, J.; et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Mirabito, T.; Huet, B.; Redwing, J.M.; Snyder, D.W. Influence of the Underlying Substrate on the Physical Vapor Deposition of Zn-Phthalocyanine on Graphene. ACS Omega 2021, 6, 20598–20610. [Google Scholar] [CrossRef] [PubMed]
- Baldanza, A.; Carbone, M.G.P.; Brondi, C.; Manikas, A.C.; Mensitieri, G.; Pavlou, C.; Scherillo, G.; Galiotis, C. Chemical Vapour Deposition Graphene-PMMA Nanolaminates for Flexible Gas Barrier. Membranes 2022, 12, 611. [Google Scholar] [CrossRef]
- Kim, Y.K.; Shin, K.Y. Dopamine-assisted chemical vapour deposition of polypyrrole on graphene for flexible supercapacitor. Appl. Surf. Sci. 2021, 547, 149141. [Google Scholar] [CrossRef]
- Li, Z.; Hu, F.; Huo, N.; Tenhaeff, W.E. A flexible thin film lithium battery with a chemical vapor deposited organic complex cathode. J. Mater. Chem. A 2022, 10, 8390–8400. [Google Scholar] [CrossRef]
- Lu, C.H.; Leu, C.M.; Yeh, N.C. Single-Step Direct Growth of Graphene on Cu Ink toward Flexible Hybrid Electronic Applications by Plasma-Enhanced Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2021, 13, 6951–6959. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Campbell, S.A.; Zhang, L.Y.; Karthikeyan, S. Sandwich structure based on back-side etching silicon (100) wafers for flexible electronic technology. Microsyst. Technol. Micro-Nanosyst. Inf. Storage Process. Syst. 2017, 23, 739–743. [Google Scholar] [CrossRef]
- Liu, S.Z.; Zhu, F.L.; Wang, X.; Gao, H.F.; Meng, Y.S. Preparation of ZnO/CC flexible materials for lithium-ion batteries by electrodeposition. J. Mater. Sci. Mater. Electron. 2022, 33, 4559–4567. [Google Scholar] [CrossRef]
- Oliveira, F.F.; Proenca, M.P.; Araujo, J.P.; Ventura, J. Electrodeposition of ZnO thin films on conducting flexible substrates. J. Mater. Sci. 2016, 51, 5589–5597. [Google Scholar] [CrossRef]
- Xu, S.Y.; Lin, L.Y.; Lin, H.Y. Novel flexible solid-state pseudo-parallel pseudocapacitor with manganese oxide active material synthesized using electrodeposition. J. Alloys Compd. 2020, 843, 156017. [Google Scholar] [CrossRef]
- He, M.; Li, J.; Xu, W.; Dong, Z.; Wu, Y.; Lv, L. Carbon Nanotubes/MnO2 Composite Fabricated via Laser Welding and Electrodeposition as Flexible Electrode for Supercapacitors. Nano 2019, 14, 86–93. [Google Scholar] [CrossRef]
- Zeng, Y.X.; Zhang, X.Y.; Qin, R.F.; Liu, X.Q.; Fang, P.P.; Zheng, D.Z.; Tong, Y.X.; Lu, X.H. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries. Adv. Mater. 2019, 31, e1903675. [Google Scholar] [CrossRef] [PubMed]
- Cong, Z.F.; Guo, W.B.; Zhang, P.P.; Sha, W.; Guo, Z.H.; Chang, C.Y.; Xu, F.; Gang, X.C.; Hu, W.G.; Pu, X. Wearable Antifreezing Fiber-Shaped Zn/PANI Batteries with Suppressed Zn Dendrites and Operation in Sweat Electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 17608–17617. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.; Akindoyo, J.O.; Mariatti, M. Recent development in silver-based ink for flexible electronics. J. Sci. Adv. Mater. Devices 2022, 7, 100395. [Google Scholar] [CrossRef]
- Kathirvelan, J. Recent developments of inkjet-printed flexible sensing electronics for wearable device applications: A review. Sens. Rev. 2021, 41, 46–56. [Google Scholar] [CrossRef]
- Saidina, D.S.; Eawwiboonthanakit, N.; Mariatti, M.; Fontana, S.; Herold, C. Recent Development of Graphene-Based Ink and Other Conductive Material-Based Inks for Flexible Electronics. J. Electron. Mater. 2019, 48, 3428–3450. [Google Scholar] [CrossRef]
- Sun, J.Z.; Sun, R.; Jia, P.; Ma, M.D.; Song, Y.L. Fabricating flexible conductive structures by printing techniques and printable conductive materials. J. Mater. Chem. C 2022, 10, 9441–9464. [Google Scholar] [CrossRef]
- Ali, M.; Lin, L.; Faisal, S.; Sahito, I.A.; Ali, S.I. Optimisation of screen printing process for functional printing. Pigment Resin Technol. 2019, 48, 456–463. [Google Scholar] [CrossRef]
- He, P.; Cao, J.Y.; Ding, H.; Liu, C.G.; Neilson, J.; Li, Z.L.; Kinloch, I.A.; Derby, B. Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics. ACS Appl. Mater. Interfaces 2019, 11, 32225–32234. [Google Scholar] [CrossRef]
- Suresh, R.R.; Lakshmanakumar, M.; Jayalatha, J.; Rajan, K.S.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Fabrication of screen-printed electrodes: Opportunities and challenges. J. Mater. Sci. 2021, 56, 8951–9006. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, S.H.; Zhou, F.; Qin, J.Q.; Shi, X.Y.; Wang, S.; Sun, C.L.; Bao, X.H.; Wu, Z.S. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. Natl. Sci. Rev. 2020, 7, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Choi, Y.M.; Jang, Y.; Jeong, J. A multilayer thin-film screen-printed triboelectric nanogenerator. Int. J. Energy Res. 2018, 42, 3688–3695. [Google Scholar] [CrossRef]
- Calvi, S.; Maita, F.; Rapisarda, M.; Fortunato, G.; Valletta, A.; Preziosi, V.; Cassinese, A.; Mariucci, L. Gravure printed organic thin film transistors: Study on the link printability improvement. Org. Electron. 2018, 61, 104–112. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.; Jeong, H.; Shin, K.H.; Lee, D. Optimization of printing conditions for microscale multiline printing in continuous roll-to-roll gravure printing. J. Ind. Eng. Chem. 2016, 42, 131–141. [Google Scholar] [CrossRef]
- Nguyen, H.A.D.; Lee, C.; Shin, K.H. Approach to optimizing printed conductive lines in high-resolution roll-to-roll gravure printing. Robot. Comput. Integr. Manuf. 2017, 46, 122–129. [Google Scholar] [CrossRef]
- Sico, G.; Montanino, M.; Del Mauro, A.D.; Minarini, C. Improving the gravure printed PEDOT:PSS electrode by gravure printing DMSO post-treatment. J. Mater. Sci. Mater. Electron. 2018, 29, 11730–11737. [Google Scholar] [CrossRef]
- Wang, Z.G.; Guo, J.B.; Pan, Y.Q.; Fang, J.; Gong, C.; Mo, L.X.; Luo, Q.; Lin, J.; Ma, C.Q. Manipulating the Macroscopic and Microscopic Morphology of Large-Area Gravure-Printed ZnO Films for High-Performance Flexible Organic Solar Cells. Energy Environ. Mater. 2023, e12592. [Google Scholar] [CrossRef]
- Shin, K.H.; Nguyen, H.A.D.; Park, J.; Shin, D.; Lee, D. Roll-to-roll gravure printing of thick-film silver electrode micropatterns for flexible printed circuit board. J. Coat. Technol. Res. 2017, 14, 95–106. [Google Scholar] [CrossRef]
- Huang, Q.J.; Zhu, Y. Gravure Printing of Water-based Silver Nanowire ink on Plastic Substrate for Flexible Electronics. Sci. Rep. 2018, 8, 15167. [Google Scholar] [CrossRef]
- Peng, Y.Y.; Du, B.Y.; Xu, X.W.; Yang, J.L.; Lin, J.; Ma, C.Q. Transparent triboelectric sensor arrays using gravure printed silver nanowire electrodes. Appl. Phys. Express 2019, 12, 066503. [Google Scholar] [CrossRef]
- Yan, K.; Li, J.A.; Pan, L.J.; Shi, Y. Inkjet printing for flexible and wearable electronics. Apl Mater. 2020, 8, 120705. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, H.Z.; Xing, L.; Bu, Q.K.; Ren, D.Y.; Sun, B. Recent advances in inkjet-printing technologies for flexible/wearable electronics. Nanoscale 2023, 15, 6025–6051. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Lin, J.; Wu, N.; Nie, S.H.; Luo, Q.; Ma, C.Q.; Cui, Z. Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Appl. Phys. Lett. 2015, 106, 093302. [Google Scholar] [CrossRef]
- Wang, T.T.; Lu, K.K.; Xu, Z.H.; Lin, Z.M.; Ning, H.L.; Qiu, T.; Yang, Z.; Zheng, H.; Yao, R.H.; Peng, J.B. Recent Developments in Flexible Transparent Electrode. Crystals 2021, 11, 511. [Google Scholar] [CrossRef]
- Ling, H.F.; Liu, S.H.; Zheng, Z.J.; Yan, F. Organic Flexible Electronics. Small Methods 2018, 2, 1800070. [Google Scholar] [CrossRef]
- Gong, H.; Yao, Y.; Yang, Y.T. Size effect on the fracture of sintered porous nano-silver joints: Experiments and Weibull analysis. J. Alloys Compd. 2021, 863, 158611. [Google Scholar] [CrossRef]
- Li, Y.; Moon, K.S.; Wong, C.P. Enhancement of electrical properties of anisotropically conductive adhesive joints via low temperature sintering. J. Appl. Polym. Sci. 2006, 99, 1665–1673. [Google Scholar] [CrossRef]
- Moon, K.-S.; Dong, H.; Maric, R.; Pothukuchi, S.; Hunt, A.; Li, Y.; Wong, C.P. Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 2005, 34, 168–175. [Google Scholar] [CrossRef]
- Yang, H.; Wu, J.H. Improvement of Sintering Performance of Nanosilver Paste by Tin Doping. J. Nanomater. 2020, 2020, 3925276. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Wang, L.G.; Sun, F.L.; Fan, X.J.; Zhang, G.Q. Indentation hardness, plasticity and initial creep properties of nanosilver sintered joint. Results Phys. 2019, 12, 712–717. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, H.; Chen, J.J.; Sowade, E.; Wang, Y.; Liang, K.; Marcus, K.; Baumann, R.R.; Feng, Z.S. Paper-Based Inkjet-Printed Flexible Electronic Circuits. Acs Appl. Mater. Interfaces 2016, 8, 26112–26118. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Lee, G.H.; Jung, H.; Lee, J.W.; Nam, Y. Inkjet-Printed Biofunctional Thermo-Plasmonic Interfaces for Patterned Neuromodulation. ACS Nano 2018, 12, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.P. Implanted Flexible Electronics: Set Device Lifetime with Smart Nanomaterials. Micromachines 2021, 12, 157. [Google Scholar] [CrossRef]
- Lv, S.W.; Ye, S.Y.; Chen, C.L.; Zhang, Y.; Wu, Y.H.; Wang, Y.Q.; Tang, R.L.; De Souza, M.M.; Liu, X.Q.; Zhao, X.B. Reactive inkjet printing of graphene based flexible circuits and radio frequency antennas. J. Mater. Chem. C 2021, 9, 13182–13192. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Chen, Z.D.; Mao, J.W.; Han, D.D.; Sun, X.Y. Laser Fabrication of Graphene-Based Electronic Skin. Front. Chem. 2019, 7, 461. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, J.J.; Lu, K.B.; Ma, Y.; Li, H.L.; Ye, J.S. Preparation of high-performance flexible microsupercapacitors based on papermaking and laser-induced graphene techniques. Electrochim. Acta 2022, 401, 139490. [Google Scholar] [CrossRef]
- You, R.; Liu, Y.Q.; Hao, Y.L.; Han, D.D.; Zhang, Y.L.; You, Z. Laser Fabrication of Graphene-Based Flexible Electronics. Adv. Mater. 2020, 32, e1901981. [Google Scholar] [CrossRef]
- Yang, W.D.; Wang, C.H. Graphene and the related conductive inks for flexible electronics. J. Mater. Chem. C 2016, 4, 7193–7207. [Google Scholar] [CrossRef]
- Balogun, M.S.; Qiu, W.T.; Lyu, F.Y.; Luo, Y.; Meng, H.; Li, J.T.; Mai, W.J.; Mai, L.Q.; Tong, Y.X. All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 2016, 26, 446–455. [Google Scholar] [CrossRef]
- Sun, K.C.; Ali, M.; Sahito, I.A.; Noh, J.W.; Jeong, S.H. Characterization of Etched Graphite Nanoplates and Their Nonwoven Electrode Applications. ECS J. Solid State Sci. Technol. 2022, 11, 061005. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Hu, Y.G.; Gu, H.; Zhu, P.L.; Jiang, W.; Zhang, G.; Sun, R.; Wong, C.P. A Highly Sensitive and Cost-Effective Flexible Pressure Sensor with Micropillar Arrays Fabricated by Novel Metal-Assisted Chemical Etching for Wearable Electronics. Adv. Mater. Technol. 2019, 4, 1900367. [Google Scholar] [CrossRef]
- Marques, D.G.; Lopes, P.A.; de Almeida, A.T.; Majidi, C.; Tavakoli, M. Reliable interfaces for EGaIn multi-layer stretchable circuits and microelectronics. Lab A Chip 2019, 19, 897–906. [Google Scholar] [CrossRef]
- Zhu, C.X.; Chortos, A.; Wang, Y.; Pfattner, R.; Lei, T.; Hinckley, A.C.; Pochorovski, I.; Yan, X.Z.; To, J.W.F.; Oh, J.Y.; et al. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 2018, 1, 183–190. [Google Scholar] [CrossRef]
- Aparicio-Martinez, E.; Estrada-Moreno, I.A.; Dominguez, R.B. Fabrication of flexible composite of laser reduced graphene@Ag dendrites as active material for surface enhanced Raman spectroscopy. Mater. Lett. 2020, 277, 128380. [Google Scholar] [CrossRef]
- Bian, J.; Zhou, L.B.Y.; Wan, X.D.; Zhu, C.; Yang, B.; Huang, Y.A. Laser Transfer, Printing, and Assembly Techniques for Flexible Electronics. Adv. Electron. Mater. 2019, 5, 1800900. [Google Scholar] [CrossRef]
- Han, T.; Nag, A.; Afsarimanesh, N.; Mukhopadhyay, S.C.; Kundu, S.; Xu, Y.Z. Laser-Assisted Printed Flexible Sensors: A Review. Sensors 2019, 19, 1462. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Seok, J.Y.; Son, S.; Yang, M.; Kang, B. High-energy, flexible micro-supercapacitors by one-step laser fabrication of a self-generated nanoporous metal/oxide electrode. J. Mater. Chem. A 2017, 5, 24585–24593. [Google Scholar] [CrossRef]
- Liao, J.N.; Guo, W.; Peng, P. Direct laser writing of copper-graphene composites for flexible electronics. Opt. Lasers Eng. 2021, 142, 106605. [Google Scholar] [CrossRef]
- Qin, R.Z.; Hu, M.J.; Zhang, N.B.; Guo, Z.Y.; Yan, Z.; Li, J.B.; Liu, J.Z.; Shan, G.C.; Yang, J. Flexible Fabrication of Flexible Electronics: A General Laser Ablation Strategy for Robust Large-Area Copper-Based Electronics. Adv. Electron. Mater. 2019, 5, 1900365. [Google Scholar] [CrossRef]
- Xiao, C.C.; Zhang, H.Y.; Zhao, H.Y.; Xu, H.R.; Huang, J.M.; Zhou, T. Preparation of liquid metal circuits on flexible polymers by selective laser ablation: Essential mechanism of non-conductivity in ablation part. Appl. Surf. Sci. 2022, 605, 154746. [Google Scholar] [CrossRef]
- Chu, X.; Zhao, X.; Zhou, Y.H.; Wang, Y.H.; Han, X.L.; Zhou, Y.L.; Ma, J.X.; Wang, Z.X.; Huang, H.C.; Xu, Z.; et al. An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy 2020, 76, 105179. [Google Scholar] [CrossRef]
- Zhou, X.W.; Guo, W.; Peng, P. Laser Erasing and Rewriting of Flexible Copper Circuits. Nano-Micro Lett. 2021, 13, 184. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Han, A.K.; Cutkosky, M.R.; Bao, Z.N. UV-laser-machined stretchable multi-modal sensor network for soft robot interaction. Npj Flex. Electron. 2022, 6, 94. [Google Scholar] [CrossRef]
- Huang, S.Y.; Liu, Y.; Zhao, Y.; Ren, Z.F.; Guo, C.F. Flexible Electronics: Stretchable Electrodes and Their Future. Adv. Funct. Mater. 2019, 29, 1805924. [Google Scholar] [CrossRef]
- Li, C.F.; Zhang, K.; Cheng, X.R.; Li, J.X.; Jiang, Y.; Li, P.Z.; Wang, B.J.; Peng, H.S. Polymers for flexible energy storage devices. Prog. Polym. Sci. 2023, 143, 101714. [Google Scholar] [CrossRef]
- Wang, D.H.; Han, C.P.; Mo, F.N.; Yang, Q.; Zhao, Y.W.; Li, Q.; Liang, G.J.; Dong, B.B.; Zhi, C.Y. Energy density issues of flexible energy storage devices. Energy Storage Mater. 2020, 28, 264–292. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, J.; Kou, T.Y.; Song, Y.; Liu, T.Y.; Li, Y. Paper-Based Electrodes for Flexible Energy Storage Devices. Adv. Sci. 2017, 4, 1700107. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, P.; Chen, J.; Sun, Z.M.; Zhao, B.X. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240. [Google Scholar] [CrossRef]
- Yadav, A.; De, B.; Singh, S.K.; Sinha, P.; Kar, K.K. Facile Development Strategy of a Single Carbon-Fiber-Based All-Solid-State Flexible Lithium-Ion Battery for Wearable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 7974–7980. [Google Scholar] [CrossRef]
- Hou, W.; Liao, Q.W.; Xie, S.; Song, Y.J.; Qin, L. Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings 2022, 12, 558. [Google Scholar] [CrossRef]
- Chang, J.; Huang, Q.Y.; Gao, Y.; Zheng, Z.J. Pathways of Developing High-Energy-Density Flexible Lithium Batteries. Adv. Mater. 2021, 33, 2004419. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wang, J.L.; Fu, D.S.; Zhang, F.R.; Wang, Z.C.; Chen, X.; Xu, J.J.; Hu, J.C.; Wu, X.D. Flexible Composite Solid Electrolyte with an Active Inorganic Filler. ACS Sustain. Chem. Eng. 2021, 9, 2237–2245. [Google Scholar] [CrossRef]
- Yang, Y.A.; Li, W.W.; Su, W.T.; Lang, M.; Li, H.L.; Zhang, F. Multiple healing flexible zinc-ion battery based on double cross-linked polyampholyte hydrogel electrolyte. J. Power Sources 2023, 579, 233313. [Google Scholar] [CrossRef]
- Wei, J.J.; Zhou, J.; Su, S.S.; Jiang, J.H.; Feng, J.; Wang, Q.G. Water-Deactivated Polyelectrolyte Hydrogel Electrolytes for Flexible High-Voltage Supercapacitors. Chemsuschem 2018, 11, 3410–3415. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Meng, X.Y.; Yi, Q.; Alonso, J.A.; Fernandez-Diaz, M.T.; Sun, C.W.; Wang, Z.L. Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack. Nano Energy 2018, 52, 510–516. [Google Scholar] [CrossRef]
- Jaafar, A.; Schoinas, S.; Passeraub, P. Pad-Printing as a Fabrication Process for Flexible and Compact Multilayer Circuits. Sensors 2021, 21, 6802. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.Y.; Choi, W.; Kim, H.Y.; Jeon, J.W.; Cho, S.H.; Chang, W.S. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing. Materials 2018, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Yu, X.; Zhang, H.; Han, M. Multilayer flexible electronics: Manufacturing approaches and applications. Mater. Today Phys. 2022, 23, 100647. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Tan, Z.; Tang, J.R.; Yao, C.; Hao, B. Research Progress of Microtransfer Printing Technology for Flexible Electronic Integrated Manufacturing. Micromachines 2021, 12, 1358. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, R.; Zhu, X.Y.; Yang, J.J.; Zhou, L.J.; Shang, S.; Sun, P.; Ge, W.S.; Xu, Q.; Lan, H.B. Multinozzle 3D Printing of Multilayer and Thin Flexible Electronics. Adv. Eng. Mater. 2022, 25, 2200785. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Li, G.Q.; Huang, L.; Ran, P.H.; Huang, J.P.; Yu, M.; Yuqian, H.Y.; Guo, J.H.; Liu, Z.Y.; Ma, X. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Appl. Mater. Today 2021, 22, 100903. [Google Scholar] [CrossRef]
- Wang, X.L.; Liu, J. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications. Micromachines 2016, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.Q.; Gao, T.Q.; Li, X.M.; Li, W.L.; Li, X.Q.; Sakamoto, K.; Wang, Y.; Li, L.Y.; Kanehara, M.; Liu, C.A.; et al. Layer-By-Layer Printing Strategy for High-Performance Flexible Electronic Devices with Low-Temperature Catalyzed Solution-Processed SiO2. Small Methods 2021, 5, e2100263. [Google Scholar] [CrossRef] [PubMed]
- Song, H.L.; Luo, G.Q.; Ji, Z.Y.; Bo, R.H.; Xue, Z.G.; Yan, D.J.; Zhang, F.; Bai, K.; Liu, J.X.; Cheng, X.; et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 2022, 8, eabm3785. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Cui, Y.; Liu, X.; Wang, Y. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices. Biosensors 2023, 13, 896. https://doi.org/10.3390/bios13090896
Han Y, Cui Y, Liu X, Wang Y. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices. Biosensors. 2023; 13(9):896. https://doi.org/10.3390/bios13090896
Chicago/Turabian StyleHan, Yuntao, Yunwei Cui, Xuxian Liu, and Yaqun Wang. 2023. "A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices" Biosensors 13, no. 9: 896. https://doi.org/10.3390/bios13090896
APA StyleHan, Y., Cui, Y., Liu, X., & Wang, Y. (2023). A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices. Biosensors, 13(9), 896. https://doi.org/10.3390/bios13090896