Establishment and Validation of an Integrated Microfluidic Step Emulsification Chip Supporting Droplet Digital Nucleic Acid Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Droplet Generation in Microchannel
2.2. Numerical Simulation for Flow Rate in Microchannel
2.3. Nucleic Acid Sample and Reagents
2.4. Fabrication Process of the Microdevice
2.5. Experimental Setup
2.6. Performance Verification of the Collected Droplets
3. Results and Discussion
3.1. Simulation Results of Nozzle Pressure Distribution
3.2. Droplet Generation
3.3. Droplet Collection and Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, X.; Mu, Y. Research and application progress of digital nucleic acid amplification detection techniques. Chin. J. Anal. Chem. 2016, 44, 512–521. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, X.; Wang, Q.; Liu, W.; Chen, C. Microfluidics for COVID-19: From current work to future perspective. Biosensors 2023, 13, 163. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Shang, Y.; Zhang, J.; Ding, Y.; Wu, Q. Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. TrAC Trends Anal. Chem. 2022, 149, 116568. [Google Scholar] [CrossRef]
- Zeng, W.; Yang, S.; Liu, Y.; Yang, T.; Tong, Z.; Shan, X.; Fu, H. Precise monodisperse droplet generation by pressure-driven microfluidic flows. Chem. Eng. Sci. 2022, 248, 117206. [Google Scholar] [CrossRef]
- Ma, C.; Sun, Y.; Huang, Y.; Gao, Z.; Huang, Y.; Pandey, I.; Jia, C.; Feng, S.; Zhao, J. On-chip nucleic acid purification followed by ddPCR for SARS-CoV-2 detection. Biosensors 2023, 13, 517. [Google Scholar] [CrossRef]
- Zhang, W.; Li, N.; Koga, D.; Zhang, Y.; Zeng, H.; Nakajima, H.; Lin, J.; Uchiyama, K. Inkjet printing based droplet generation for integrated Online Digital Polymerase Chain Reaction. Anal. Chem. 2018, 90, 5329–5334. [Google Scholar] [CrossRef]
- Liu, L.; Xiang, N.; Ni, Z.; Huang, X.; Zheng, J.; Wang, Y.; Zhang, X. Step emulsification: High-throughput production of monodisperse droplets. Biotechniques 2020, 68, 114–116. [Google Scholar] [CrossRef]
- Ye, S.; Li, C.; Zheng, X.; Huang, W.; Tao, Y.; Yu, Y.; Yang, L.; Lan, Y.; Ma, L.; Bian, S.; et al. OsciDrop: A versatile deterministic droplet generator. Anal. Chem. 2022, 94, 2918–2925. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Lyu, X.; Yang, T.; Liu, W.; Wang, B.; Luo, G. Hundred-micron droplet ejection by focused ultrasound for genomic applications. Sens. Actuators A Phys. 2023, 354, 114271. [Google Scholar] [CrossRef]
- Wei, C.; Yu, C.; Li, S.; Meng, J.; Li, T.; Cheng, J.; Li, J. A droplet-based multivolume microfluidic device for digital polymerase chain reaction. Sens. Actuators B Chem. 2022, 371, 132473. [Google Scholar] [CrossRef]
- Zhan, A.; Liu, Z.; Jiang, S.; Zhu, C.; Ma, Y.; Fu, T. Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices. J. Ind. Eng. Chem. 2022, 106, 469–481. [Google Scholar] [CrossRef]
- Zeng, W.; Fu, H. Quantitative measurements of the somatic cell count in fat-free milk based on droplet microfluidics. J. Mater. Chem. 2020, 8, 13770–13776. [Google Scholar] [CrossRef]
- Cubaud, T.; Mason, T.G. Capillary threads and viscous droplets in square microchannels. Phys. Fluids 2008, 20, 053302. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Seybold, H.; Ofner, A.; Weitz, D.A.; Studart, A.R. Wetting controls of droplet formation in step emulsification. Proc. Natl. Acad. Sci. USA 2018, 115, 9479–9484. [Google Scholar] [CrossRef] [PubMed]
- Ofner, A.; Moore, D.G.; Ruhs, P.A.; Schwendimann, P.; Eggersdorfer, M.L.; Amstad, E.; Weitz, D.A.; Studart, A.R. High-throughput step emulsification for the production of functional materials using a glass microfluidic device. Macromol. Chem. Phys. 2017, 218, 1600472. [Google Scholar] [CrossRef]
- Shi, Z.; Dong, N.; Lai, X.; Yu, H.; Li, D. Centrifugal step emulsification microfluidics supporting droplet digital loop-mediated isothermal amplification (LAMP) of SARS-CoV-2 N gene. In Proceedings of the 2021 21st International Conference on Solid-State Sensors Actuators and Microsystems (Transducers), Orlando, FL, USA, 20–24 June 2021; pp. 976–979. [Google Scholar]
- Li, T.; Wang, H.F.; Wang, Y.; Pan, J.Z.; Fang, Q. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay. Talanta 2020, 217, 120997. [Google Scholar] [CrossRef]
- Schulz, M.; Probst, S.; Calabrese, S.; Homann, A.R.; Borst, N.; Weiss, M.; von Stetten, F.; Zengerle, R.; Paust, N. Versatile tool for droplet generation in standard reaction tubes by centrifugal step emulsification. Molecules 2020, 25, 1914. [Google Scholar] [CrossRef]
- Schlenker, F.; Kipf, E.; Borst, N.; Paust, N.; Zengerle, R.; von Stetten, F.; Juelg, P.; Hutzenlaub, T. Centrifugal microfluidic integration of 4-plex ddPCR demonstrated by the quantification of cancer-associated point mutations. Processes 2021, 9, 97. [Google Scholar] [CrossRef]
- Zhao, S.H.; Zhang, Z.M.; Hu, F.; Wu, J.J.; Peng, N.C. Massive droplet generation for digital PCR via a smart step emulsification chip integrated in a reaction tube. Analyst 2021, 146, 1559–1568. [Google Scholar] [CrossRef]
- Nie, M.; Zheng, M.; Li, C.; Shen, F.; Liu, M.; Luo, H.; Song, X.; Lan, Y.; Pan, J.; Du, W. Assembled step emulsification device for multiplex droplet digital polymerase chain reaction. Anal. Chem. 2019, 91, 1779–1784. [Google Scholar] [CrossRef]
- Barkley, S.; Weeks, E.R.; Dalnoki-Veress, K. Snap-off production of monodisperse droplets. Eur. Phys. J. E 2015, 38, 138. [Google Scholar] [CrossRef] [PubMed]
- Barkley, S.; Scarfe, S.J.; Weeks, E.R.; Dalnoki-Veress, K. Predicting the size of droplets produced through Laplace pressure induced snap-off. Soft Matter 2016, 12, 7398–7404. [Google Scholar] [CrossRef] [PubMed]
- Erb, R.M.; Obrist, D.; Chen, P.W.; Studer, J.; Studart, A.R. Predicting sizes of droplets made by microfluidic flow-induced dripping. Soft Matter 2011, 7, 8757–8761. [Google Scholar] [CrossRef]
- Stolovicki, E.; Ziblat, R.; Weitz, D.A. Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance. Lab Chip 2018, 18, 132–138. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Kobayashi, I.; Nakajima, M. Effect of dispersed phase viscosity on maximum droplet generation frequency in microchannel emulsification using asymmetric straight-through channels. Microfluid. Nanofluid. 2011, 10, 1199–1209. [Google Scholar] [CrossRef]
- Schulz, M.; von Stetten, F.; Zengerle, R.; Paust, N. Centrifugal step emulsification: How buoyancy enables high generation rates of monodisperse droplets. Langmuir 2019, 35, 9809. [Google Scholar] [CrossRef]
- Xu, X.; Yuan, H.; Song, R.; Yu, M.; Chung, H.; Hou, Y.; Shang, Y.; Zhou, H.; Yao, S. High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR. Biomicrofluidics 2018, 12, 014103. [Google Scholar] [CrossRef]
- Vladisavljevic, G.T.; Ekanem, E.E.; Zhang, Z.L.; Khalid, N.; Kobayashi, I.; Nakajima, M. Long-term stability of droplet production by microchannel (step)emulsification in microfluidic silicon chips with large number of terraced microchannels. Chem. Eng. J. 2018, 333, 380–391. [Google Scholar] [CrossRef]
- Opalski, A.S.; Makuch, K.; Lai, Y.K.; Derzsi, L.; Garstecki, P. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions. Lab Chip 2019, 19, 1183–1192. [Google Scholar] [CrossRef]
- de Givenchy, E.P.T.; Amigoni, S.; Martin, C.; Andrada, G.; Caillier, L.; Geribaldi, S.; Guittard, F. Fabrication of superhydrophobic PDMS surfaces by combining acidic treatment and perfluorinated monolayers. Langmuir 2009, 25, 6448–6453. [Google Scholar] [CrossRef]
- Pinheiro, L.B.; Coleman, V.A.; Hindson, C.M.; Herrmann, J.; Hindson, B.J.; Bhat, S.; Emslie, K.R. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 2012, 84, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.; Curach, N.; Mostyn, T.; Bains, G.S.; Griffiths, K.R.; Emslie, K.R. Comparison of methods for accurate quantification of DNA mass concentration with traceability to the international system of units. Anal. Chem. 2010, 82, 7185–7192. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Qiu, L.; Yu, B.; Xu, Y.; Gao, Y.; Pan, T.; Tian, Q.; Song, Q.; Jin, W.; Jin, Q.; et al. Digital PCR on an integrated self-priming compartmentalization chip. Lab Chip 2014, 14, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
μdis | ρcon | ρdis | γ |
---|---|---|---|
1.005 mPa·s | 1614 kg/m3 | 998.2 kg/m3 | 8.1 mN/m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, G.; Zhang, Y.; Wang, S.; Lv, X.; Yang, T.; Wang, J. Establishment and Validation of an Integrated Microfluidic Step Emulsification Chip Supporting Droplet Digital Nucleic Acid Analysis. Biosensors 2023, 13, 888. https://doi.org/10.3390/bios13090888
Luo G, Zhang Y, Wang S, Lv X, Yang T, Wang J. Establishment and Validation of an Integrated Microfluidic Step Emulsification Chip Supporting Droplet Digital Nucleic Acid Analysis. Biosensors. 2023; 13(9):888. https://doi.org/10.3390/bios13090888
Chicago/Turabian StyleLuo, Gangyin, Ying Zhang, Shun Wang, Xinbei Lv, Tianhang Yang, and Jinxian Wang. 2023. "Establishment and Validation of an Integrated Microfluidic Step Emulsification Chip Supporting Droplet Digital Nucleic Acid Analysis" Biosensors 13, no. 9: 888. https://doi.org/10.3390/bios13090888
APA StyleLuo, G., Zhang, Y., Wang, S., Lv, X., Yang, T., & Wang, J. (2023). Establishment and Validation of an Integrated Microfluidic Step Emulsification Chip Supporting Droplet Digital Nucleic Acid Analysis. Biosensors, 13(9), 888. https://doi.org/10.3390/bios13090888