A Low-Cost Microfluidic-Based Detection Device for Rapid Identification and Quantification of Biomarkers-Based on a Smartphone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design of the Smartphone-BFDD
2.3. Fluorescence Quantification of BAS-FITC
2.4. Modification of Glass Capillary
2.5. Preparation of Detection Antibody–Fluorescent Microsphere
2.6. Fluorescence Quantification of N-Protein
3. Results
3.1. Design of Smartphone-BFDD
3.2. Investigation of Camera Parameters for Smartphone-BFDD
3.3. Detection of BSA-FITC Solution for Smartphone-BFDD
3.4. Characterization of the Biological Function of Glass Capillary
3.5. Detection of N-Protein for Smartphone-BFDD
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early Detection of Cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.H.K.; Chow, C.; To, K.F. Latest Development of Liquid Biopsy. J. Thorac. Dis. 2018, 10, S1645–S1651. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Alix-Panabières, C.; Pantel, K. Clinical Prospects of Liquid Biopsies. Nat. Biomed. Eng. 2017, 1, 0065. [Google Scholar] [CrossRef]
- Li, T.; Long, L. Imaging Examination and Quantitative Detection and Analysis of Gastrointestinal Diseases Based on Data Mining Technology. J. Med. Syst. 2020, 44, 31. [Google Scholar] [CrossRef]
- Niemz, A.; Ferguson, T.M.; Boyle, D.S. Point-of-Care Nucleic Acid Testing for Infectious Diseases. Trends Biotechnol. 2011, 29, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Lai, W.; Fan, D.; Fang, Q. Protein Biomarkers in Breast Cancer-Derived Extracellular Vesicles for Use in Liquid Biopsies. Am. J. Physiol.-Cell Physiol. 2021, 321, C779–C797. [Google Scholar] [CrossRef]
- Kaur, M.; Tiwari, S.; Jain, R. Protein Based Biomarkers for Non-Invasive Covid-19 Detection. Sens. Bio-Sens. Res. 2020, 29, 100362. [Google Scholar] [CrossRef]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein Biomarker Discovery and Validation: The Long and Uncertain Path to Clinical Utility. Nat. Biotechnol. 2006, 24, 971–983. [Google Scholar] [CrossRef]
- Cohen, L.; Cui, N.; Cai, Y.; Garden, P.M.; Li, X.; Weitz, D.A.; Walt, D.R. Single Molecule Protein Detection with Attomolar Sensitivity Using Droplet Digital Enzyme-Linked Immunosorbent Assay. ACS Nano 2020, 14, 9491–9501. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, J.; Ao, H.; Fu, J.; Qiao, B.; Wu, Q.; Ju, H. A Rolling Circle-Amplified G-Quadruplex/Hemin DNAzyme for Chemiluminescence Immunoassay of the SARS-CoV-2 Protein. Anal. Chem. 2021, 93, 9933–9938. [Google Scholar] [CrossRef]
- Claus, D.R.; Osmand, A.P.; Gewurz, H. Radioimmunoassay of Human C-Reactive Protein and Levels in Normal Sera. J. Lab. Clin. Med. 1976, 87, 120–128. [Google Scholar]
- Mahmudi-Azer, S.; Velazquez, J.R.; Lacy, P.; Denburg, J.A.; Moqbel, R. Immunofluorescence Analysis of Cytokine and Granule Protein Expression during Eosinophil Maturation from Cord Blood–Derived CD34+ Progenitors. J. Allergy Clin. Immunol. 2000, 105, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Jiang, Y.; Lv, T.; Li, G.; Yang, F. Biosensors and Bioelectronics Immunofluorescence Analysis of Breast Cancer Biomarkers Using Antibody-Conjugated Microbeads Embedded in a Microfluidic-Based Liquid Biopsy Chip. Biosens. Bioelectron. 2022, 216, 114598. [Google Scholar] [CrossRef]
- Camara, P.D.; Velletri, K.; Krupski, M.; Rosner, M.; Griffiths, W.C. Evaluation of the Boehringer Mannheim ES 300 Immunoassay Analyzer and Comparison with Enzyme Immunoassay, Fluorescence Polarization Immunoassay, and Radioimmunoassay Methods. Clin. Biochem. 1992, 25, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, J.W.; Conchello, J.A. Fluorescence Microscopy. Nat. Methods 2005, 2, 910–919. [Google Scholar] [CrossRef]
- Yuste, R. Fluorescence Microscopy Today. Nat. Methods 2005, 2, 902–904. [Google Scholar] [CrossRef]
- Ding, X.; Mauk, M.G.; Yin, K.; Kadimisetty, K.; Liu, C. Interfacing Pathogen Detection with Smartphones for Point-of-Care Applications. Anal. Chem. 2019, 91, 655–672. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, H.; Ding, Y.; Li, W.; Gao, H.; Ding, Z.; Lin, P.; Gu, J.; Ye, M.; Yan, T.; et al. Filter Paper- and Smartphone-Based Point-of-Care Tests for Rapid and Reliable Detection of Artificial Food Colorants. Microchem. J. 2022, 183, 108088. [Google Scholar] [CrossRef]
- Zangheri, M.; Cevenini, L.; Anfossi, L.; Baggiani, C.; Simoni, P.; Di, F.; Roda, A. Biosensors and Bioelectronics A Simple and Compact Smartphone Accessory for Quantitative Chemiluminescence-Based Lateral Fl Ow Immunoassay for Salivary Cortisol Detection. Biosens. Bioelectron. 2015, 64, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Pandian, V.; Mauk, M.G.; Bau, H.H.; Cherry, S.; Tisi, L.C.; Liu, C. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping. Anal. Chem. 2018, 90, 4823–4831. [Google Scholar] [CrossRef]
- Hussain, S.; Chen, X.; Wang, C.; Hao, Y.; Tian, X.; He, Y.; Li, J.; Shahid, M.; Iyer, P.K.; Gao, R. Aggregation and Binding-Directed FRET Modulation of Conjugated Polymer Materials for Selective and Point-of-Care Monitoring of Serum Albumins. Anal. Chem. 2022, 94, 10685–10694. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Nguyen, V.D.; Van Nguyen, H.; Seo, T.S. Quantification of Colorimetric Isothermal Amplification on the Smartphone and Its Open-Source App for Point-of-Care Pathogen Detection. Sci. Rep. 2020, 10, 15123. [Google Scholar] [CrossRef]
- Chan, J.; Michaelsen, K.; Estergreen, J.K.; Sabath, D.E.; Gollakota, S. Micro-Mechanical Blood Clot Testing Using Smartphones. Nat. Commun. 2022, 13, 831. [Google Scholar] [CrossRef]
- Ghosh, S.; Aggarwal, K.; Vinitha, T.U.; Nguyen, T.; Han, J.; Ahn, C.H. A New Microchannel Capillary Flow Assay (MCFA) Platform with Lyophilized Chemiluminescence Reagents for a Smartphone-Based POCT Detecting Malaria. Microsyst. Nanoeng. 2020, 6, 5. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, W.; Wang, Y.; Li, H.; Zhao, L.; Wang, N.; Wang, Y.; Wang, X.; Pu, Q. Low-Cost Devices with Fluorescence Spots Brightness and Size Dual-Mode Readout for the Rapid Detection of Cr ( VI ) Based on Smartphones. J. Hazard. Mater. 2021, 417, 125986. [Google Scholar] [CrossRef]
- Cantrell, K.; Erenas, M.M.; Capita, L.F. Use of the Hue Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical Parameter for Bitonal Optical Sensors. Anal. Chem. 2010, 82, 531–542. [Google Scholar] [CrossRef]
- Berlanda, S.F.; Breitfeld, M.; Dietsche, C.L.; Dittrich, P.S. Recent Advances in Micro Fl Uidic Technology for Bioanalysis and Diagnostics. Anal. Chem. 2021, 93, 311–331. [Google Scholar] [CrossRef]
- Faustino, V.; Catarino, S.O.; Lima, R.; Minas, G. Biomedical Microfluidic Devices by Using Low-Cost Fabrication Techniques: A Review. J. Biomech. 2016, 49, 2280–2292. [Google Scholar] [CrossRef] [Green Version]
- Morioka, K.; Sato, H.; Kuboyama, M.; Yanagida, A.; Shoji, A. Talanta Quantification of CRP in Human Serum Using a Handheld Fluorescence Detection System for Capillary-Based ELISA. Talanta 2021, 224, 121725. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, F.; Yang, Y.; Zhao, G.; Zhang, C.; Wang, R. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. Biosensors 2022, 12, 485. [Google Scholar] [CrossRef]
- Asci Erkocyigit, B.; Ozufuklar, O.; Yardim, A.; Guler Celik, E.; Timur, S. Biomarker Detection in Early Diagnosis of Cancer: Recent Achievements in Point-of-Care Devices Based on Paper Microfluidics. Biosensors 2023, 13, 387. [Google Scholar] [CrossRef]
- Dai, B.; Yin, C.; Wu, J.; Li, W.; Zheng, L.; Lin, F.; Han, X.; Fu, Y.; Zhang, D.; Zhuang, S. A Flux-Adaptable Pump-Free Microfluidics-Based Self-Contained Platform for Multiplex Cancer Biomarker Detection. Lab Chip 2021, 21, 143–153. [Google Scholar] [CrossRef]
- Hussain, S.; Zhao, H.; Zhou, L.; Zhou, X.; Iyer, P.K.; Lv, F.; Liu, L.; Wang, S. An Optoelectronic Device for Rapid Monitoring of Creatine Kinase Using Cationic Conjugated Polyelectrolyte. Adv. Mater. Technol. 2019, 4, 1900361. [Google Scholar] [CrossRef]
- Wu, H.; Ma, Z.; Wei, C.; Jiang, M.; Hong, X.; Li, Y.; Chen, D.; Huang, X. Three-Dimensional Microporous Hollow Fiber Membrane Microfluidic Device Integrated with Selective Separation and Capillary Self-Driven for Point-of-Care Testing. Anal. Chem. 2020, 92, 6358–6365. [Google Scholar] [CrossRef]
- Gonzalez, G.; Roppolo, I.; Pirri, C.F.; Chiappone, A. Current and Emerging Trends in Polymeric 3D Printed Microfluidic Devices. Addit. Manuf. 2022, 55, 102867. [Google Scholar] [CrossRef]
- Rasooly, R.; Bruck, H.; Balsam, J.; Prickril, B.; Ossandon, M.; Rasooly, A. Improving the Sensitivity and Functionality of Mobile Webcam-Based Fluorescence Detectors for Point-of-Care Diagnostics in Global Health. Diagnostics 2016, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Balsam, J.; Bruck, H.A.; Rasooly, A. Orthographic Projection Capillary Array Fluorescent Sensor for MHealth. Methods 2013, 63, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Balsam, J.; Bruck, H.A.; Rasooly, A. Capillary Array Waveguide Amplified Fluorescence Detector for MHealth. Sens. Actuators B Chem. 2013, 186, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Rasooly, R.; Balsam, J.; Hernlem, B.J.; Rasooly, A. Sensitive Detection of Active Shiga Toxin Using Low Cost CCD Based Optical Detector. Biosens. Bioelectron. 2015, 68, 705–711. [Google Scholar] [CrossRef]
- Balsam, J.; Bruck, H.A.; Kostov, Y.; Rasooly, A. Image Stacking Approach to Increase Sensitivity of Fluorescence Detection Using a Low Cost Complementary Metal-Oxide-Semiconductor (CMOS) Webcam. Sens. Actuators B Chem. 2012, 171–172, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhou, L.; Du, K.; Zhang, Y.; Wang, J.; Chen, L.; Lyu, Y.; Li, J.; Liu, H.; Huo, J.; et al. Foundation and Clinical Evaluation of a New Method for Detecting SARS-CoV-2 Antigen by Fluorescent Microsphere Immunochromatography. Front. Cell. Infect. Microbiol. 2020, 10, 553837. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Yang, Y.; Zhao, G.; Wang, H.; Dai, Y.; Huang, X. A Low-Cost Microfluidic-Based Detection Device for Rapid Identification and Quantification of Biomarkers-Based on a Smartphone. Biosensors 2023, 13, 753. https://doi.org/10.3390/bios13070753
Yang C, Yang Y, Zhao G, Wang H, Dai Y, Huang X. A Low-Cost Microfluidic-Based Detection Device for Rapid Identification and Quantification of Biomarkers-Based on a Smartphone. Biosensors. 2023; 13(7):753. https://doi.org/10.3390/bios13070753
Chicago/Turabian StyleYang, Chonghui, Yujing Yang, Gaozhen Zhao, Huan Wang, Yang Dai, and Xiaowen Huang. 2023. "A Low-Cost Microfluidic-Based Detection Device for Rapid Identification and Quantification of Biomarkers-Based on a Smartphone" Biosensors 13, no. 7: 753. https://doi.org/10.3390/bios13070753
APA StyleYang, C., Yang, Y., Zhao, G., Wang, H., Dai, Y., & Huang, X. (2023). A Low-Cost Microfluidic-Based Detection Device for Rapid Identification and Quantification of Biomarkers-Based on a Smartphone. Biosensors, 13(7), 753. https://doi.org/10.3390/bios13070753