A New Optical Interferometric Biosensing System Enhanced with Nanoparticles for Alzheimer’s Disease in Serum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diagnostic KIT and Read-Out Platform
2.2. Biofunctionalization of SiO2 NPs with αTau Antibodies (αTau-NPs)
2.3. Specificity Antibodies Assays
2.4. Evaluation of the Assay Parameters
2.5. Samples Preparation
2.6. Tau Detection in PBS and Serum by Competitive Assay
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lashley, T.; Schott, J.M.; Weston, P.; Murray, C.E.; Wellington, H.; Keshavan, A.; Foti, S.C.; Foiani, M.; Toombs, J.; Rohrer, J.D.; et al. Molecular Biomarkers of Alzheimer’s Disease: Progress and Prospects. DMM Dis. Model. Mech. 2018, 11, dmm031781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamshidnejad-Tosaramandani, T.; Kashanian, S.; Babaei, M.; Al-Sabri, M.H.; Schiöth, H.B. The Potential Effect of Insulin on AChE and Its Interactions with Rivastigmine In Vitro. Pharmaceuticals 2021, 14, 1136. [Google Scholar] [CrossRef]
- Andreasen, N.; Blennow, K. CSF Biomarkers for Mild Cognitive Impairment and Early Alzheimer’s Disease. Clin. Neurol. Neurosurg. 2005, 107, 165–173. [Google Scholar] [CrossRef]
- Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P.H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; et al. The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature 2016, 537, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Jamshidnejad-Tosaramandani, T.; Kashanian, S.; Al-Sabri, M.H.; Kročianová, D.; Clemensson, L.E.; Gentreau, M.; Schiöth, H.B. Statins and cognition: Modifying factors and possible underlying mechanisms. Front. Aging Neurosci. 2022, 14, 968039. [Google Scholar] [CrossRef]
- WHO. Dementia: A Public Health Priority; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Rabbito, A.; Dulewicz, M.; Kulczyńska-Przybik, A.; Mroczko, B. Biochemical Markers in Alzheimer Disease. Int. J. Mol. Sci. 2020, 21, 1989. [Google Scholar] [CrossRef] [Green Version]
- Zetterberg, H.; Burnham, S.C. Blood-Based Molecular Biomarkers for Alzheimer’s Disease. Mol. Brain 2019, 1, 1–7. [Google Scholar] [CrossRef]
- Michalicova, A.; Majerova, P.; Kovac, A. Tau Protein and Its Role in Blood–Brain Barrier Dysfunction. Front. Mol. Neurosci. 2020, 13, 570045. [Google Scholar] [CrossRef]
- Li, D.; Mielke, M.M. An Update on Blood-Based Markers of Alzheimer’s Disease Using the SiMoA Platform. Neurol. Ther. 2019, 8, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Mroczko, B.; Groblewska, M.; Litman-Zawadzka, A. The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer’s Disease (AD). Int. J. Mol. Sci. 2019, 20, 4661. [Google Scholar] [CrossRef] [Green Version]
- Nam, E.; Lee, Y.B.; Moon, C.; Chang, K.A. Serum Tau Proteins as Potential Biomarkers for the Assessment of Alzheimer’s Disease Progression. Int. J. Mol. Sci. 2020, 21, 5007. [Google Scholar] [CrossRef]
- Lönneborg, A. Biomarkers for Alzheimer Disease in Cerebrospinal Fluid, Urine, and Blood. Mol. Diagn. Ther. 2008, 12, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and Blood Biomarkers for the Diagnosis of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Yoo, Y.K.; Kim, H.Y.; Roh, J.H.; Kim, J.; Baek, S.; Lee, J.C.; Kim, H.J.; Chae, M.S.; Jeong, D.; et al. Comparative Analyses of Plasma Amyloid-b Levels in Heterogeneous and Monomerized States by Interdigitated Microelectrode Sensor System. Sci. Adv. 2019, 5, eaav1388. [Google Scholar] [CrossRef] [Green Version]
- Rezabakhsh, A.; Rahbarghazi, R.; Fathi, F. Surface Plasmon Resonance Biosensors for Detection of Alzheimer’s Biomarkers; an Effective Step in Early and Accurate Diagnosis. Biosens. Bioelectron. 2020, 167, 112511. [Google Scholar] [CrossRef]
- Song, Y.; Xu, T.; Zhu, Q.; Zhang, X. Integrated Individually Electrochemical Array for Simultaneously Detecting Multiple Alzheimer’s Biomarkers. Biosens. Bioelectron. 2020, 162, 112253. [Google Scholar] [CrossRef]
- Kim, K.; Park, C.B. Femtomolar Sensing of Alzheimer’s Tau Proteins by Water Oxidation-Coupled Photoelectrochemical Platform. Biosens. Bioelectron. 2020, 154, 112075. [Google Scholar] [CrossRef]
- García-Chamé, M.Á.; Gutiérrez-Sanz, Ó.; Ercan-Herbst, E.; Haustein, N.; Filipiak, M.S.; Ehrnhöfer, D.E.; Tarasov, A. A Transistor-Based Label-Free Immunosensor for Rapid Detection of Tau Protein. Biosens. Bioelectron. 2020, 159, 112129. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, R.L.; Garrido-Arandia, M.; Romero-Sahagun, A.; Herreros, P.; Tramarin, L.; Laguna, M.F.; Díaz-Perales, A.; Holgado, M. A New Optical Interferometric-Based in Vitro Detection System for the Specific IgE Detection in Serum of the Main Peach Allergen. Biosens. Bioelectron. 2020, 169, 112641. [Google Scholar] [CrossRef]
- Lavín, Á.; Casquel, R.; Sanza, F.J.; Laguna, M.F.; Holgado, M. Efficient Design and Optimization of Bio-Photonic Sensing Cells (BICELLs) for Label Free Biosensing. Sens. Actuators B Chem. 2013, 176, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Holgado, M.; Sanza, F.J.; López, A.; Lavín, Á.; Casquel, R.; Laguna, M.F. Description of an Advantageous Optical Label-Free Biosensing Interferometric Read-out Method to Measure Biological Species. Sensors 2014, 14, 3675–3689. [Google Scholar] [CrossRef] [Green Version]
- Sanza, F.J.; Holgado, M.; Ortega, F.J.; Casquel, R.; López-Romero, D.; Bañuls, M.J.; Laguna, M.F.; Barrios, C.A.; Puchades, R.; Maquieira, A. Bio-Photonic Sensing Cells over Transparent Substrates for Anti-Gestrinone Antibodies Biosensing. Biosens. Bioelectron. 2011, 26, 4842–4847. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, I.A.; Testa, G.; Persichetti, G.; Loffredo, F.; Villani, F.; Bernini, R. Plasma Functionalization Procedure for Antibody Immobilization for SU-8 Based Sensor. Biosens. Bioelectron. 2016, 86, 827–833. [Google Scholar] [CrossRef]
- Murillo, A.M.M.; Tomé-Amat, J.; Ramírez, Y.; Garrido-Arandia, M.; Valle, L.G.; Hernández-Ramírez, G.; Tramarin, L.; Herreros, P.; Santamaría, B.; Díaz-Perales, A.; et al. Developing an Optical Interferometric Detection Method Based Biosensor for Detecting Specific SARS-CoV-2 Immunoglobulins in Serum and Saliva, and Their Corresponding ELISA Correlation. Sens. Actuators B Chem. 2021, 345, 130394. [Google Scholar] [CrossRef]
- Maigler, M.V.; Holgado, M.; Laguna, M.F.; Sanza, F.J.; Santamaria, B.; Lavin, A.; Espinosa, R.L. A New Device Based on Interferometric Optical Detection Method for Label-Free Screening of C-Reactive Protein. IEEE Trans. Instrum. Meas. 2018, 68, 3193–3199. [Google Scholar] [CrossRef] [Green Version]
- Holgado, M.; Maigler, M.V.; Santamaría, B.; Hernandez, A.L.; Lavín, A.; Laguna, M.F.; Sanza, F.J.; Granados, D.; Casquel, R.; Portilla, J.; et al. Towards Reliable Optical Label-Free Point-of-Care (PoC) Biosensing Devices. Sens. Actuators B Chem. 2016, 236, 765–772. [Google Scholar] [CrossRef]
- Murillo, A.M.M.; Valle, L.G.; Ramírez, Y.; Sánchez, M.J.; Santamaría, B.; Molina-Roldan, E.; Ortega-Madueño, I.; Urcelay, E.; Tramarin, L.; Herreros, P.; et al. Integration of Multiple Interferometers in Highly Multiplexed Diagnostic KITs to Evaluate Several Biomarkers of COVID-19 in Serum. Biosensors 2022, 12, 671. [Google Scholar] [CrossRef]
- Holgado, M.; Sanza Gutierrez, F.J.; Laguna Heras, M.-F.; Lavin Hueros, A.; Casquel del Campo, R. Interferometric Detection Method. EP 280396A1, 11 September 2015. [Google Scholar]
- Gunda, N.S.K.; Singh, M.; Norman, L.; Kaur, K.; Mitra, S.K. Optimization and Characterization of Biomolecule Immobilization on Silicon Substrates Using (3-Aminopropyl)Triethoxysilane (APTES) and Glutaraldehyde Linker. Appl. Surf. Sci. 2014, 305, 522–530. [Google Scholar] [CrossRef]
- Barbero, F.; Russo, L.; Vitali, M.; Piella, J.; Salvo, I.; Borrajo, M.L.; Busquets-Fité, M.; Grandori, R.; Bastús, N.G.; Casals, E.; et al. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System. Semin. Immunol. 2017, 34, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Monge Argilés, J.A.; Blanco Cantó, M.A.; Leiva Salinas, C.; Flors, L.; Muñoz Ruiz, C.; Sánchez Payá, J.; Gasparini Berenguer, R.; Leiva Santana, C. A Comparison of Early Diagnostic Utility of Alzheimer Disease Biomarkers in Magnetic Resonance and Cerebrospinal Fluid. Neurología (Engl. Ed.) 2014, 29, 397–401. [Google Scholar] [CrossRef]
- Anbumani, S.; da Silva, A.M.; Roggero, U.F.S.; Silva, A.M.P.A.; Hernández-Figueroa, H.E.; Cotta, M.A. Oxygen plasma-enhanced covalent biomolecule immobilization on SU-8 thin films: A stable and homogenous surface biofunctionalization strategy. Appl. Surf. Sci. 2021, 553, 149502. [Google Scholar] [CrossRef]
- Holgado, M.; Barrios, C.A.; Ortega, F.J.; Sanza, F.J.; Casquel, R.; Laguna, M.F.; Bañuls, M.J.; López-Romero, D.; Puchades, R.; Maquieira, A. Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars. Biosens. Bioelectron. 2010, 25, 2553–2558. [Google Scholar] [CrossRef]
- Yang, C.C.; Chiu, M.J.; Chen, T.F.; Chang, H.L.; Liu, B.H.; Yang, S.Y. Assay of Plasma Phosphorylated Tau Protein (Threonine 181) and Total Tau Protein in Early-Stage Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 61, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.D.; Huang, Y.Y.; Shen, X.N.; Guo, Y.; Tan, L.; Dong, Q.; Yu, J.T. Longitudinal Plasma Phosphorylated Tau 181 Tracks Disease Progression in Alzheimer’s Disease. Transl. Psychiatry 2021, 11, 356. [Google Scholar] [CrossRef]
- Ziu, I.; Laryea, E.T.; Alashkar, F.; Wu, C.G.; Martic, S. A Dip-and-Read Optical Aptasensor for Detection of Tau Protein. Anal. Bioanal. Chem. 2020, 412, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Lisi, S.; Scarano, S.; Fedeli, S.; Pascale, E.; Cicchi, S.; Ravelet, C.; Peyrin, E.; Minunni, M. Toward Sensitive Immuno-Based Detection of Tau Protein by Surface Plasmon Resonance Coupled to Carbon Nanostructures as Signal Amplifiers. Biosens. Bioelectron. 2017, 93, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Deng, P.; Que, L. Rapid Multiplexed Detection of Beta-Amyloid and Total-Tau as Biomarkers for Alzheimer’s Disease in Cerebrospinal Fluid. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1845–1852. [Google Scholar] [CrossRef]
- Vestergaard, M.; Kerman, K.; Kim, D.K.; Hiep, H.M.; Tamiya, E. Detection of Alzheimer’s Tau Protein Using Localised Surface Plasmon Resonance-Based Immunochip. Talanta 2008, 74, 1038–1042. [Google Scholar] [CrossRef]
- Carlin, N.; Martic-Milne, S. Anti-Tau Antibodies Based Electrochemical Sensor for Detection of Tau Protein Biomarkers. J. Electrochem. Soc. 2018, 165, G3018–G3025. [Google Scholar] [CrossRef]
- Shui, B.; Tao, D.; Cheng, J.; Mei, Y.; Jaffrezic-Renault, N.; Guo, Z. A Novel Electrochemical Aptamer-Antibody Sandwich Assay for the Detection of Tau-381 in Human Serum. Analyst 2018, 143, 3549–3554. [Google Scholar] [CrossRef]
- Dai, Y.; Chiu, L.Y.; Chen, Y.; Qin, S.; Wu, X.; Liu, C.C. Neutral Charged Immunosensor Platform for Protein-Based Biomarker Analysis with Enhanced Sensitivity. ACS Sens. 2019, 4, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Tao, D.; Shui, B.; Gu, Y.; Cheng, J.; Zhang, W.; Jaffrezic-Renault, N.; Song, S.; Guo, Z. Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and Its Preliminary Application in AD and Non-AD Patients’ Sera. Biosensors 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derkus, B.; Acar Bozkurt, P.; Tulu, M.; Emregul, K.C.; Yucesan, C.; Emregul, E. Simultaneous Quantification of Myelin Basic Protein and Tau Proteins in Cerebrospinal Fluid and Serum of Multiple Sclerosis Patients Using Nanoimmunosensor. Biosens. Bioelectron. 2017, 89, 781–788. [Google Scholar] [CrossRef] [PubMed]
SiO2 NPs | SiO2 NPs with G-Protein | SiO2 NPs with αtau Antibody | |
---|---|---|---|
Zeta potential (mV) | −50.71 ± 4.38 | −40.16 ± 2.50 | −35.62 ± 0.40 |
Hydrodynamic diameter (nm) | 79.21 ± 2.70 | 95.11 ± 1.30 | 114.10 ± 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murillo, A.M.M.; Laguna, M.F.; Valle, L.G.; Tramarin, L.; Ramirez, Y.; Lavín, Á.; Santamaría, B.; Holgado, M. A New Optical Interferometric Biosensing System Enhanced with Nanoparticles for Alzheimer’s Disease in Serum. Biosensors 2023, 13, 707. https://doi.org/10.3390/bios13070707
Murillo AMM, Laguna MF, Valle LG, Tramarin L, Ramirez Y, Lavín Á, Santamaría B, Holgado M. A New Optical Interferometric Biosensing System Enhanced with Nanoparticles for Alzheimer’s Disease in Serum. Biosensors. 2023; 13(7):707. https://doi.org/10.3390/bios13070707
Chicago/Turabian StyleMurillo, Ana María M., María Fe Laguna, Luis G. Valle, Luca Tramarin, Yolanda Ramirez, Álvaro Lavín, Beatriz Santamaría, and Miguel Holgado. 2023. "A New Optical Interferometric Biosensing System Enhanced with Nanoparticles for Alzheimer’s Disease in Serum" Biosensors 13, no. 7: 707. https://doi.org/10.3390/bios13070707
APA StyleMurillo, A. M. M., Laguna, M. F., Valle, L. G., Tramarin, L., Ramirez, Y., Lavín, Á., Santamaría, B., & Holgado, M. (2023). A New Optical Interferometric Biosensing System Enhanced with Nanoparticles for Alzheimer’s Disease in Serum. Biosensors, 13(7), 707. https://doi.org/10.3390/bios13070707