Enhanced Competitive Immunomagnetic Beads Assay Assisted with PAMAM-Gold Nanoparticles Multi-Enzyme Probes for Detection of Deoxynivalenol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of DON-HRP Colorimetric Probe
2.3. Preparation of Colorimetric Probe Based on AuNPs
2.4. Preparation of Colorimetric Probe Based on AuNPs/PAMAM
2.5. Determination of Catalytic Property of Immobilized HRP
2.6. Immobilization of Protein G on IMBs
2.7. One-Step Magnetic Immunoassay with Different Signal Probes
2.8. Optimization of Magnetic Immunoassays with Multi-Enzyme Probes
2.9. Samples Preparation and Analysis
3. Results
3.1. Construction, Optimization and Characterization of Multi-Enzyme Probes
3.2. Optimization of IMBs Modified with Protein G
3.3. Optimization of Magnetic Immunoassay Based on Multi-Enzyme Probes
3.4. Analytical Performance of Magnetic Immunoassays Based on Multi-Enzyme Probes
3.5. Analysis of Grain Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brase, S.; Encinas, A.; Keck, J.; Nising, C.F. Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 2009, 109, 3903–3990. [Google Scholar] [CrossRef] [PubMed]
- Ran, R.; Wang, C.H.; Han, Z.; Wu, A.B.; Zhang, D.B.; Shi, J.X. Determination of deoxynivalenol (DON) and its derivatives: Current status of analytical methods. Food Control 2013, 34, 138–148. [Google Scholar] [CrossRef]
- Collins, T.F.X.; Sprando, R.L.; Black, T.N.; Olejnik, N.; Eppley, R.M.; Hines, F.A.; Rorie, J.; Ruggles, D.I. Effects of deoxynivalenol (DON, vomitoxin) on in utero development in rats. Food Chem. Toxicol. 2006, 44, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.H.; Deng, Y.T.; Wang, Y.C.; Zhou, R.; Deng, H.D.; Deng, J.L.; Zuo, Z.C.; Peng, X.; Yu, S.M.; Shen, L.H. Effects of the Fusarium toxin zearalenone and/or deoxynivalenol on the serum IL-1, IL-4, and C3 levels in mice. Food Agric. Immunol. 2016, 27, 414–421. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84, 663–679. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; FAO: Rome, Italy, 2006; p. L364/5.
- GB 2761-2017; National Food Safety Standard Maximum Levels of Mycotoxins in Foods . National Health and Family Planning Commission: Beijing, China; State Food and Drug Administration: Beijing, China, 2017.
- Omurtag, G.Z.; Beyoglu, D. Occurrence of deoxynivalenol (vomitoxin) in beer in Turkey detected by HPLC. Food Control 2007, 18, 163–166. [Google Scholar] [CrossRef]
- Ok, H.E.; Lee, S.Y.; Chun, H.S. Occurrence and simultaneous determination of nivalenol and deoxynivalenol in rice and bran by HPLC-UV detection and immunoaffinity cleanup. Food Control 2018, 87, 53–59. [Google Scholar] [CrossRef]
- Vendl, O.; Berthiller, F.; Crews, C.; Krska, R. Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS-MS. Anal. Bioanal. Chem. 2009, 395, 1347–1354. [Google Scholar] [CrossRef]
- Deng, C.L.; Li, C.L.; Zhou, S.; Wang, X.D.; Xu, H.B.; Wang, D.; Gong, Y.Y.; Routledge, M.N.; Zhao, Y.F.; Wu, Y.N. Risk assessment of deoxynivalenol in high-risk area of China by human biomonitoring using an improved high throughput UPLC-MS/MS method. Sci. Rep. 2018, 8, 3901. [Google Scholar] [CrossRef]
- Nan, M.N.; Xue, H.L.; Bi, Y. Contamination, detection and control of mycotoxins in fruits and vegetables. Toxins 2022, 14, 309. [Google Scholar] [CrossRef]
- Hou, L.; Tang, Y.; Xu, M.D.; Gao, Z.Q.; Tang, D.P. Tyramine-based enzymatic conjugate repeats for ultrasensitive immunoassay accompanying tyramine signal amplification with enzymatic biocatalytic precipitation. Anal. Chem. 2014, 86, 8352–8358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shi, Y.P.; Lan, F.; Pan, Y.; Lin, Y.K.; Lv, J.Z.; Zhu, Z.H.; Jiang, Q.; Yi, C. Detection of single-digit foodborne pathogens with the naked eye using carbon nanotube-based multiple cycle signal amplification. Chem. Commun. 2014, 50, 1848–1850. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Cui, Y.L.; Morisseau, C.; Gee, S.J.; Bever, C.S.; Liu, X.J.; Wu, J.; Hammock, B.D.; Ying, Y.B. Nanobody based immunoassay for human soluble epoxide hydrolase detection using polymeric horseradish peroxidase (PolyHRP) for signal enhancement: The rediscovery of PolyHRP? Anal. Chem. 2017, 89, 6249–6257. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Wang, A.M.; Huang, L.F.; Li, H.F.; Chen, Z.M.; Wang, Q.Y.; Yin, X.P. Recent advance in the support and technology used in enzyme immobilization. Afr. J. Biotechnol. 2009, 8, 4724–4733. [Google Scholar]
- Jiang, L.; Wei, D.L.; Zeng, K.; Shao, J.; Zhu, F.; Du, D.L. An enhanced direct competitive immunoassay for the detection of kanamycin and tobramycin in milk using multienzyme-particle amplification. Food Anal. Method. 2018, 11, 2066–2075. [Google Scholar] [CrossRef]
- Zeng, K.; Wei, D.L.; Zhang, Z.; Meng, H.; Huang, Z.; Zhang, X.Y. Enhanced competitive immunomagnetic beads assay with gold nanoparticles and carbon nanotube-assisted multiple enzyme probes. Sensors Actuat. B Chem. 2019, 292, 196–202. [Google Scholar] [CrossRef]
- Zhang, Q.Z.; Zhao, B.; Yan, J.; Song, S.P.; Min, R.; Fan, C.H. Nanotube-based colorimetric probe for ultrasensitive detection of ataxia telangiectasia mutated protein. Anal. Chem. 2011, 83, 9191–9196. [Google Scholar] [CrossRef]
- Bagwe, R.P.; Hilliard, L.R.; Tan, W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef]
- Frechet, J.M.J. Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology. J. Polym. Sci. Pol. Chem. 2003, 41, 3713–3725. [Google Scholar] [CrossRef]
- Fernandes, T.; Daniel-Da-Silva, A.L.; Trindade, T. Metal-dendrimer hybrid nanomaterials for sensing applications. Coordin. Chem. Rev. 2022, 460, 214483. [Google Scholar] [CrossRef]
- Bronstein, L.M.; Shifrina, Z.B. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem. Rev. 2011, 111, 5301–5344. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Imaoka, T.; Tanabe, M.; Kambe, T. New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev. 2020, 120, 1397–1437. [Google Scholar] [CrossRef] [PubMed]
- Caminade, A.M.; Hameau, A.; Turrin, C.O.; Laurent, R.; Majoral, J.P. Dendritic metal complexes for bioimaging. Recent advances. Coordin. Chem. Rev. 2021, 430, 213739. [Google Scholar] [CrossRef]
- Patle, R.Y.; Meshram, J.S. The advanced synthetic modifications and applications of multifunctional PAMAM dendritic composites. React. Chem. Eng. 2021, 7, 9–40. [Google Scholar] [CrossRef]
- Viltres, H.; Lopez, Y.C.; Leyva, C.; Gupta, N.K.; Naranjo, A.G.; Acevedo-Pena, P.; Sanchez-Diaz, A.; Bae, J.; Kim, K.S. Polyamidoamine dendrimer-based materials for environmental applications: A review. J. Mol. Liq. 2021, 334, 116017. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, Z.B.; He, Q.H.; Deng, S.Z.; Li, L.S.; Li, Y.P. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize. Food Chem. 2010, 119, 834–839. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Zhao, F.; Yang, H.F.; Chen, H.Z.; Zhuang, Y.Q. Simultaneous determination of 5 deoxynivalenols in wheat grain by ultra-high performance liquid chromatography-tandem mass spectrometry. Chin. J. Anal. Lab. 2020, 39, 715. [Google Scholar]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and characterization of immobilized antibodies for improved immunoassays. Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef]
- Hao, X.; Yang, X.; Zou, S.; Cao, X. Surface modification of poly(styrene) 96-well plates using aptamers via a dendrimer-templated strategy to enhance ELISA performances. Colloid Surf. B 2023, 221, 113003. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: A review. Microchim. Acta 2016, 183, 1–19. [Google Scholar] [CrossRef]
- Glavan, A.C.; Niu, J.; Chen, Z.; Guder, F.; Cheng, C.M.; Liu, D.; Whitesides, G.M. Analytical Devices Based on Direct Synthesis of DNA on Paper. Anal. Chem. 2016, 88, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.L.; Chen, P.C.; Chen, M.S.; Cheng, Y.C.; Lin, J.M.; Lee, H.C.; Chen, C.S. A fast universal immobilization of immunoglobulin G at 4 degrees C for the development of array-based immunoassays. PLoS ONE 2012, 7, e51370. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Nakayama, T.; Kuroda, S. Two-dimensional membrane scaffold for the oriented immobilization of biosensing molecules. Biosens. Bioelectron. 2020, 150, 111860. [Google Scholar] [CrossRef] [PubMed]
- Jansen, J.F.G.A.; Meijer, E.W.; de Brabander-van den Berg, E.M.M. The dendritic box: Shape-selective liberation of encapsulated guests. J. Am. Chem. Soc. 1995, 117, 4417–4418. [Google Scholar] [CrossRef]
- Camarada, M.B. PAMAM Dendrimers as support for the synthesis of gold nanoparticles: Understanding the effect of the terminal groups. J. Phys. Chem. A 2017, 121, 8124–8135. [Google Scholar] [CrossRef]
- Hu, L.; Dong, T.; Zhao, K.; Deng, A.; Li, J. Ultrasensitive electrochemiluminescent brombuterol immunoassay by applying a multiple signal amplification strategy based on a PAMAM-gold nanoparticle conjugate as the bioprobe and Ag@Au core shell nanoparticles as a substrate. Microchim. Acta 2017, 184, 3415–3423. [Google Scholar] [CrossRef]
- Cui, J.; Wu, B.W.; Li, Z.Z.; Bai, Y.H.; Kan, L.; Wang, M.H.; He, L.H.; Du, M. Hierarchical CoCoPBA@PCN-221 nanostructure for the highly sensitive detection of deoxynivalenol in foodstuffs. Food Chem. 2023, 403, 134370. [Google Scholar] [CrossRef]
- Li, W.; Diao, K.S.; Qiu, D.Y.; Zeng, Y.F.; Tang, K.J.; Zhu, Y.F.; Sheng, Y.Y.; Wen, Y.P.; Li, M.F. A highly-sensitive and selective antibody-like sensor based on molecularly imprinted poly(L-arginine) on COOH-MWCNTs for electrochemical recognition and detection of deoxynivalenol. Food Chem. 2021, 350, 129229. [Google Scholar] [CrossRef]
- Wang, K.; He, B.S.; Xie, L.L.; Li, L.P.; Liu, R.L.; Wei, M.; Jin, H.L.; Ren, W.J. Exonuclease III-assisted triple-amplified electrochemical aptasensor based on PtPd NPs/PEI-rGO for deoxynivalenol detection. Sens. Actuat. B Chem. 2021, 349, 130767. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Yu, X.Z.; Wen, K.; Li, C.L.; Marti, G.M.; Jiang, H.Y.; Shi, W.M.; Shen, J.Z.; Wang, Z.H. Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting three fusarium mycotoxins in maize. J. Agric. Food Chem. 2017, 65, 8063–8071. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, L.G.; Kuang, H.; Xiao, J.; Xu, C.L. Fluorescent microsphere immunochromatographic sensor for ultrasensitive monitoring deoxynivalenol in agricultural products. Microchem. J. 2021, 164, 106024. [Google Scholar] [CrossRef]
- Zhao, S.; Bu, T.; He, K.Y.; Bai, F.; Zhang, M.; Tian, Y.M.; Sun, X.Y.; Wang, X.; Zhangsun, H.; Wang, L. A novel α-Fe2O3 nanocubes-based multiplex immunochromatographic assay for simultaneous detection of deoxynivalenol and aflatoxin B1 in food samples. Food Control. 2021, 123, 107811. [Google Scholar] [CrossRef]
- Hou, S.; Ma, J.J.; Cheng, Y.Q.; Wang, H.G.; Sun, J.H.; Yan, Y.X. One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains. Food Control 2020, 117, 107107. [Google Scholar] [CrossRef]
- Peng, X.; Dong, Y.Z.; Feng, N.; Wei, Q.L.; Lu, P.; Chen, Y.P. Fe3O4 @polydopamine-based microchannel resistance immunosensor for detecting deoxynivalenol in wheat samples. Sensos Actuat. B Chem. 2023, 378, 133151. [Google Scholar] [CrossRef]
Spiked Concentration (ng/mL) | Found Concentration (ng/mL) | Recovery Rate | CV (%) | |
---|---|---|---|---|
Rice | 0 | <LOD | - | - |
1 | 1.16 ± 0.09 | 116.2% | 7.8% | |
5 | 4.82 ± 0.53 | 96.4% | 10.9% | |
10 | 11.21 ± 1.29 | 112.1% | 11.5% | |
Corn | 0 | <LOD | - | - |
1 | 1.09 ± 0.13 | 109.2% | 11.9% | |
5 | 5.43 ± 0.63 | 108.6% | 11.6% | |
10 | 9.58 ± 1.01 | 95.8% | 10.5% | |
Wheat | 0 | <LOD | - | - |
1 | 1.06 ± 0.11 | 106.2% | 10.4% | |
5 | 4.54 ± 0.41 | 90.8% | 9.0% | |
10 | 11.45 ± 1.25 | 114.5% | 10.9% |
Sample Number | Results of Rice Samples (ng/mL) | Results of Corn Samples (ng/mL) | Results of Wheat Samples (ng/mL) | |||
---|---|---|---|---|---|---|
By the Established Method | By UPLC-MS/MS | By the Established Method | By UPLC-MS/MS | By the Established Method | By UPLC-MS/MS | |
1 | ND 1 | ND | 8.87 | 4.65 | 2.12 | 1.78 |
2 | 4.56 | 3.43 | ND | ND | ND | ND |
3 | ND | ND | 6.86 | ND | ND | ND |
4 | 12.98 | 17.87 | 15.76 | 13.34 | ND | ND |
5 | 24.86 | 29.86 | 14.76 | 10.89 | 3.43 | 4.65 |
6 | ND | ND | ND | ND | ND | ND |
7 | ND | ND | ND | ND | 3.12 | 4.76 |
8 | ND | ND | 34.76 | 35.67 | ND | ND |
9 | ND | ND | ND | ND | 6.87 | 5.24 |
10 | 3.24 | 1.68 | ND | 1.43 | ND | ND |
Nanoparticles | Biosensors | Recognition Molecule | LOD | Refs. |
CoCoPBA@PCN-221 nanostructure | Electrochemical immunoassays | Antibody | 0.14 fg/mL | [39] |
MWCNTs | Electrochemical immunoassays | Molecularly imprinted poly(l-arginine) | 0.07 µM | [40] |
PtPd NPs/PEI-rGO | Electrochemical immunoassays | Aptamers | 6.9 ng/mL | [41] |
ACNPs | Lateral flow immunoassays | Antibody | 20 ng/g | [42] |
Fluorescent microsphere | Lateral flow immunoassays | Antibody | 2.5 ng/mL | [43] |
FNCs | Lateral flow immunoassays | Antibody | 0.18 ng/mL | [44] |
AuNPs | Lateral flow immunoassays | Antibody | 12.5 ng/mL | [45] |
Fe3O4@polydopamine | Microchannel resistance sensor | Antibody | 20.7 pg/mL | [46] |
AuNPs | Colorimetric biosensor | Antibody | 0.127 ng/mL | This work |
AuNPs/PAMAM | Colorimetric biosensor | Antibody | 0.035 ng/mL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, K.; Yang, J.; Su, H.; Yang, S.; Gu, X.; Zhang, Z.; Zhao, H. Enhanced Competitive Immunomagnetic Beads Assay Assisted with PAMAM-Gold Nanoparticles Multi-Enzyme Probes for Detection of Deoxynivalenol. Biosensors 2023, 13, 536. https://doi.org/10.3390/bios13050536
Zeng K, Yang J, Su H, Yang S, Gu X, Zhang Z, Zhao H. Enhanced Competitive Immunomagnetic Beads Assay Assisted with PAMAM-Gold Nanoparticles Multi-Enzyme Probes for Detection of Deoxynivalenol. Biosensors. 2023; 13(5):536. https://doi.org/10.3390/bios13050536
Chicago/Turabian StyleZeng, Kun, Jian Yang, Hao Su, Sheng Yang, Xinkai Gu, Zhen Zhang, and Hongjun Zhao. 2023. "Enhanced Competitive Immunomagnetic Beads Assay Assisted with PAMAM-Gold Nanoparticles Multi-Enzyme Probes for Detection of Deoxynivalenol" Biosensors 13, no. 5: 536. https://doi.org/10.3390/bios13050536
APA StyleZeng, K., Yang, J., Su, H., Yang, S., Gu, X., Zhang, Z., & Zhao, H. (2023). Enhanced Competitive Immunomagnetic Beads Assay Assisted with PAMAM-Gold Nanoparticles Multi-Enzyme Probes for Detection of Deoxynivalenol. Biosensors, 13(5), 536. https://doi.org/10.3390/bios13050536