Evaluation of DNA Extraction Methods for Reliable Quantification of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Extraction Methods
2.3. The CTAB Method
2.4. GXT NA Extraction Kit
2.5. QuickPick Genomic DNA Extraction Kit
2.6. DNeasy Ultraclean Microbial Kit
2.7. QIAamp DNA Mini Kit
2.8. DNA Quality Assessment
2.9. Digital PCR
2.10. Statistical Analysis
3. Results and Discussion
3.1. Evaluation of DNA Quality
3.2. Evaluation of Extraction Yields
3.3. Repeatability and Intermediate Precision
3.4. Measurement Uncertainty
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demeke, T.; Jenkins, G.R. Influence of DNA Extraction Methods, PCR Inhibitors and Quantification Methods on Real-Time PCR Assay of Biotechnology-Derived Traits. Anal. Bioanal. Chem. 2010, 396, 1977–1990. [Google Scholar] [CrossRef]
- Pyne, M.T.; Vest, L.; Clement, J.; Lee, J.; Rosvall, J.R.; Luk, K.; Rossi, M.; Cobb, B.; Hillyard, D.R. Comparison of Three Roche Hepatitis B Virus Viral Load Assay Formats. J. Clin. Microbiol. 2012, 50, 2337–2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, D.; Clari, M.A.; Costa, E.; Munoz-Cobo, B.; Solano, C.; Jose Remigia, M.; Navarro, D. Comparative Evaluation of Three Automated Systems for DNA Extraction in Conjunction with Three Commercially Available Real-Time PCR Assays for Quantitation of Plasma Cytomegalovirus DNAemia in Allogeneic Stem Cell Transplant Recipients. J. Clin. Microbiol. 2011, 49, 2899–2904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, W.; Horsfield, P.; Scott, L.E. Evaluation of the Performance of the Automated NucliSENS EasyMAG and EasyQ Systems versus the Roche AmpliPrep-AMPLICOR Combination for High-Throughput Monitoring of Human Immunodeficiency Virus Load. J. Clin. Microbiol. 2007, 45, 1244–1249. [Google Scholar] [CrossRef] [Green Version]
- Alp, A.; Hascelik, G. Comparison of 3 Nucleic Acid Isolation Methods for the Quantification of HIV-1 RNA by Cobas Taqman Real-Time Polymerase Chain Reaction System. Diagn. Microbiol. Infect. Dis. 2009, 63, 365–371. [Google Scholar] [CrossRef]
- Verheyen, J.; Kaiser, R.; Bozic, M.; Timmen-Wego, M.; Maier, B.K.; Kessler, H.H. Extraction of Viral Nucleic Acids: Comparison of Five Automated Nucleic Acid Extraction Platforms. J. Clin. Virol. 2012, 54, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Lee, E.H.; Park, G.; Jang, S.J.; Moon, D.S. Comparison of Magna Pure 96, Chemagic MSM1, and Qiaamp Minelute for Hepatitis B Virus Nucleic Acid Extraction. Ann. Clin. Lab. Sci. 2012, 42, 370–374. [Google Scholar]
- Silva, L.M.; Riani, L.R.; Silvério, M.S.; Pereira-Júnior, O.D.S.; Pittella, F. Comparison of Rapid Nucleic Acid Extraction Methods for SARS-CoV-2 Detection by RT-QPCR. Diagnostics 2022, 12, 601. [Google Scholar] [CrossRef]
- Joseph, N.; Bahtiar, N.; Mahmud, F.; Hamid, K.A.; Raman, R.; Chee, H.Y.; Nordin, S.A. Comparison of Automated and Manual Viral Nucleic Acid Extraction Kits for COVID-19 Detection Using QRT-PCR. Malays. J. Med. Health Sci. 2022, 18, 14–19. [Google Scholar]
- Aldous, W.K.; Pounder, J.I.; Cloud, J.L.; Gail, L.W. Comparison of Six Methods of Extracting Mycobacterium tuberculosis DNA from Processed Sputum for Testing by Quantitative Real-Time PCR. J. Clin. Microbiol. 2005, 43, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Richardson, L.J.; Kaestli, M.; Mayo, M.; Bowers, J.R.; Tuanyok, A.; Schupp, J.; Engelthaler, D.; Wagner, D.M.; Keim, P.S.; Currie, B.J. Towards a Rapid Molecular Diagnostic for Melioidosis: Comparison of DNA Extraction Methods from Clinical Specimens. J. Microbiol. Methods 2012, 88, 179–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yera, H.; Filisetti, D.; Bastien, P.; Ancelle, T.; Thulliez, P.; Delhaes, L. Multicenter Comparative Evaluation of Five Commercial Methods for Toxoplasma DNA Extraction from Amniotic Fluid. J. Clin. Microbiol. 2009, 47, 3881–3886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dundas, N.; Leos, N.K.; Mitui, M.; Revell, P.; Rogers, B.B. Comparison of Automated Nucleic Acid Extraction Methods with Manual Extraction. J. Mol. Diagn. 2008, 10, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauphin, L.A.; Hutchins, R.J.; Bost, L.A.; Bowen, M.D. Evaluation of Automated and Manual Commercial DNA Extraction Methods for Recovery of Brucella DNA from Suspensions and Spiked Swabs. J. Clin. Microbiol. 2009, 47, 3920–3926. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Erdman, D.E.; Kodani, M.; Kools, J.; Bowen, M.D.; Fields, B.S. Comparison of Commercial Systems for Extraction of Nucleic Acids from DNA/RNA Respiratory Pathogens. J. Virol. Methods 2011, 171, 195–199. [Google Scholar] [CrossRef]
- Claassen, S.; du Toit, E.; Kaba, M.; Moodley, C.; Zar, H.J.; Nicol, M.P. A Comparison of the Efficiency of Five Different Commercial DNA Extraction Kits for Extraction of DNA from Faecal Samples. J. Microbiol. Methods 2013, 94, 103–110. [Google Scholar] [CrossRef]
- Albertsen, M.; Karst, S.M.; Ziegler, A.S.; Kirkegaard, R.H.; Nielsen, P.H. Back to Basics—The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities. PLoS ONE 2015, 10, e0132783. [Google Scholar] [CrossRef]
- Maukonen, J.; Simões, C.; Saarela, M. The Currently Used Commercial DNA-Extraction Methods Give Different Results of Clostridial and Actinobacterial Populations Derived from Human Fecal Samples. FEMS Microbiol. Ecol. 2012, 79, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Salonen, A.; Nikkilä, J.; Jalanka-Tuovinen, J.; Immonen, O.; Rajilić-Stojanović, M.; Kekkonen, R.A.; Palva, A.; de Vos, W.M. Comparative Analysis of Fecal DNA Extraction Methods with Phylogenetic Microarray: Effective Recovery of Bacterial and Archaeal DNA Using Mechanical Cell Lysis. J. Microbiol. Methods 2010, 81, 127–134. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Walker, A.W.; Berry, S.H.; Duncan, S.H.; Farquarson, F.M.; Louis, P.; Thomson, J.M.; Satsangi, J.; Flint, H.J.; Parkhill, J.; et al. The Impact of Different DNA Extraction Kits and Laboratories upon the Assessment of Human Gut Microbiota Composition by 16S RRNA Gene Sequencing. PLoS ONE 2014, 9, e88982. [Google Scholar] [CrossRef]
- Barda, B.; Wampfler, R.; Sayasone, S.; Phongluxa, K.; Xayavong, S.; Keoduangsy, K.; Schindler, C.; Keiser, J. Evaluation of Two DNA Extraction Methods for Detection of Strongyloides stercoralis Infection. J. Clin. Microbiol. 2018, 56, e01941-17. [Google Scholar] [CrossRef] [Green Version]
- Dineen, S.M.; Aranda, R.; Anders, D.L.; Robertson, J.M. An Evaluation of Commercial DNA Extraction Kits for the Isolation of Bacterial Spore DNA from Soil. J. Appl. Microbiol. 2010, 109, 1886–1896. [Google Scholar] [CrossRef]
- McOrist, A.L.; Jackson, M.; Bird, A.R. A Comparison of Five Methods for Extraction of Bacterial DNA from Human Faecal Samples. J. Microbiol. Methods 2002, 50, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Cohen, D.B.; Ravel, J.; Abdo, Z.; Forney, L.J. Evaluation of Methods for the Extraction and Purification of DNA from the Human Microbiome. PLoS ONE 2012, 7, e33865. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Zhang, T. Biases during DNA Extraction of Activated Sludge Samples Revealed by High Throughput Sequencing. Appl. Microbiol. Biotechnol. 2013, 97, 4607–4616. [Google Scholar] [CrossRef] [Green Version]
- Desneux, J.; Pourcher, A.-M. Comparison of DNA Extraction Kits and Modification of DNA Elution Procedure for the Quantitation of Subdominant Bacteria from Piggery Effluents with Real-Time PCR. Microbiologyopen 2014, 3, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Cook, L.; Starr, K.; Boonyaratanakornkit, J.; Hayden, R.; Sam, S.S.; Caliendo, A.M. Does Size Matter? Comparison of Extraction Yields for Different-Sized DNA Fragments by Seven Different Routine and Four New Circulating Cell-Free Extraction Methods. J. Clin. Microbiol. 2018, 56, e01061-18. [Google Scholar] [CrossRef] [Green Version]
- Pavšič, J.; Devonshire, A.; Blejec, A.; Foy, C.A.; Van Heuverswyn, F.; Jones, G.M.; Schimmel, H.; Žel, J.; Huggett, J.F.; Redshaw, N.; et al. Inter-Laboratory Assessment of Different Digital PCR Platforms for Quantification of Human Cytomegalovirus DNA. Anal. Bioanal. Chem. 2017, 409, 2601–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devonshire, A.S.; O’Sullivan, D.M.; Honeyborne, I.; Jones, G.; Karczmarczyk, M.; Pavšič, J.; Gutteridge, A.; Milavec, M.; Mendoza, P.; Schimmel, H.; et al. The Use of Digital PCR to Improve the Application of Quantitative Molecular Diagnostic Methods for Tuberculosis. BMC Infect. Dis. 2016, 16, 366. [Google Scholar] [CrossRef]
- Whale, A.S.; De Spiegelaere, W.; Trypsteen, W.; Nour, A.A.; Bae, Y.-K.; Benes, V.; Burke, D.; Cleveland, M.; Corbisier, P.; Devonshire, A.S.; et al. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin. Chem. 2020, 66, 1012–1029. [Google Scholar] [CrossRef]
- Bogožalec Košir, A.; Divieto, C.; Pavšič, J.; Pavarelli, S.; Dobnik, D.; Dreo, T.; Bellotti, R.; Sassi, M.P.; Žel, J. Droplet Volume Variability as a Critical Factor for Accuracy of Absolute Quantification Using Droplet Digital PCR. Anal. Bioanal. Chem. 2017, 409, 6689–6697. [Google Scholar] [CrossRef] [Green Version]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Supplement 2 to the “Guide to the Expression of Uncertainty in Measurement”—Extension to Any Number of Output Quantities; Joint Committee for Guides in Metrology: Sèvres, France, 2011. [Google Scholar]
- Pavšič, J.; Žel, J.; Milavec, M. Digital PCR for Direct Quantification of Viruses without DNA Extraction. Anal. Bioanal. Chem. 2016, 408, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreo, T.; Pirc, M.; Ramšak, Ž.; Pavšič, J.; Milavec, M.; Žel, J.; Gruden, K. Optimising Droplet Digital PCR Analysis Approaches for Detection and Quantification of Bacteria: A Case Study of Fire Blight and Potato Brown Rot. Anal. Bioanal. Chem. 2014, 406, 6513–6528. [Google Scholar] [CrossRef]
- Zapata, A.; Ramirez-Arcos, S. A Comparative Study of McFarland Turbidity Standards and the Densimat Photometer to Determine Bacterial Cell Density. Curr. Microbiol. 2015, 70, 907–909. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Gómez, S.; Busto, M.D.; Perez-Mateos, M.; Ortega, N. Development of a Method to Recovery and Amplification DNA by Real-Time PCR from Commercial Vegetable Oils. Food Chem. 2014, 158, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.; Huggett, J. QPCR Primer Design Revisited. Biomol. Detect. Quantif. 2017, 14, 19–28. [Google Scholar] [CrossRef]
Sample | Extraction Method | A. baumannii | K. pneumoniae | P. aeruginosa | |||
---|---|---|---|---|---|---|---|
(cp/mL) | Bias (%) | (cp/mL) | Bias (%) | (cp/mL) | Bias (%) | ||
A | CTAB | 1.2 × 105 | −13.0 | 5.6 × 105 | 2.7 | 3.2 × 105 | 2636.3 |
QIAamp DNA mini kit | 4.1 × 104 | −69.4 | 2.2 × 105 | −59.4 | 4.6 × 103 | −61.4 | |
GXT NA extraction kit | 1.7 × 105 | 24.1 | 8.5 × 105 | 56.13 | 2.3 × 104 | 89.72 | |
QuickPick genomic DNA kit | 4.1 × 104 | −69.7 | 2.4 × 105 | −56.4 | 4.5 × 103 | −62.4 | |
DNeasy UltraClean microbial kit | 1.9 × 104 | −85.5 | 1.2 × 105 | −78.1 | 2.2 × 103 | −81.2 | |
B | CTAB | 1.3 × 106 | 13.3 | 5.5 × 103 | −3.9 | 1.1 × 106 | 756.8 |
QIAamp DNA mini kit | 4.6 × 105 | −60.0 | 2.6 × 103 | −54.9 | 4.5 × 104 | −64.3 | |
GXT NA extraction kit | 1.7 × 106 | 48.8 | 8.7 × 103 | 52.53 | 1.9 × 105 | 48.28 | |
QuickPick genomic DNA kit | 4.4 × 105 | −62.0 | 2.9 × 103 | −49.1 | 3.9 × 104 | −68.6 | |
DNeasy UltraClean microbial kit | 2.2 × 105 | −81.4 | 1.2 × 103 | −78.6 | 1.6 × 104 | −87.1 | |
C | CTAB | 1.2 × 104 | −8.0 | 5.2 × 104 | −1.8 | 2.1 × 106 | 79.3 |
QIAamp DNA mini kit | 5.3 × 103 | −60.0 | 2.8 × 104 | −46.9 | 5.4 × 105 | −54.7 | |
GXT NA extraction kit | 1.7 × 104 | 31.3 | 8.7 × 104 | 63.96 | 1.9 × 106 | 59.81 | |
QuickPick genomic DNA kit | 5.0 × 103 | −62.4 | 3.0 × 104 | −43.5 | 4.6 × 105 | −61.8 | |
DNeasy UltraClean microbial kit | 2.3 × 103 | −82.6 | 1.3 × 104 | −74.9 | 2.1 × 105 | −82.5 |
Sample | Extraction Method | A. baumannii | K. pneumoniae | P. aeruginosa | |||
---|---|---|---|---|---|---|---|
(cp/mL) | MU (%) | (cp/mL) | MU (%) | (cp/mL) | MU (%) | ||
A | CTAB | 1.2 × 105 | 12.2 | 5.6 × 105 | 10.9 | 3.2 × 105 | 65.5 |
QIAamp DNA mini kit | 4.1 × 104 | 17.7 | 2.2 × 105 | 6.4 | 4.6 × 103 | 29.2 | |
GXT NA extraction kit | 1.7 × 105 | 10.6 | 8.5 × 105 | 10.9 | 2.3 × 104 | 25.0 | |
QuickPick genomic DNA kit | 4.1 × 104 | 24.3 | 2.4 × 105 | 12.1 | 4.5 × 103 | 26.6 | |
DNeasy UltraClean microbial kit | 1.9 × 104 | 13.0 | 1.2 × 105 | 10.0 | 2.2 × 103 | 30.5 | |
B | CTAB | 1.3 × 106 | 27.7 | 5.5 × 103 | 37.6 | 1.1 × 106 | 61.5 |
QIAamp DNA mini kit | 4.6 × 105 | 10.3 | 2.6 × 103 | 46.6 | 4.5 × 104 | 20.0 | |
GXT NA extraction kit | 1.7 × 106 | 9.4 | 8.7 × 103 | 20.5 | 1.9 × 105 | 11.3 | |
QuickPick genomic DNA kit | 4.4 × 105 | 17.2 | 2.9 × 103 | 30.6 | 3.9 × 104 | 26.7 | |
DNeasy UltraClean microbial kit | 2.2 × 105 | 12.2 | 1.2 × 103 | 35.8 | 1.6 × 104 | 15.3 | |
C | CTAB | 1.2 × 104 | 26.1 | 5.2 × 104 | 25.5 | 2.1 × 106 | 30.5 |
QIAamp DNA mini kit | 5.3 × 103 | 27.9 | 2.8 × 104 | 15.0 | 5.4 × 105 | 5.6 | |
GXT NA extraction kit | 1.7 × 104 | 18.5 | 8.7 × 104 | 15.4 | 1.9 × 106 | 12.8 | |
QuickPick genomic DNA kit | 5.0 × 103 | 20.3 | 3.0 × 104 | 13.7 | 4.6 × 105 | 10.6 | |
DNeasy UltraClean microbial kit | 2.3 × 103 | 35.0 | 1.3 × 104 | 18.7 | 2.1 × 105 | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogožalec Košir, A.; Lužnik, D.; Tomič, V.; Milavec, M. Evaluation of DNA Extraction Methods for Reliable Quantification of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Biosensors 2023, 13, 463. https://doi.org/10.3390/bios13040463
Bogožalec Košir A, Lužnik D, Tomič V, Milavec M. Evaluation of DNA Extraction Methods for Reliable Quantification of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Biosensors. 2023; 13(4):463. https://doi.org/10.3390/bios13040463
Chicago/Turabian StyleBogožalec Košir, Alexandra, Dane Lužnik, Viktorija Tomič, and Mojca Milavec. 2023. "Evaluation of DNA Extraction Methods for Reliable Quantification of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa" Biosensors 13, no. 4: 463. https://doi.org/10.3390/bios13040463
APA StyleBogožalec Košir, A., Lužnik, D., Tomič, V., & Milavec, M. (2023). Evaluation of DNA Extraction Methods for Reliable Quantification of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Biosensors, 13(4), 463. https://doi.org/10.3390/bios13040463