Recent Advances in Bitterness-Sensing Systems
Abstract
:1. Introduction
2. Electronic Tongues in Bitterness Evaluation
2.1. Astree II E-Tongue (Alpha M.O.S.)
2.2. SA402B and TS-5000Z E-Tongues (Insent Inc.)
2.3. Other E-Tongues
3. Microminiaturized Biosensors for Bitterness Detection
3.1. Animal Gustatory Cortex
3.2. Bitter Taste Receptors
3.3. Bitter Taste Cells
3.4. Other Micro-Miniaturized Bitter Taste Sensors
4. Conclusions
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamashita, A.; Kondo, K.; Kunishima, Y.; Iseki, S.; Kondo, T.; Ota, M.S. Postnatal development of bitter taste avoidance behavior in mice is associated with ACTIN-dependent localization of bitter taste receptors to the microvilli of taste cells. Biochem. Biophys. Res. Commun. 2018, 495, 2579–2583. [Google Scholar] [CrossRef]
- von Molitor, E.; Nürnberg, E.; Ertongur-Fauth, T.; Scholz, P.; Riedel, K.; Hafner, M.; Rudolf, R.; Cesetti, T. Analysis of calcium signaling in live human Tongue cell 3D-Cultures upon tastant perfusion. Cell Calcium 2020, 87, 102164. [Google Scholar] [CrossRef] [PubMed]
- Karaman, R.; Nowak, S.; Di Pizio, A.; Kitaneh, H.; Abu-Jaish, A.; Meyerhof, W.; Niv, M.Y.; Behrens, M. Probing the binding pocket of the broadly tuned human bitter taste receptor TAS2R14 by chemical modification of cognate agonists. Chem. Biol. Drug Des. 2016, 88, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.F.; Su, X.B.; Su, X.H.; Chen, Y.Y.; Huang, W.K.; Zhang, J.; Gao, Z.B.; Lu, X.F. Identification of novel compounds for human bitter taste receptors. Chem. Biol. Drug Des. 2014, 84, 63–74. [Google Scholar] [CrossRef]
- Puri, R.; Malik, M.; Ghosh, M. An amperometric biosensor developed for detection of limonin levels in kinnow mandarin juices. Ann. Microbiol. 2012, 62, 1301–1309. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Keeney, M.P. Taste masking analysis in pharmaceutical formulation development using an electronic tongue. Int. J. Pharm. 2006, 310, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Ikehama, K.; Yoshida, K.; Haraguchi, T.; Yoshida, M.; Wada, K.; Uchida, T. Bitterness prediction of H1-antihistamines and prediction of masking effects of artificial sweeteners using an electronic tongue. Int. J. Pharm. 2013, 441, 121–127. [Google Scholar] [CrossRef]
- Choi, D.H.; Kim, N.A.; Nam, T.S.; Lee, S.; Jeong, S.H. Evaluation of taste-masking effects of pharmaceutical sweeteners with an electronic tongue system. Drug Dev. Ind. Pharm. 2014, 40, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Cheung, I.W.Y.; Li-Chan, E.C.Y. Application of taste sensing system for characterisation of enzymatic hydrolysates from shrimp processing by-products. Food Chem. 2014, 145, 1076–1085. [Google Scholar] [CrossRef]
- Kovacs, Z.; Szöllősi, D.; Zaukuu, J.L.Z.; Bodor, Z.; Vitális, F.; Aouadi, B.; Zsom-Muha, V.; Gillay, Z. Factors influencing the long-term stability of electronic tongue and application of improved drift correction methods. Biosensors 2020, 10, 74. [Google Scholar] [CrossRef]
- Bala, R.; Badjatya, S.; Madaan, R. Strategies practiced to perk up oral palatability and acceptance of bitter drugs. J. Drug Deliv. Sci. Technol. 2020, 56, 101580. [Google Scholar] [CrossRef]
- Suares, D.; Hiray, A. Taste masked orodispersible formulation of fexofenadine hydrochloride using ion exchange resins. Indian J. Pharm. Sci. 2015, 77, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.X.; Zhou, H.F.; Jiang, L.; Liu, R.; Chen, Q.M. Epigenetic regulation of ion channels in the sense of taste. Pharmacol. Res. 2021, 172, 105760. [Google Scholar] [CrossRef] [PubMed]
- Hoon, M.A.; Adler, E.; Lindemeier, J.; Battey, J.F.; Ryba, N.J.; Zuker, C.S. Putative mammalian taste receptors: A class of taste-specific GPCRs with distinct topographic selectivity. Cell 1999, 96, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, J.; Hoon, M.A.; Ryba, N.J.P.; Zuker, C.S. The receptors and cells for mammalian taste. Nature 2006, 444, 288–294. [Google Scholar] [CrossRef]
- Wu, C.S.; Du, L.P.; Zou, L.; Zhao, L.H.; Huang, L.Q.; Wang, P. Recent advances in taste cell-and receptor-based biosensors. Sens. Actuators B Chem. 2014, 201, 75–85. [Google Scholar] [CrossRef]
- DeFazio, R.A.; Dvoryanchikov, G.; Maruyama, Y.; Kim, J.W.; Pereira, E.; Roper, S.D.; Chaudhari, N. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J. Neurosci. 2006, 26, 3971–3980. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, J.; Singh, N.; Bhullar, R.P.; Chelikani, P. The structure–function role of C-terminus in human bitter taste receptor T2R4 signaling. BBA-Biomembranes 2015, 1848, 1502–1508. [Google Scholar] [CrossRef] [Green Version]
- Spaggiari, G.; Di Pizio, A.; Cozzini, P. Sweet, umami and bitter taste receptors, State of the art of in silico molecular modeling approaches. Trends Food. Sci. Tech. 2020, 96, 21–29. [Google Scholar] [CrossRef]
- Herrera Moro Chao, D.; Argmann, C.; Van Eijk, M.; Boot, R.G.; Ottenhoff, R.; Van Roomen, C.; Foppen, E.; Siljee, J.E.; Unmehopa, U.A.; Kalsbeek, A.; et al. Impact of obesity on taste receptor expression in extra-oral tissues: Emphasis on hypothalamus and brainstem. Sci. Rep. 2016, 6, 29094. [Google Scholar] [CrossRef] [Green Version]
- Prasad Pydi, S.; Upadhyaya, J.; Singh, N.; Pal Bhullar, R.; Chelikani, P. Recent advances in structure and function studies on human bitter taste receptors. Curr. Protein Pept. Sci. 2012, 13, 501–508. [Google Scholar] [CrossRef]
- Jaggupilli, A.; Singh, N.; Jesus, V.C.D.; Duan, K.; Chelikani, P. Characterization of the binding sites for bacterial acyl homoserine lactones (AHLs) on human bitter taste receptors (T2Rs). ACS Infect. Dis. 2018, 4, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zajac, A.L.; Lei, W.; Christensen, C.M.; Margolskee, R.F.; Bouysset, C.; Golebiowski, J.; Zhao, H.B.; Fiorucci, S.; Jiang, P.H. Metal ions activate the human taste receptor TAS2R7. Chem. Senses 2019, 44, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topin, J.; Bouysset, C.; Pacalon, J.; Kim, Y.; Rhyu, M.R.; Fiorucci, S.; Golebiowski, J. Functional molecular switches of mammalian G protein-coupled bitter-taste receptors. Cell. Mol. Life Sci. 2021, 78, 7605–7615. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Taruno, A.; Siebert, A.P.; Li, A.; Civan, M.M.; Foskett, J.K. CALHM1 is an Extracellular Ca2+-and Voltage-Gated ATP Permeable Ion Channel. Biophys. J. 2013, 104, 631a. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, M.; Jyotaki, M.; Foskett, J.K.; Matsumoto, I. Sodium–Taste Cells Require Skn-1a for Generation and Share Molecular Features with Sweet, Umami, and Bitter Taste Cells. Eneuro 2020, 7, 1–12. [Google Scholar] [CrossRef]
- Ishimaru, Y.; Matsunami, H. Transient receptor potential (TRP) channels and taste sensation. J. Dent. Res. 2009, 88, 212–218. [Google Scholar] [CrossRef]
- Ohla, K.; Yoshida, R.; Roper, S.D.; Di Lorenzo, P.M.; Victor, J.D.; Boughter, J.D.; Fletcher, M.; Katz, D.B.; Chaudhari, N. Recognizing taste: Coding patterns along the neural axis in mammals. Chem. Senses 2019, 44, 237–247. [Google Scholar] [CrossRef]
- Taruno, A.; Nomura, K.; Kusakizako, T.; Ma, Z.M.; Nureki, O.; Foskett, J.K. Taste transduction and channel synapses in taste buds. Pflüg. Arch. Eur. J. Phys. 2021, 473, 3–13. [Google Scholar] [CrossRef]
- Chen, Z.B.; Wu, J.H.; Zhao, Y.; Xu, F.; Hu, Y.Q. Recent advances in bitterness evaluation methods. Anal. Methods 2012, 4, 599–608. [Google Scholar] [CrossRef]
- Kim, M.J.; Son, H.J.; Kim, Y.; Misaka, T.; Rhyu, M.R. Umami–bitter interactions, The suppression of bitterness by umami peptides via human bitter taste receptor. Biochem. Bioph. Res. Commun. 2015, 456, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Krasteva-Christ, G.; Soultanova, A.; Schütz, B.; Papadakis, T.; Weiss, C.; Deckmann, K.; Chubanov, V.; Gudermann, T.; Voigt, A.; Meyerhol, W.; et al. Identification of cholinergic chemosensory cells in mouse tracheal and laryngeal glandular ducts. Int. Immunopharmacol. 2015, 29, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.; Lang, T. Extra-Oral Taste Receptors—Function, Disease, and Perspectives. Front. Nutr. 2022, 9, 881177. [Google Scholar] [CrossRef]
- Rozengurt, E.; Sternini, C. Taste receptor signaling in the mammalian gut. Curr. Opin. Pharmacol. 2007, 7, 557–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F. Taste perception: From the tongue to the testis. Mol. Hum. Reprod. 2013, 19, 349–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudnitskaya, A.; Kirsanov, D.; Blinova, Y.; Legin, E.; Seleznev, B.; Clapham, D.; Ives, R.S.; Saunders, K.A.; Legin, A. Assessment of bitter taste of pharmaceuticals with multisensor system employing 3 way PLS regression. Anal. Chim. Acta 2013, 770, 45–52. [Google Scholar] [CrossRef]
- Miyanaga, Y.; Inoue, N.; Ohnishi, A.; Fujisawa, E.; Yamaguchi, M.; Uchida, T. Quantitative prediction of the bitterness suppression of elemental diets by various flavors using a taste sensor. Pharm. Res. 2003, 20, 1932–1938. [Google Scholar] [CrossRef]
- Cocorocchio, M.; Ives, R.; Clapham, D.; Andrews, P.L.; Williams, R.S. Bitter tastant responses in the amoeba Dictyostelium correlate with rat and human taste assays. ALTEX-Altern. Anim. Exp. 2016, 33, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Lemon, C.H.; Norris, J.E.; Heldmann, B.A. The TRPA1 ion channel contributes to sensory-guided avoidance of menthol in mice. Eneuro 2019, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Jiang, H.; Han, L.; Xiong, X.; He, Y.N.; Fu, C.M.; Xu, R.C.; Zhang, D.K.; Li, J.Z.; Yang, M. A novel quantified bitterness evaluation model for traditional Chinese herbs based on an animal ethology principle. Acta Pharm. Sin. B 2018, 8, 209–217. [Google Scholar] [CrossRef]
- Liu, D.T.; Besser, G.; Oeller, F.; Mueller, C.A.; Renner, B. Bitter Taste Perception of the Human Tongue Mediated by Quinine and Caffeine Impregnated Taste Strips. Ann. Otol. Rhinol. Laryngol. 2020, 129, 813–820. [Google Scholar] [CrossRef]
- Gunaratne, T.M.; Fuentes, S.; Gunaratne, N.M.; Torrico, D.D.; Gonzalez Viejo, C.; Dunshea, F.R. Physiological responses to basic tastes for sensory evaluation of chocolate using biometric techniques. Foods 2019, 8, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immohr, L.I.; Dischinger, A.; Kühl, P.; Kletzl, H.; Sturm, S.; Guenther, A.; Pein-Hackelbusch, M. Early pediatric formulation development with new chemical entities: Opportunities of e-tongue besides human taste assessment. Int. J. Pharm. 2017, 530, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Hui, G.H.; Mi, S.S.; Ye, S.Y.; Jin, J.J.; Chen, Q.Q.; Yu, Z. Tastant quantitative analysis from complex mixtures using taste cell-based sensor and double-layered cascaded series stochastic resonance. Electrochim. Acta 2014, 136, 75–88. [Google Scholar] [CrossRef]
- Podrażka, M.; Bączyńska, E.; Kundys, M.; Jeleń, P.S.; Witkowska Nery, E. Electronic tongue—A tool for all tastes? Biosensors 2017, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int. J. Pharm. 2011, 417, 256–271. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Clapham, D.; Seleznev, B.; Lord, K.; Vlasov, Y. Electronic tongue for pharmaceutical analytics: Quantification of tastes and masking effects. Anal. Bioanal. Chem. 2004, 380, 36–45. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. A comparative study on two electronic tongues for pharmaceutical formulation development. J. Pharm. Biomed. Anal. 2011, 55, 272–281. [Google Scholar] [CrossRef]
- Xiang, Z.; Jing, Y.; Ikezaki, H.; Toko, K. Electrical Properties of Two Types of Membrane Component Used in Taste Sensors. Sensors 2021, 21, 8343. [Google Scholar] [CrossRef]
- Zhao, Z.; Ishida, M.; Onodera, T.; Toko, K. Effect of Hydroxybenzoic Acids on Caffeine Detection Using Taste Sensor with Lipid/polymer Membranes. Sensors 2022, 22, 1607. [Google Scholar] [CrossRef]
- Yoshimatsu, J.; Toko, K.; Tahara, Y.; Ishida, M.; Habara, M.; Ikezaki, H.; Kojima, H.; Ikegami, S.; Yoshida, M.; Uchida, T. Development of taste sensor to detect non-charged bitter substances. Sensors 2020, 20, 3455. [Google Scholar] [CrossRef] [PubMed]
- Marx, Í.M.; Rodrigues, N.; Dias, L.G.; Veloso, A.C.; Pereira, J.A.; Drunkler, D.A.; Peres, A.M. Quantification of table olives’ acid, bitter and salty tastes using potentiometric electronic tongue fingerprints. LWT-Food Sci. Technol. 2017, 79, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Bhondekar, A.P.; Kaur, R.; Vig, S.; Sharma, A.; Kapur, P. A simple electronic tongue. Sens. Actuators B Chem. 2012, 171, 1046–1053. [Google Scholar] [CrossRef]
- Machado, J.C.; Shimizu, F.M.; Ortiz, M.; Pinhatti, M.S.; Carr, O.; Guterres, S.S.; Oliveira, O.N., Jr.; Volpato, N.M. Efficient Praziquantel encapsulation into polymer microcapsules and taste masking evaluation using an electronic tongue. Bull. Chem. Soc. Jpn. 2018, 91, 865–874. [Google Scholar] [CrossRef]
- Pein, M.; Kirsanov, D.; Ciosek, P.; del Valle, M.; Yaroshenko, I.; Wesoły, M.; Zabadaj, M.; Gonzalez-Calabuig, A.; Wroblewski, W.; Legin, A. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis. J. Pharm. Biomed. 2015, 114, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.Q.; Wang, J.; Geng, L.H.; Wei, Z.B.; Tian, X.J. Determination of ginseng with different ages using a taste-sensing system. Sens. Mater. 2013, 25, 241–255. [Google Scholar]
- Takagi, S.; Toko, K.; Wada, K.; Ohki, T. Quantification of suppression of bitterness using an electronic tongue. J. Pharm. Sci. 2001, 90, 2042–2048. [Google Scholar] [CrossRef]
- Li, L.; Naini, V.; Ahmed, S.U. Utilization of a modified special-cubic design and an electronic tongue for bitterness masking formulation optimization. J. Pharm. Sci. 2007, 96, 2723–2734. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Douroumis, D. An in-vitro–in-vivo taste assessment of bitter drug: Comparative electronic tongues study. J. Pharm. Pharmacol. 2015, 67, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Feng, Y.; Wu, Y.; Liang, S.; Xu, D.S. Sensory evaluation of the taste of berberine hydrochloride using an Electronic Tongue. Fitoterapia 2013, 86, 137–143. [Google Scholar] [CrossRef]
- Pein, M.; Eckert, C.; Preis, M.; Breitkreutz, J. New protocol for αAstree electronic tongue enabling full performance qualification according to ICH Q2. J. Pharm. Biomed. 2013, 83, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.X.; Zhang, X.D.; Zhang, L.; Gao, X.J.; Li, H.L.; Shi, J.H.; Li, X.L. Bitterness intensity prediction of berberine hydrochloride using an electronic tongue and a GA-BP neural network. Exp. Ther. Med. 2014, 7, 1696–1702. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y.; Wang, S.Y.; Tao, O.; Zhan, X.Y. Characterization of main components in Xiao’er Xiaoji Zhike oral liquid by UPLC-MS and their taste evaluation. Food Sci. Technol. 2021, 42, 82521. [Google Scholar] [CrossRef]
- Lin, Z.Z.; Zhang, Q.; Liu, R.X.; Gao, X.J.; Zhang, L.; Kang, B.Y.; Shi, J.H.; Wu, Z.D.; Gui, X.J.; Li, X.L. Evaluation of the bitterness of traditional Chinese medicines using an E-tongue coupled with a robust partial least squares regression method. Sensors 2016, 16, 151. [Google Scholar] [CrossRef] [Green Version]
- Li, X.L.; Gao, X.J.; Liu, R.X.; Wang, J.M.; Wu, Z.D.; Zhang, L.; Li, H.L.; Gui, X.J.; Kang, B.Y.; Shi, J.H. Optimization and validation of the protocol used to analyze the taste of traditional Chinese medicines using an electronic tongue. Exp. Ther. Med. 2016, 12, 2949–2957. [Google Scholar] [CrossRef] [Green Version]
- Maniruzzaman, M.; Bonnefille, M.; Aranyos, A.; Snowden, M.J.; Douroumis, D. An in-vivo and in-vitro taste masking evaluation of bitter melt-extruded drugs. J. Pharm. Pharmacol. 2014, 66, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.A.; Charles, J.A.; Roberts-Skilton, K.; Tsundupalli, M.; Oh, C.K.; Weinecke, A.; Wagner, R.; Franz, D. Evaluating the taste masking effectiveness of various flavors in a stable formulated pediatric suspension and solution using the Astree™ electronic tongue. Powder Technol. 2012, 224, 109–123. [Google Scholar] [CrossRef]
- Nakamura, H.; Uchida, S.; Sugiura, T.; Namiki, N. The prediction of the palatability of orally disintegrating tablets by an electronic gustatory system. Int. J. Pharm. 2015, 493, 305–312. [Google Scholar] [CrossRef]
- Kim, J.I.; Cho, S.M.; Cui, J.H.; Cao, Q.R.; Oh, E.; Lee, B.J. In vitro and in vivo correlation of disintegration and bitter taste masking using orally disintegrating tablet containing ion exchange resin-drug complex. Int. J. Pharm. 2013, 455, 31–39. [Google Scholar] [CrossRef]
- Preis, M.; Eckert, C.; Häusler, O.; Breitkreutz, J. A comparative study on solubilizing and taste-masking capacities of hydroxypropyl-β-cyclodextrin and maltodextrins with high amylose content. Sens. Actuators B Chem. 2014, 193, 442–450. [Google Scholar] [CrossRef]
- Haraguchi, T.; Yoshida, M.; Uchida, T. Evaluation of ebastine-loaded orally disintegrating tablets using new apparatus of detecting disintegration time and e-tongue system. J. Drug Deliv. Sci. Tec. 2014, 24, 684–688. [Google Scholar] [CrossRef]
- Siddiqui, A.; Shah, R.B.; Khan, M.A. Oseltamivir phosphate–Amberlite™ IRP 64 ionic complex for taste masking: Preparation and chemometric evaluation. J. Pharm. Sci. 2013, 102, 1800–1812. [Google Scholar] [CrossRef]
- Altan, S.; Francois, M.; Inghelbrecht, S.; Manola, A.; Shen, Y. An application of serially balanced designs for the study of known taste samples with the α-astree electronic tongue. AAPS PharmSciTech 2014, 15, 1439–1446. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.M.; Li, J.R.; Hong, X.X.; Han, X.L.; Liu, B.S.; Li, X.F.; Zhang, H.; Gao, J.; Liu, N.; Zheng, A.P.A. Taste Masking Study Based on an Electronic Tongue, The Formulation Design of 3D Printed Levetiracetam Instant-Dissolving Tablets. Pharm. Res. 2021, 38, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Toko, K.; Hara, D.; Tahara, Y.; Yasuura, M.; Ikezaki, H. Relationship between the amount of bitter substances adsorbed onto lipid/polymer membrane and the electric response of taste sensors. Sensors 2014, 14, 16274–16286. [Google Scholar] [CrossRef]
- Wu, X.; Shiino, T.; Tahara, Y.; Ikezaki, H.; Toko, K. Quantification of pharmaceutical bitterness using a membrane electrode based on a hydrophobic tetrakis [3, 5-bis (Trifluoromethyl) phenyl] borate. Chemosensors 2021, 9, 28. [Google Scholar] [CrossRef]
- Akitomi, H.; Tahara, Y.; Yasuura, M.; Kobayashi, Y.; Ikezaki, H.; Toko, K. Quantification of tastes of amino acids using taste sensors. Sens. Actuators B Chem. 2013, 179, 276–281. [Google Scholar] [CrossRef]
- Tahara, Y.; Toko, K. Electronic tongues—A review. IEEE Sens. J. 2013, 13, 3001–3011. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Performance qualification of an electronic tongue based on ICH guideline Q2. J. Pharm. Biomed. 2010, 51, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Tanigake, A.; Miyanaga, Y.; Matsuyama, K.; Kunitomo, M.; Kobayashi, Y.; Ikezaki, H.; Taniguchi, A. Evaluation of the bitterness of antibiotics using a taste sensor. J. Pharm. Pharmacol. 2003, 55, 1479–1485. [Google Scholar] [CrossRef]
- Yatabe, R.; Noda, J.; Tahara, Y.; Naito, Y.; Ikezaki, H.; Toko, K. Analysis of a lipid/polymer membrane for bitterness sensing with a preconditioning process. Sensors 2015, 15, 22439–22450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.Z.; Zhang, Y.W.; Meng, Q.X.; Li, N.; Ren, L.P. Evaluation of beef by electronic tongue system TS-5000Z, Flavor assessment, recognition and chemical compositions according to its correlation with flavor. PLoS ONE 2015, 10, 0137807. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, S.; Haraguchi, T.; Nakamura, S.; Li, D.H.; Kojima, H.; Yoshida, M.; Uchida, T. Taste-Masking Effect of Chlorogenic Acid (CGA) on Bitter Drugs Evaluated by Taste Sensor and Surface Plasmon Resonance on the Basis of CGA–Drug Interactions. Chem. Pharm. Bull. 2017, 65, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Y.; Zhang, Y.; Khan, A.R.; He, S.W.; Wang, Y.X.; Xu, J.K.; Zhai, G.X. Quantitative prediction of the bitterness of atomoxetine hydrochloride and taste-masked using hydroxypropyl-β-cyclodextrin, A biosensor evaluation and interaction study. Asian J. Pharm. Sci. 2020, 15, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.C.; Yan, Z.; Li, Y.H.; Teka, T.; Pan, G.X.; Dou, Z.Y.; Gao, X.M.; He, J.; Han, L.F. An effective strategy for distinguishing the processing degree of Polygonum multiflorum based on the analysis of substance and taste by LC-MS, ICP-OES and electronic tongue. J. Pharm. Biomed. Anal. 2021, 205, 114328. [Google Scholar] [CrossRef]
- Keating, A.V.; Soto, J.; Forbes, C.; Zhao, M.; Craig, D.Q.M.; Tuleu, C. Multi-methodological quantitative taste assessment of anti-tuberculosis drugs to support the development of palatable paediatric dosage forms. Pharmaceutics 2020, 12, 369. [Google Scholar] [CrossRef] [PubMed]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q. Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery. Pharmaceutics 2021, 13, 1665. [Google Scholar] [CrossRef] [PubMed]
- Chay, S.K.; Keating, A.V.; James, C.; Aliev, A.E.; Haider, S.; Craig, D.Q. Evaluation of the taste-masking effects of (2-hydroxypropyl)-β-cyclodextrin on ranitidine hydrochloride; a combined biosensor, spectroscopic and molecular modelling assessment. RSC Adv. 2018, 8, 3564–3573. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.B.; Jiang, T.; Xue, J.R.; Chen, X.B.; Xuan, Z.Y.; Yang, J. Taste profile characterization of Chinese mitten crab (Eriocheir sinensis) meat using electronic tongue analysis. Sens. Mater. 2021, 33, 2537–2547. [Google Scholar] [CrossRef]
- Shiraishi, S.; Haraguchi, T.; Nakamura, S.; Kojima, H.; Kawasaki, I.; Yoshida, M.; Uchida, T. Suppression in bitterness intensity of bitter basic drug by chlorogenic acid. Chem. Pharm. Bull. 2017, 65, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.L.; Lu, Y.J.; Guo, C.L.; Zuo, S.S.; Zhou, J.L.; Wong, W.L.; Huang, B.H. The study of citrus-derived flavonoids as effective bitter taste inhibitors. J. Sci. Food Agri. 2021, 101, 5163–5171. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Onitake, H.; Haraguchi, T.; Tahara, Y.; Yatabe, R.; Yoshida, M.; Uchida, T.; Ikezaki, H.; Toko, K. Quantitative prediction of bitterness masking effect of high-potency sweeteners using taste sensor. Sens. Actuators B Chem. 2016, 235, 11–17. [Google Scholar] [CrossRef]
- Keating, A.V.; Soto, J.; Tuleu, C.; Forbes, C.; Zhao, M.; Craig, D.Q. Solid state characterisation and taste masking efficiency evaluation of polymer based extrudates of isoniazid for paediatric administration. Int. J. Pharm. 2018, 536, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Yaroshenko, I.; Kirsanov, D.; Kartsova, L.; Sidorova, A.; Sun, Q.Y.; Wan, H.T.; He, Y.; Wang, P.; Legin, A. Exploring bitterness of traditional Chinese medicine samples by potentiometric electronic tongue and by capillary electrophoresis and liquid chromatography coupled to UV detection. Talanta 2016, 152, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Amelian, A.; Szekalska, M.; Ciosek, P.; Basa, A.; Winnicka, K. Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by the spray drying. Acta Pharm. 2017, 67, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Shishkanova, T.V.; Broncová, G.; Skálová, A.; Prokopec, V.; Člupek, M.; Král, V. Potentiometric electronic tongue for taste assessment of ibuprofen based pharmaceuticals. Electroanalysis 2019, 31, 2024–2031. [Google Scholar] [CrossRef]
- Marjańska, E.; Szpakowska, M. Qualitative and quantitative analysis of selected tonic waters by potentiometric taste sensor with all-solid-state electrodes. IEEE Sens. J. 2017, 18, 1250–1255. [Google Scholar] [CrossRef]
- Boniatti, J.; Tappin, M.R.; da, S. Teixeira, R.G.; de AV Gandos, T.; Rios, L.P.; Ferreira, I.A.M.; Oliveira, K.C.; Caili-Elias, S.; Santana, A.K.M.; da Fonseca, L.B.; et al. In Vivo and In Vitro Taste Assessment of Artesunate-Mefloquine, Praziquantel, and Benznidazole Drugs for Neglected Tropical Diseases and Pediatric Patients. AAPS PharmSciTech 2022, 23, 22. [Google Scholar]
- Liu, Q.J.; Zhang, D.M.; Zhang, F.N.; Zhao, Y.; Hsia, K.J.; Wang, P. Biosensor recording of extracellular potentials in the taste epithelium for bitter detection. Sens. Actuators B Chem. 2013, 176, 497–504. [Google Scholar] [CrossRef]
- Wei, L.H.; Qiao, L.X.; Pang, G.C.; Xie, J.B. A kinetic study of bitter taste receptor sensing using immobilized porcine taste bud tissues. Biosens. Bioelectron. 2017, 92, 74–80. [Google Scholar] [CrossRef]
- Liu, Q.J.; Zhang, F.N.; Zhang, D.M.; Hu, N.; Hsia, K.J.; Wang, P. Extracellular potentials recording in intact taste epithelium by microelectrode array for a taste sensor. Biosens. Bioelectron. 2013, 43, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Xu, J.; Qin, Z.; Hu, N.; Zhou, M.L.; Huang, L.Q.; Wang, P. Detection of bitterness in vitro by a novel male mouse germ cell-based biosensor. Sens. Actuators B Chem. 2016, 223, 461–469. [Google Scholar] [CrossRef]
- Delompré, T.; Belloir, C.; Martin, C.; Salles, C.; Briand, L. Detection of Bitterness in Vitamins Is Mediated by the Activation of Bitter Taste Receptors. Nutrients 2022, 14, 4141. [Google Scholar] [CrossRef]
- Kim, T.H.; Song, H.S.; Jin, H.J.; Lee, S.H.; Namgung, S.; Kim, U.K.; Park, T.H.; Hong, S. “Bioelectronic super-taster” device based on taste receptor-carbon nanotube hybrid structures. Lab Chip 2011, 11, 2262–2267. [Google Scholar] [CrossRef]
- Hui, G.H.; Mi, S.S.; Deng, S.P. Sweet and bitter tastants specific detection by the taste cell-based sensor. Biosens. Bioelectron. 2012, 35, 429–438. [Google Scholar] [CrossRef]
- Tønning, E.; Sapelnikova, S.; Christensen, J.; Carlsson, C.; Winther-Nielsen, M.; Dock, E.; Solna, R.; Skladal, P.; Nørgaard, L.; Ruzgas, T.; et al. Chemometric exploration of an amperometric biosensor array for fast determination of wastewater quality. Biosens. Bioelectron. 2005, 21, 608–617. [Google Scholar] [CrossRef]
- Wu, C.S.; Du, L.P.; Zou, L.; Huang, L.Q.; Wang, P. A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers. Analyst 2013, 138, 5989–5994. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.W.; Qin, C.L.; Gu, C.L.; He, C.J.; Yuan, Q.C.; Liu, M.X.; Zhuang, L.J.; Wan, H.; Wang, P. A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. Biosens. Bioelectron. 2019, 145, 111673. [Google Scholar] [CrossRef]
- Wu, C.S.; Du, L.P.; Mao, L.H.; Wang, P. A novel bitter detection biosensor based on light addressable potentiometric sensor. J. Innov. Opt. Heal. Sci. 2012, 5, 1250008. [Google Scholar] [CrossRef]
- Gao, K.Q.; Gao, F.; Du, L.P.; He, C.J.; Wan, H.; Wang, P. Integrated olfaction, gustation and toxicity detection by a versatile bioengineered cell-based biomimetic sensor. Bioelectrochemistry 2019, 128, 1–8. [Google Scholar] [CrossRef]
- Hui, G.H.; Mi, S.S.; Chen, Q.Q.; Chen, X. Sweet and bitter tastant discrimination from complex chemical mixtures using taste cell-based sensor. Sens. Actuators B Chem. 2014, 192, 361–368. [Google Scholar] [CrossRef]
- Liu, Q.J.; Yu, J.J.; Hu, Z.Y.; Zhang, D.M.; Zhang, Q.; Lu, Y.L.; Wang, P.; Yang, M. Ion channels incorporated in nano-lipid bilayer and cell membrane for taste sensor. Optoelectron. Adv. Mater.-Rapid Commun. 2013, 7, 560–564. [Google Scholar]
- Qin, Z.; Zhang, B.; Hu, L.; Zhuang, L.J.; Hu, N.; Wang, P. A novel bioelectronic tongue in vivo for highly sensitive bitterness detection with brain–machine interface. Biosens. Bioelectron. 2016, 78, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Zhang, B.; Gao, K.Q.; Zhuang, L.J.; Hu, N.; Wang, P. A whole animal-based biosensor for fast detection of bitter compounds using extracellular potentials in rat gustatory cortex. Sens. Actuators B Chem. 2017, 239, 746–753. [Google Scholar] [CrossRef]
- Song, H.S.; Kwon, O.S.; Lee, S.H.; Park, S.J.; Kim, U.K.; Jang, J.; Park, T.H. Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett. 2013, 13, 172–178. [Google Scholar] [CrossRef]
- Wang, J.; Kong, S.; Chen, F.M.; Chen, W.; Du, L.P.; Cai, W.; Huang, L.Q.; Wu, C.S.; Zhang, D.W. A bioelectronic taste sensor based on bioengineered Escherichia coli cells combined with ITO-constructed electrochemical sensors. Anal. Chim. Acta 2019, 1079, 73–78. [Google Scholar] [CrossRef]
- Du, L.P.; Chen, W.; Tian, Y.L.; Zhu, P.; Wu, C.S.; Wang, P. A biomimetic taste biosensor based on bitter receptors synthesized and purified on chip from a cell-free expression system. Sens. Actuators B Chem. 2020, 312, 127949. [Google Scholar] [CrossRef]
- Nakamura, T.; Akiyoshi, T.; Tanaka, N.; Shinozuka, K.; Matzno, S.; Nakabayashi, T.; Matsuyama, K.; Kashiwayanagi, M.; Uchida, T. Effect of Quinine Solutions on Intracellular Ca2+ Levels in Neuro-2a Cells—Conventional Physiological Method for the Evaluation of Bitterness. Biol. Pharm. Bull. 2003, 26, 1637–1640. [Google Scholar] [CrossRef] [Green Version]
- Taruno, A.; Vingtdeux, V.; Ohmoto, M.; Ma, Z.M.; Dvoryanchikov, G.; Li, A.; Adrien, L.; Zhao, H.T.; Leung, S.; Abernethy, M.; et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 2013, 495, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Barretto, R.P.; Gillis-Smith, S.; Chandrashekar, J.; Yarmolinsky, D.A.; Schnitzer, M.J.; Ryba, N.J.; Zuker, C.S. The neural representation of taste quality at the periphery. Nature 2015, 517, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hoon, M.A.; Chandrashekar, J.; Mueller, K.L.; Cook, B.; Wu, D.; Zuker, C.S.; Ryba, N.J. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 2003, 112, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Zou, L.; Qin, Z.; Fang, J.R.; Huang, L.Q.; Wang, P. A novel label-free bioengineered cell-based biosensor for salicin detection. Sens. Actuators B Chem. 2017, 238, 1151–1158. [Google Scholar] [CrossRef]
- Qin, C.L.; Qin, Z.; Zhao, D.X.; Pan, Y.X.; Zhuang, L.J.; Wan, H.; Pizio, A.D.; Malachd, E.; Nivd, M.Y.; Huang, L.Q.; et al. A bioinspired in vitro bioelectronic tongue with human T2R38 receptor for high-specificity detection of NC=S-containing compounds. Talanta 2019, 199, 131–139. [Google Scholar] [CrossRef]
- Tian, Y.L.; Zhu, P.; Chen, Y.T.; Chen, W.; Du, L.P.; Wu, C.S.; Wang, P. A sperm-cell-based biosensor using a fluorescence probe for responsive signal readout toward bitter flavor detection. Talanta 2020, 211, 120731. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.W.; Jiang, D.M.; Chen, C.M.; Wu, J.G.; Qin, C.L.; Yuan, Q.C.; Xue, Y.Y.; Xiong, Y.Z.; Zhuang, L.J.; Hu, N.; et al. Hybrid Integrated Cardiomyocyte Biosensors for Bitter Detection and Cardiotoxicity Assessment. ACS Sens. 2021, 6, 2593–2604. [Google Scholar] [CrossRef] [PubMed]
- Du, L.P.; Wang, J.; Chen, W.; Zhao, L.H.; Wu, C.S.; Wang, P. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction. Anal. Chim. Acta 2018, 1022, 106–112. [Google Scholar] [CrossRef]
- Qin, C.L.; Zhang, S.S.; Yuan, Q.C.; Liu, M.X.; Jiang, N.; Zhuang, L.J.; Huang, L.Q.; Wang, P. A Cell Co-Culture Taste Sensor Using Different Proportions of Caco-2 and SH-SY5Y Cells for Bitterness Detection. Chemosensors 2022, 10, 173. [Google Scholar] [CrossRef]
- Yun, J.S.; Cho, A.N.; Cho, S.W.; Nam, Y.S. DNA-mediated self-assembly of taste cells and neurons for taste signal transmission. Biomater. Sci. 2018, 6, 3388–3396. [Google Scholar] [CrossRef]
- Lee, J.S.; Cho, A.N.; Jin, Y.; Kim, J.; Kim, S.; Cho, S.W. Bio-artificial tongue with tongue extracellular matrix and primary taste cells. Biomaterials 2018, 151, 24–37. [Google Scholar] [CrossRef]
- Pioggia, G.; Di Francesco, F.; Marchetti, A.; Ferro, M.; Ahluwalia, A. A composite sensor array impedentiometric electronic tongue, Part I. Characterization. Biosens. Bioelectron. 2007, 22, 2618–2623. [Google Scholar] [CrossRef]
- Apetrei, C.; Rodrıguez-Méndez, M.L.; Parra, V.; Gutierrez, F.; De Saja, J.A. Array of voltammetric sensors for the discrimination of bitter solutions. Sens. Actuators B Chem. 2004, 103, 145–152. [Google Scholar] [CrossRef]
- Pioggia, G.; Di Francesco, F.; Marchetti, A.; Ferro, M.; Leardi, R.; Ahluwalia, A. A composite sensor array impedentiometric electronic tongue, Part II. Discrimination of basic tastes. Biosens. Bioelectron. 2007, 22, 2624–2628. [Google Scholar] [CrossRef] [PubMed]
- Hirata, T.; Takagi, K.; Akiya, M. Development of a taste sensor based on a carbon nanotube-polymer composite material. Jpn. J. Appl. Phys. 2007, 46, L314. [Google Scholar] [CrossRef]
- Tahara, Y.; Ikeda, A.; Maehara, Y.; Habara, M.; Toko, K. Development and evaluation of a miniaturized taste sensor chip. Sensors 2011, 11, 9878–9886. [Google Scholar] [CrossRef] [PubMed]
- Braunger, M.L.; Fier, I.; Rodrigues, V.; Arratia, P.E.; Riul, A., Jr. Microfluidic mixer with automated electrode switching for sensing applications. Chemosensors 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Nag, A.; Mukhopadhyay, S.C. Fabrication and implementation of printed sensors for taste sensing applications. Sens. Actuators A Phys. 2018, 269, 53–61. [Google Scholar] [CrossRef]
- Jeong, H.M.; Kwon, H.C.; Xu, B.; Jung, D.; Han, M.; Kwon, D.H.; Kang, S.W. Taste sensor based on the floating gate structure of a lateral double-diffused metal-oxide semiconductor. Sens. Actuators B Chem. 2020, 308, 127661. [Google Scholar] [CrossRef]
- Wagh, M.D.; Sahoo, S.K.; Goel, S. Laser-induced graphene ablated polymeric microfluidic device with interdigital electrodes for taste sensing application. Sens. Actuators A Phys. 2022, 333, 113301. [Google Scholar] [CrossRef]
- Lvova, L.; Di Natale, C.; Paolesse, R. Hybrid and optical multisensory systems for liquid analysis, Theoretical basis, trends and applications. In Electronic Tongues, Fundamentals and Recent Advances, 1st ed.; Flavio, M.S., Maria, L.B., Antonio, R.J., Eds.; IOP Publishing: Bristol, UK, 2021; pp. 1–51. [Google Scholar]
Bitterness-Sensing System Types | Reference | Bitterness-Sensing System | Sensing Elements | Detectable Bitter Molecules | Detection Concentrations | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
E-tongues | [65] | Astree II E-tongue | Electrodes modified with microchips of different proprietary organic membranes and ion-selective field-effect transistors (ISFETs) | Berberine hydrochloride, rhynchophylline, leonurine, matrine, and quinine | 0.5 mM | Good reproducibility and high precision, high-throughput bitterness evaluation for large samples, and easy instrument operation | Complex calibration process before detection, long detection time, and large sample volume (>80 mL) |
[74] | Levetiracetam | 10, 16.7, 33.3 mg/mL | |||||
[89] | SA402B E-tongue | Working electrodes modified with different types of lipid/polymer membranes | Chinese mitten crabs and quinine hydrochloride | 0.04 mg/mL | Good reproducibility and high precision, high-throughput bitterness evaluation for large samples, and normalization of results to a standard solution after each measurement | Complex calibration process before detection, long detection time, and large sample volume (>80 mL) | |
[90] | Diphenhydramine hydrocholoride | 0.5 mM | |||||
[91] | Naringin, quinine hydrochloride, and stevioside | 0.48 g/L 0.1 g/L 0.25 g/L | |||||
[92] | TS-5000Z E-tongue | Quinine hydrochloride | 0.1 mM | ||||
[93] | Isoniazid | 10 mg/mL | |||||
[94] | Sodium saccharin, ibuprofen lysinate, ibuprofen, acetaminophen, caffeine, caffeine citrate, and quinine hydrochloride | 1 mM 0.013 mM 0.013 mM 0.013 mM 0.05 mM 0.03 mM 0.02 mM | |||||
[98] | Other E-tongues | All-solid-state electrode (ASSE) modified with a conducting polymer | 7 tonic waters (containing quinine hydrochloride) | / | Global selectivity for quantitative and qualitative analysis, satisfied stability, sensitivity and reproducibility | Complex fabrication process | |
[99] | Interdigitated gold electrodes modified with layer-by-layer films of cationic and anionic polymer | Artesunate-mefloquine, praziquantel, and benznidazole | 0.75 mg/mL 1.5 g/mL 0.125 mg/mL | Good sensitivity, correlation of detection results with in vivo results, and evaluation of neutral bitter substance | Complex fabrication process of electrodes | ||
Biosensors | [115] | Animal gustatory cortex with inserted 16-channel microelectronic array | Denatonium benzoate | Lower than 0.1 µM | Fast (within 4 s) and stable (1 month) response, straightforward bitterness detection, and high accuracy | Complex fabrication process, strict rat-feeding requirement, and professional surgery operation; difference in bitterness response between human and rats cannot be eliminated | |
[116] | Combined human bitterness receptor hTAS2R38 with immobilized carboxylated polypyrrole nanotubes on a field-effect transistor | Phenylthiocarbamide (PTC), propylthiouracil (PROP), goitrin, and allylisothiocyanate | 1 fM 10 fM 100 pM 1 nM | High sensitivity and selectivity for bitterness; time and labor-saving | Complex fabrication process | ||
[117] | E. coli-expressed human bitterness receptor hT2R4 and an indium tin oxide (ITO)-based electrolyte-semiconductor | Denatonium | 50 nM | Inexpensive, robust, and simple bitterness evaluation | Complex bioengineering process of E. coli bacteria | ||
[118] | Bitterness receptor T2R4 immobilized on QCM transducer | Denatonium | 5 nM | High sensitivity and selectivity, high efficiency in receptor expression and in situ purification | Complex and expensive fabrication process | ||
[127] | Taste bud cells on LAPS chip | Denatonium and ATP | 0.1 nM for ATP | Both extracellular membrane potential changes and ATP release from a single taste bud cell can be recorded; good selectivity and stability | Complex cell-culturing process and short working time | ||
[109] | Rat cardiomyocytes cultured on MEA sensor | Denatonium benzoate and diphenidol | 3.46 μM 2.92 μM | High sensitivity and selectivity for bitter and umami tastants | Complex fabrication process and short working time | ||
[128] | Coculturing Caco-2 cells and SH-SY5Y cells on CIS chip | Phenylthiocarbamide (PTC), propylthiouracil (PROP), salicin, and difenidol | 100 μM 100 μM 400 μM 100 μM | Cell coculturing enriched bitter receptors on sensor | Complex cell-culturing process and professional operation | ||
[129] | Coculturing taste and neuronal cells | Denatonium benzoate | 5.0 mM | Intercellular signal communication, good selectivity, and fast response time | Complex cell-culturing process and expensive instruments to record results | ||
[130] | Coculturing taste and neuronal cells on polystyrene cell culture plates coated with a decellularized tongue extracellular matrix | Saccharin | 100 μM | Ensures the functional taste cell-specific phenotypes and improves the adhesion and sensitivity of taste cells; visible bitterness detection | Complex fabrication and cell-culturing process | ||
Other bitter taste sensors | [139] | Interdigitated electrodes (IDEs) on a polymer chip prepared by laser-induced graphene technique | L-Tryptophan | 5.205 μM | Fast, low-cost, and simple-to-operate | Poor selectivity to discriminate tastants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Langley, N.; Zhang, J. Recent Advances in Bitterness-Sensing Systems. Biosensors 2023, 13, 414. https://doi.org/10.3390/bios13040414
Li Y, Langley N, Zhang J. Recent Advances in Bitterness-Sensing Systems. Biosensors. 2023; 13(4):414. https://doi.org/10.3390/bios13040414
Chicago/Turabian StyleLi, Yanqi, Nigel Langley, and Jiantao Zhang. 2023. "Recent Advances in Bitterness-Sensing Systems" Biosensors 13, no. 4: 414. https://doi.org/10.3390/bios13040414
APA StyleLi, Y., Langley, N., & Zhang, J. (2023). Recent Advances in Bitterness-Sensing Systems. Biosensors, 13(4), 414. https://doi.org/10.3390/bios13040414