MoS2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Instrumentation
2.3. Procedures
2.3.1. Synthesis of Carbon Nanodots (CDs)
2.3.2. Synthesis of Molybdenum Disulfide Nanosheets (MoS2-NS)
2.3.3. Thiolated Aptamer, BSA and HER2 Solutions Preparation
2.3.4. ECL Signal of [Ru(bpy)3]2+/CD system
2.3.5. Biosensor Electrochemical Characterization
2.3.6. HER2 Aptasensor Development
- Molybdenum Disulfide Nanosheet Electrode Modification
- Immobilization of Thiolated Aptamer on Molybdenum Disulfide Modifed Cspes
- Blocking with BSA
- Incubation with HER2 Protein
- Electrochemiluminescence Detection
- HER2 Detection in Spiked Human Serum Samples
3. Results and Discussion
3.1. Synthesis and Characterization of Nanomaterials: CDs and MoS2-NS
3.2. ECL Signal of [Ru(bpy)3]2+/CD system
3.3. Aptasensor Development and Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Houssein, E.H.; Emam, M.M.; Ali, A.A.; Suganthan, P.N. Deep and Machine Learning Techniques for Medical Imaging-Based Breast Cancer: A Comprehensive Review. Expert Syst. Appl. 2021, 167, 114161. [Google Scholar] [CrossRef]
- Iacoviello, L.; Bonaccio, M.; de Gaetano, G.; Donati, M.B. Epidemiology of Breast Cancer, a Paradigm of the “Common Soil” Hypothesis. Semin. Cancer Biol. 2021, 72, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Cáncer. Available online: https://www.who.int/es/news-room/fact-sheets/detail/cancer (accessed on 22 July 2022).
- Zielonke, N.; Kregting, L.M.; Heijnsdijk, E.A.M.; Veerus, P.; Heinävaara, S.; McKee, M.; de Kok, I.M.C.M.; de Koning, H.J.; van Ravesteyn, N.T.; Gredinger, G.; et al. The Potential of Breast Cancer Screening in Europe. Int. J. Cancer 2021, 148, 406–418. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Orfanou, I.M.; Argyros, O.; Papapetropoulos, A.; Tseleni-Balafouta, S.; Vougas, K.; Tamvakopoulos, C. Discovery and Pharmacological Evaluation of STEAP4 as a Novel Target for HER2 Overexpressing Breast Cancer. Front. Oncol. 2021, 11, 908. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Li, Y.; Zhao, Q.; Niu, Z. Amplification of the Human Epidermal Growth Factor Receptor 2 (HER2) Gene Is Associated with a Microsatellite Stable Status in Chinese Gastric Cancer Patients. J. Gastrointest. Oncol. 2021, 12, 377–387. [Google Scholar] [CrossRef]
- Lv, H.; Yan, M.; Jiang, Z. Recent Advances in the Treatment of Hormone Receptor-Positive/Human Epidermal Growth Factor 2-Positive Advanced Breast Cancer. Ther. Adv. Med. Oncol. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Meenakshi, A.; Suresh Kumar, R.; Siva Kumar, N. ELISA for Quantitation of Serum C-ErbB-2 Oncoprotein in Breast Cancer Patients. J. Immunoass. Immunochem. 2002, 23, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Shamshirian, A.; Aref, A.R.; Yip, G.W.; Ebrahimi Warkiani, M.; Heydari, K.; Razavi Bazaz, S.; Hamzehgardeshi, Z.; Shamshirian, D.; Moosazadeh, M.; Alizadeh-Navaei, R. Diagnostic Value of Serum HER2 Levels in Breast Cancer: A Systematic Review and Meta-Analysis. BMC Cancer 2020, 20, 1049. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.; Vázquez-Villegas, P.; Rito-Palomares, M.; Martinez-Chapa, S.O. Enzyme-Linked Immunosorbent Assay (ELISA); SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2018; ISBN 978-981-10-6765-5. [Google Scholar]
- Guerrero-Esteban, T.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Bifunctional Carbon Nanodots for Highly Sensitive HER2 Determination Based on Electrochemiluminescence. Sens. Actuators B Chem. 2021, 343, 130096. [Google Scholar] [CrossRef]
- Sadeghi, M.; Kashanian, S.; Naghib, S.M.; Arkan, E. A High-Performance Electrochemical Aptasensor Based on Graphene-Decorated Rhodium Nanoparticles to Detect HER2-ECD Oncomarker in Liquid Biopsy. Sci. Rep. 2022, 12, 3299. [Google Scholar] [CrossRef]
- Harahsheh, T.; Makableh, Y.F.; Rawashdeh, I.; Al-Fandi, M. Enhanced Aptasensor Performance for Targeted HER2 Breast Cancer Detection by Using Screen-Printed Electrodes Modified with Au Nanoparticles. Biomed. Microdevices 2021, 23, 46. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; You, M.; Zhang, F.; Wang, Q.; He, P. A Sensitive Electrochemical Aptasensing Platform Based on Exonuclease Recycling Amplification and Host-Guest Recognition for Detection of Breast Cancer Biomarker HER2. Sens. Actuators B Chem. 2018, 258, 796–802. [Google Scholar] [CrossRef]
- Centane, S.; Nyokong, T. Impedimetric Aptasensor for HER2 Biomarker Using Graphene Quantum Dots, Polypyrrole and Cobalt Phthalocyanine Modified Electrodes. Sens. Bio-Sens. Res. 2021, 34, 100467. [Google Scholar] [CrossRef]
- Gu, C.; Guo, C.; Li, Z.; Wang, M.; Zhou, N.; He, L.; Zhang, Z.; Du, M. Bimetallic ZrHf-Based Metal-Organic Framework Embedded with Carbon Dots: Ultra-Sensitive Platform for Early Diagnosis of HER2 and HER2-Overexpressed Living Cancer Cells. Biosens. Bioelectron. 2019, 134, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Mu, Z.; Qing, M.; Zhou, J.; Sun, S.; Bai, L. A Novel Binary Luminophore Based High-Efficient Electrochemiluminescence Biosensor for Ultrasensitive Detection of Human Epidermal Growth Factor Receptor-2. Chem. Eng. J. 2022, 450, 138362. [Google Scholar] [CrossRef]
- Liang, H.; Zhou, L.; Chen, P.; Zheng, J.; Huang, Y.; Liang, J.; Zhong, J.; Huang, Y.; Yu, M.; Guan, B.O. Optical Microfiber with a Gold Nanorods-Black Phosphorous Nanointerface: An Ultrasensitive Biosensor and Nanotherapy Platform. Anal. Chem. 2022, 94, 8058–8065. [Google Scholar] [CrossRef]
- Mishra, S.; Kachhawa, P.; Jain, A.K.; Thakur, R.R.; Chaturvedi, N. High Sensitivity Label-Free Detection of HER2 Using AlGaN/GaN High Electron Mobility Transistor-Based Biosensor. Lab Chip 2022, 22, 4129–4140. [Google Scholar] [CrossRef]
- Pileri, T.; Sinibaldi, A.; Allegretti, M.; Danz, N.; Munzert, P.; Giordani, E.; Occhicone, A.; Sonntag, F.; Giacomini, P.; Michelotti, F. Multiplexed Bio-Assay for a Reliable Detection of HER2 in Human Plasma Using a Combined Label-Free/Fluorescence Biosensing Platform. In Frontiers in Biological Detection: From Nanosensors to Systems XIV; SPIE: Bellingham, WA, USA, 2022; p. PC1197903. [Google Scholar] [CrossRef]
- Zhao, Q.; Xue, J.; Ren, X.; Fan, D.; Kuang, X.; Li, Y.; Wei, Q.; Ju, H. Competitive Electrochemiluminescence Aptasensor Based on the Ru(II) Derivative Utilizing Intramolecular ECL Emission for E2 Detection. Sens. Actuators B Chem. 2021, 348, 130717. [Google Scholar] [CrossRef]
- Ma, X.; Gao, W.; Du, F.; Yuan, F.; Yu, J.; Guan, Y.; Sojic, N.; Xu, G. Rational Design of Electrochemiluminescent Devices. Acc. Chem. Res. 2021, 54, 2936–2945. [Google Scholar] [CrossRef]
- Kitte, S.A.; Bushira, F.A.; Xu, C.; Wang, Y.; Li, H.; Jin, Y. Plasmon-Enhanced Nitrogen Vacancy-Rich Carbon Nitride Electrochemiluminescence Aptasensor for Highly Sensitive Detection of MiRNA. Anal. Chem. 2022, 94, 1406–1414. [Google Scholar] [CrossRef]
- Miao, W. Electrogenerated Chemiluminescence and Its Biorelated Applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef]
- Hu, L.; Wu, Y.; Xu, M.; Gu, W.; Zhu, C. Recent Advances in Co-Reaction Accelerators for Sensitive Electrochemiluminescence Analysis. Chem. Commun. 2020, 56, 10989–10999. [Google Scholar] [CrossRef]
- Miao, W.; Choi, J.P.; Bard, A.J. Electrogenerated Chemiluminescence 69: The Tris(2,2′-Bipyridine)Ruthenium(II), (Ru(Bpy)32+)/Tri-n-Propylamine (TPrA) System Revisited—A New Route Involving TPrA.+ Cation Radicals. J. Am. Chem. Soc. 2002, 124, 14478–14485. [Google Scholar] [CrossRef] [PubMed]
- Kitte, S.A.; Wang, C.; Li, S.; Zholudov, Y.; Qi, L.; Li, J.; Xu, G. Electrogenerated Chemiluminescence of Tris(2,2′-Bipyridine)Ruthenium(II) Using N-(3-Aminopropyl)Diethanolamine as Coreactant. Anal. Bioanal. Chem. 2016, 408, 7059–7065. [Google Scholar] [CrossRef]
- Kitte, S.A.; Bushira, F.A.; Soreta, T.R. A New Anodic Electrochemiluminescence of Tris(2,2′- Bipyridine)Ruthenium(II) with 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide as a Coreactant for Determination of Hydrogen Peroxide. Microchem. J. 2022, 177, 107256. [Google Scholar] [CrossRef]
- Long, Y.M.; Bao, L.; Zhao, J.Y.; Zhang, Z.L.; Pang, D.W. Revealing Carbon Nanodots as Coreactants of the Anodic Electrochemiluminescence of Ru(Bpy)32+. Anal. Chem. 2014, 86, 7224–7228. [Google Scholar] [CrossRef]
- Strauss, V.; Margraf, J.T.; Dirian, K.; Syrgiannis, Z.; Prato, M.; Wessendorf, C.; Hirsch, A.; Clark, T.; Guldi, D.M. Carbon Nanodots: Supramolecular Electron Donor–Acceptor Hybrids Featuring Perylenediimides. Angew. Chem. Int. Ed. 2015, 54, 8292–8297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, V.; Margraf, J.T.; Dolle, C.; Butz, B.; Nacken, T.J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E.; Clark, T.; et al. Carbon Nanodots: Toward a Comprehensive Understanding of Their Photoluminescence. J. Am. Chem. Soc. 2014, 136, 17308–17316. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Y.; Liu, K.; Zhou, R.; Shan, C. Multicolor Biomass Based Carbon Nanodots for Bacterial Imaging. Chin. Chem. Lett. 2022, 33, 798–802. [Google Scholar] [CrossRef]
- Wang, Z.; Mi, B. Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. Environ. Sci. Technol. 2017, 51, 8229–8244. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Xu, P.; Zhou, D.; Sun, Y.; Li, Y.C.; Nguyen, M.A.T.; Terrones, M.; Mallouk, T.E. Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano Lett. 2015, 15, 5956–5960. [Google Scholar] [CrossRef]
- Chen, X.; McGlynn, C.; McDonald, A.R. Two-Dimensional MoS2 Catalyzed Oxidation of Organic Thiols. Chem. Mater. 2018, 30, 6978–6982. [Google Scholar] [CrossRef]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102–1120. [Google Scholar] [CrossRef] [Green Version]
- Tuxen, A.; Kibsgaard, J.; Gøbel, H.; Lægsgaard, E.; Topsøe, H.; Lauritsen, J.V.; Besenbacher, F. Size Threshold in the Dibenzothiophene Adsorption on MoS2 Nanoclusters. ACS Nano 2010, 4, 4677–4682. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Z.; Yang, W.; Su, Q.; Na, C.; Zhang, X.; Zhao, R.; Song, H. Immobilization of Bovine Hemoglobin on Au Nanoparticles/MoS2 Nanosheets—Chitosan Modified Screen-Printed Electrode as Chlorpyrifos Biosensor. Enzym. Microb. Technol. 2022, 154, 109959. [Google Scholar] [CrossRef]
- Lu, K.; Liu, J.; Dai, X.; Zhao, L.; Yang, Y.; Li, H.; Jiang, Y. Construction of a Au@MoS2 Composite Nanosheet Biosensor for the Ultrasensitive Detection of a Neurotransmitter and Understanding of Its Mechanism Based on DFT Calculations. RSC Adv. 2022, 12, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Yarali, E.; Eksin, E.; Torul, H.; Ganguly, A.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Impedimetric Detection of MiRNA Biomarkers Using Paper-Based Electrodes Modified with Bulk Crystals or Nanosheets of Molybdenum Disulfide. Talanta 2022, 241, 123233. [Google Scholar] [CrossRef]
- Zhai, J.; Li, X.; Zhang, J.; Pan, H.; Peng, Q.; Gan, H.; Su, S.; Yuwen, L.; Song, C. SERS/Electrochemical Dual-Mode Biosensor Based on Multi-Functionalized Molybdenum Disulfide Nanosheet Probes and SERS-Active Ag Nanorods Array Electrodes for Reliable Detection of Cancer-Related MiRNA. Sens. Actuators B Chem. 2022, 368, 132245. [Google Scholar] [CrossRef]
- Cui, Z.; Li, D.; Yang, W.; Fan, K.; Liu, H.; Wen, F.; Li, L.; Dong, L.; Wang, G.; Wu, W. An Electrochemical Biosensor Based on Few-Layer MoS2 Nanosheets for Highly Sensitive Detection of Tumor Marker CtDNA. Anal. Methods 2022, 14, 1956–1962. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Periñán, E.; García-Mendiola, T.; Enebral-Romero, E.; del Caño, R.; Vera-Hidalgo, M.; Vázquez Sulleiro, M.; Navío, C.; Pariente, F.; Pérez, E.M.; Lorenzo, E. A MoS2 Platform and Thionine-Carbon Nanodots for Sensitive and Selective Detection of Pathogens. Biosens. Bioelectron. 2021, 189, 113375. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Duan, J.H.; Song, Y.M.; Ma, J.; Wang, F.D.; Lu, X.; Yang, X.-D. Novel HER2 Aptamer Selectively Delivers Cytotoxic Drug to HER2-Positive Breast Cancer Cells in Vitro. J. Transl. Med. 2012, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 13705. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Gálvez, L.; García-Mendiola, T.; Gutiérrez-Sánchez, C.; Guerrero-Esteban, T.; García-Diego, C.; Buendía, I.; García-Bermejo, M.L.; Pariente, F.; Lorenzo, E. Carbon Nanodot–Based Electrogenerated Chemiluminescence Biosensor for MiRNA-21 Detection. Microchim. Acta 2021, 188, 398. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gálvez, L.; del Caño, R.; Menéndez-Luque, I.; García-Nieto, D.; Rodríguez-Peña, M.; Luna, M.; Pineda, T.; Pariente, F.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescent Nanostructured DNA Biosensor for SARS-CoV-2 Detection. Talanta 2022, 240, 123203. [Google Scholar] [CrossRef]
- Giovanelli, E.; Castellanos-Gomez, A.; Pérez, E.M. Surfactant-Free Polar-to-Nonpolar Phase Transfer of Exfoliated MoS2 Two-Dimensional Colloids. Chempluschem 2017, 82, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.C.; Batistuti, M.R.; Bachour, B.; Mulato, M. Aptasensor Based on Screen-Printed Electrode for Breast Cancer Detection in Undiluted Human Serum. Bioelectrochemistry 2021, 137, 107586. [Google Scholar] [CrossRef]
- Abrego-Martinez, J.C.; Jafari, M.; Chergui, S.; Pavel, C.; Che, D.; Siaj, M. Aptamer-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2: Nanoscale Electrode-Aptamer-SARS-CoV-2 Imaging by Photo-Induced Force Microscopy. Biosens. Bioelectron. 2022, 195, 113595. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Kalaiyarasan, G.; Raju, C.V.; Veerapandian, M.; Kumar, S.S.; Joseph, J. Impact of Aminated Carbon Quantum Dots as a Novel Co-Reactant for Ru(Bpy)32+: Resolving Specific Electrochemiluminescence for Butein Detection. Anal. Bioanal. Chem. 2020, 412, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Sartin, M.M.; Camerel, F.; Ziessel, R.; Bard, A.J. Electrogenerated Chemiluminescence of B8amide: A BODIPY-Based Molecule with Asymmetric ECL Transients. J. Phys. Chem. C 2008, 112, 10833–10841. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, C.; Huang, Z.; Wang, L.; Wang, W.; Bard, A.J. Electrochemistry and Electrogenerated Chemiluminescence of 1,3,5-Tri(Anthracen-10-Yl)-Benzene-Centered Starburst Oligofluorenes. J. Am. Chem. Soc. 2016, 138, 1947–1954. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Shi, G.F.; Zhang, J.J.; Zhou, M.; Cao, J.T.; Huang, K.J.; Ren, S.W. A Novel Label-Free Electrochemiluminescence Aptasensor Based on Layered Flowerlike Molybdenum Sulfide–Graphene Nanocomposites as Matrix. Colloids Surf. B Biointerfaces 2014, 122, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhao, G.; Shi, H.; Liu, M.; Li, Z. A Highly Selective Electrochemical Impedance Spectroscopy-Based Aptasensor for Sensitive Detection of Acetamiprid. Biosens. Bioelectron. 2013, 43, 12–18. [Google Scholar] [CrossRef]
- Mehennaoui, S.; Poorahong, S.; Jimenez, G.C.; Siaj, M. Selection of High Affinity Aptamer-Ligand for Dexamethasone and Its Electrochemical Biosensor. Sci. Rep. 2019, 9, 6600. [Google Scholar] [CrossRef] [Green Version]
- Lokich, J.J. Plasma CEA Levels in Small Cell Lung Cancer Correlation with Stage, Distribution of Metastases, and Survival. Cancer 1982, 50, 2154–2156. [Google Scholar] [CrossRef] [PubMed]
- Chun, L.; Kim, S.E.; Cho, M.; Choe, W.S.; Nam, J.; Lee, D.W.; Lee, Y. Electrochemical Detection of HER2 Using Single Stranded DNA Aptamer Modified Gold Nanoparticles Electrode. Sens. Actuators B Chem. 2013, 186, 446–450. [Google Scholar] [CrossRef]
Nomenclature | Oligonucleotide Sequence |
---|---|
Apt-SH | 5′-SH-(CH2)6-AACCGCCCAAATCCCTAAGAGTCTGCACTTGTCA TTTTGTATATGTATTTGGTTTTTGGCTCTCACAGACACACTACACACGCACA-3′ |
Apt-TAMRA-SH | 5′-SH-(CH2)6-AACCGCCCAAATCCCTAAGAGTCTGCACTTGTCA TTTTGTATATGTATTTGGTTTTTGGCTCTCACAGACACACTACACACGCACA-TAMRA-3′ |
Interference DNA sequence | AGTGAGTGCGGTTAGACCTGCTAGG |
Principle | Method | Target Analyte | Linear Range | L.O.D. | Reference |
---|---|---|---|---|---|
Reduced graphene oxide nanosheets and rhodium nanoparticles | DPV | Extracellular domain of HER2 | 10.0 to 500.0 ng/mL | 0.667 ng/mL | [14] |
Au nanoparticles | DPV | HER2 | 0.001 to 100 ng/mL | 0.001 ng/mL | [15] |
Exonuclease recycling amplification and host–guest recognition | DPV | HER2 | 10 ng/mL to 150 ng/mL | 4.9 ng/ml | [16] |
Graphene quantum dots, polypyrrole and cobalt phthalocyanine | EIS | HER2 | 1 to 10 ng/mL | 0.00141 ng/mL | [17] |
Bimetallic ZrHf-based metal-organic framework embedded with carbon dots | EIS | HER2 | 0.001 to 10 ng/mL | 19 fg/mL | [18] |
A novel binary luminophore (Zr-MOF modified bulk boron carbon oxynitride) | ECL | HER2 | 10 fg/mL to 100 ng/mL | 0.2 fg/mL | [19] |
CDs and MoS2-NS | ECL | HER2 | 6.08 fg/mL to 13.7 pg/mL | 1.84 fg/mL | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Gálvez, L.; Sulleiro, M.V.; Gutiérrez-Sánchez, C.; García-Nieto, D.; Luna, M.; Pérez, E.M.; García-Mendiola, T.; Lorenzo, E. MoS2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection. Biosensors 2023, 13, 348. https://doi.org/10.3390/bios13030348
Gutiérrez-Gálvez L, Sulleiro MV, Gutiérrez-Sánchez C, García-Nieto D, Luna M, Pérez EM, García-Mendiola T, Lorenzo E. MoS2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection. Biosensors. 2023; 13(3):348. https://doi.org/10.3390/bios13030348
Chicago/Turabian StyleGutiérrez-Gálvez, Laura, Manuel Vázquez Sulleiro, Cristina Gutiérrez-Sánchez, Daniel García-Nieto, Mónica Luna, Emilio M. Pérez, Tania García-Mendiola, and Encarnación Lorenzo. 2023. "MoS2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection" Biosensors 13, no. 3: 348. https://doi.org/10.3390/bios13030348
APA StyleGutiérrez-Gálvez, L., Sulleiro, M. V., Gutiérrez-Sánchez, C., García-Nieto, D., Luna, M., Pérez, E. M., García-Mendiola, T., & Lorenzo, E. (2023). MoS2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection. Biosensors, 13(3), 348. https://doi.org/10.3390/bios13030348