Sugar–Lectin Interactions for Direct and Selective Detection of Escherichia coli Bacteria Using QCM Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Mannose-Derived Ligands
2.3. Characterization of Mannose-Derived Ligands
2.4. Fabrication of Mannose-Derived QCM Sensor
2.5. Bacteria Sample Preparation
2.6. Bacteria Detection Using QCM Immobilized Mannose Derivatives
2.7. Statistical Analysis
3. Result and Discussion
3.1. Synthesis of Mannose Derivatives
3.2. Mass Spectrometry Characterization
3.3. FTIR Characterizations
3.4. SEM Characterization of Mannose Derivatives
3.5. NMR Characterization
3.6. Sensor Chemistry and Surface Design
3.7. Detection of E. coli Using QCM Biosensor Immobilized with Mannose Derivatives
3.8. Performance Analysis of QCM-Based Mannose Derivative to Other Sensors
3.9. Selectivity Sensitivity, Repeatability, and Reproducibility of Mannose Derivatives to E. coli
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, H.; Li, D.; Kang, J.; Jiang, P.; Sun, J.; Zhang, D. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat. Commun. 2018, 9, 4917. [Google Scholar] [CrossRef] [Green Version]
- Bruyand, M.; Mariani-Kurkdjian, P.; Gouali, M.; de Valk, H.; King, L.; Le Hello, S.; Bonacorsi, S.; Loirat, C. Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Med. Mal. Infect. 2018, 48, 167–174. [Google Scholar] [CrossRef]
- Thomas, D.E.; Elliott, E.J. Interventions for preventing diarrhea-associated hemolytic uremic syndrome: Systematic review. BMC Public Heal. 2013, 13, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielaszewska, M.; Mellmann, A.; Zhang, W.; Köck, R.; Fruth, A.; Bauwens, A.; Peters, G.; Karch, H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: A microbiological study. Lancet Infect. Dis. 2011, 11, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Mahon, B.E.; Jones, T.F.; Griffin, P.M. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol. Infect. 2015, 143, 2795–2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Xu, C.-Q.; Guo, T.; Hong, L. An automated bacterial concentration and recovery system for pre-enrichment required in rapid Escherichia coli detection. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semchenko, E.A.; Everest-Dass, A.V.; Jen, F.E.-C.; Mubaiwa, T.D.; Day, C.J.; Seib, K.L. Glycointeractome of Neisseria gonorrhoeae: Identification of Host Glycans Targeted by the Gonococcus To Facilitate Adherence to Cervical and Urethral Epithelial Cells. Mbio 2019, 10, e01339-19. [Google Scholar] [CrossRef] [Green Version]
- Yazgan, I.; Noah, N.M.; Toure, O.; Zhang, S.; Sadik, O.A. Biosensor for selective detection of E. coli in spinach using the strong affinity of derivatized mannose with fimbrial lectin. Biosens. Bioelectron. 2014, 61, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Ielasi, F.S.; Alioscha-Perez, M.; Donohue, D.; Claes, S.; Sahli, H.; Schols, D.; Willaert, R.G. Lectin-Glycan Interaction Network-Based Identification of Host Receptors of Microbial Pathogenic Adhesins. Mbio 2016, 7, e00584-16. [Google Scholar] [CrossRef] [Green Version]
- Disney, M.D.; Seeberger, P.H. The Use of Carbohydrate Microarrays to Study Carbohydrate-Cell Interactions and to Detect Pathogens. Chem. Biol. 2004, 11, 1701–1707. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Yang, L.; Zhong, M.; Deng, W.; Tan, Y.; Xie, Q.; Yao, S. Au nanocluster-embedded chitosan nanocapsules as labels for the ultrasensitive fluorescence immunoassay of Escherichia coli O157:H7. Analyst 2018, 143, 4067–4073. [Google Scholar] [CrossRef]
- Pang, B.; Zhao, C.; Li, L.; Song, X.; Xu, K.; Wang, J.; Liu, Y.; Fu, K.; Bao, H.; Song, D.; et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal. Biochem. 2018, 542, 58–62. [Google Scholar] [CrossRef]
- Giovanni, M.; Setyawati, M.I.; Tay, C.Y.; Qian, H.; Kuan, W.S.; Leong, D.T. Electrochemical quantification of Escherichia coli with DNA nanostructure. Adv. Funct. Mater. 2015, 25, 3840–3846. [Google Scholar] [CrossRef]
- Hu, R.-R.; Yin, Z.-Z.; Zeng, Y.-B.; Zhang, J.; Liu, H.-Q.; Shao, Y.; Ren, S.-B.; Li, L. A novel biosensor for Escherichia coli O157:H7 based on fluorescein-releasable biolabels. Biosens. Bioelectron. 2016, 78, 31–36. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, R.; Wang, Y.; Su, X.; Ying, Y.; Wang, J.; Li, Y. Evaluation of different micro/nanobeads used as amplifiers in QCM immunosensor for more sensitive detection of E. coli O157:H7. Biosens. Bioelectron. 2011, 29, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. QCM immunosensor for the determination of Staphylococcus aureus antigen. Chem. Pap. 2019, 74, 451–458. [Google Scholar] [CrossRef]
- Yilmaz, E.; Majidi, D.; Ozgur, E.; Denizli, A. Whole cell imprinting based Escherichia coli sensors: A study for SPR and QCM. Sens. Actuators B Chem. 2015, 209, 714–721. [Google Scholar] [CrossRef]
- Yu, X.; Chen, F.; Wang, R.; Li, Y. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor. J. Biotechnol. 2018, 266, 39–49. [Google Scholar] [CrossRef]
- Mao, X.; Yang, L.; Su, X.-L.; Li, Y. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens. Bioelectron. 2006, 21, 1178–1185. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Q.; Wu, C.; Hu, Z.; Ji, J.; Wang, P. The Escherichia coli O157:H7 DNA detection on a gold nanoparticle-enhanced piezoelectric biosensor. Sci. Bull. 2008, 53, 1175–1184. [Google Scholar] [CrossRef] [Green Version]
- Kankare, J. Sauerbrey Equation of Quartz Crystal Microbalance in Liquid Medium. Langmuir 2002, 18, 7092–7094. [Google Scholar] [CrossRef]
- Sohna, J.E.S.; Cooper, M.A. Does the Sauerbrey equation hold true for binding of peptides and globular proteins to a QCM?: A systematic study of mass dependence of peptide and protein binding with a piezoelectric sensor. Sens. Bio-Sens. Res. 2016, 11, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, J.; Nie, S.; Xie, M.; Li, S. Mass spectrometry for structural elucidation and sequencing of carbohydrates. TrAC Trends Anal. Chem. 2021, 144, 116436. [Google Scholar] [CrossRef]
- Ejaz, S.; Ihsan, A.; Noor, T.; Shabbir, S.; Imran, M. Mannose functionalized chitosan nanosystems for enhanced antimicrobial activity against multidrug resistant pathogens. Polym. Test. 2020, 91, 106814. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, H.; Hao, H.; Gong, Q.; Nie, K. Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer. Sens. Actuators B Chem. 2016, 229, 297–304. [Google Scholar] [CrossRef]
- Osonga, F.J.; Akgul, A.; Yazgan, I.; Akgul, A.; Ontman, R.; Kariuki, V.M.; Eshun, G.B.; Sadik, O.A. Flavonoid-derived anisotropic silver nanoparticles inhibit growth and change the expression of virulence genes in Escherichia coli SM10. RSC Adv. 2018, 8, 4649–4661. [Google Scholar] [CrossRef] [Green Version]
- Pawde, D.M.; Viswanadh, M.K.; Mehata, A.K.; Sonkar, R.; Narendra; Poddar, S.; Burande, A.S.; Jha, A.; Vajanthri, K.Y.; Mahto, S.K.; et al. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm. J. 2020, 28, 1616–1625. [Google Scholar] [CrossRef]
- Kumar, R.; Kratzer, D.; Cheng, K.; Prisby, J.; Sugai, J.; Giannobile, W.V.; Lahann, J. Carbohydrate-Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces. Macromol. Rapid Commun. 2018, 40, e1800530. [Google Scholar] [CrossRef]
- Ertekin; Öztürk, S.; Öztürk, Z.Z. Label Free QCM Immunobiosensor for AFB1 Detection Using Monoclonal IgA Antibody as Recognition Element. Sensors 2016, 16, 1274. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, J.; Berglund, J.; Schembri, M.; De Genst, E.; Cools, L.; Wuhrer, M.; Hung, C.-S.; Pinkner, J.; Slättegård, R.; Zavialov, A.; et al. Receptor Binding Studies Disclose a Novel Class of High-Affinity Inhibitors of the Escherichia Coli FimH Adhesin. Mol. Microbiol. 2004, 55, 441–455. [Google Scholar] [CrossRef]
- March, C.; García, J.V.; Sánchez; Arnau, A.; Jiménez, Y.; García, P.; Manclús, J.J.; Montoya, Á. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosens. Bioelectron. 2015, 65, 1–8. [Google Scholar] [CrossRef]
- Lin, D.; Pillai, R.G.; Lee, W.E.; Jemere, A.B. An impedimetric biosensor for E. coli O157: H7 based on the use of self-assembled gold nanoparticles and protein G. Microchim. Acta 2019, 186, 1–9. [Google Scholar] [CrossRef]
- Peng, H.; Chen, I.A. Rapid Colorimetric Detection of Bacterial Species through the Capture of Gold Nanoparticles by Chimeric Phages. ACS Nano 2019, 13, 1244–1252. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Y.; Xia, X.; Wu, J.; Almeida, R.; Eda, S.; Qi, H. An on-site, highly specific immunosensor for Escherichia coli detection in field milk samples from mastitis-affected dairy cattle. Biosens. Bioelectron. 2020, 165, 112366. [Google Scholar] [CrossRef]
- Wandermur, G.; Rodrigues, D.; Allil, R.; Queiroz, V.; Peixoto, R.; Werneck, M.; Miguel, M. Plastic optical fiber-based biosensor platform for rapid cell detection. Biosens. Bioelectron. 2014, 54, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Yaghubi, F.; Zeinoddini, M.; Saeedinia, A.R.; Azizi, A.; Nemati, A.S. Design of Localized Surface Plasmon Resonance (LSPR) Biosensor for Immunodiagnostic of E. coli O157:H7 Using Gold Nanoparticles Conjugated to the Chicken Antibody. Plasmonics 2020, 15, 1481–1487. [Google Scholar] [CrossRef]
- Suaifan, G.A.; Alhogail, S.; Zourob, M. Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens. Bioelectron. 2017, 92, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Weaver, W.M.; Dharmaraja, S.; Milisavljevic, V.; Di Carlo, D. The effects of shear stress on isolated receptor–ligand interactions of Staphylococcus epidermidis and human plasma fibrinogen using molecularly patterned microfluidics. Lab Chip 2011, 11, 883–889. [Google Scholar] [CrossRef]
- Sarshar, M.; Behzadi, P.; Ambrosi, C.; Zagaglia, C.; Palamara, A.T.; Scribano, D. FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics 2020, 9, 397. [Google Scholar] [CrossRef]
- Di Maio, A.; Cioce, A.; Achilli, S.; Thépaut, M.; Vivès, C.; Fieschi, F.; Rojo, J.; Reichardt, N.-C. Controlled density glycodendron microarrays for studying carbohydrate–lectin interactions. Org. Biomol. Chem. 2021, 19, 7357–7362. [Google Scholar] [CrossRef]
Changes in Mass Due to the Addition of Ligands and Detection of E. coli | ||||||||
---|---|---|---|---|---|---|---|---|
Sequential Modification of Quartz Crystal | 4-NMBA (ng) | 4-TNM (ng) | ||||||
1. Addition of MUA | 225.7 | 225.6 | 247.5 | 246.8 | 245.6 | 248.1 | 248.6 | 247.3 |
2. Activation via EDC/NHS | 49.68 | 379.1 | 340.3 | 316.9 | 339.8 | 341.0 | 340.1 | 341.1 |
3. Addition of ligand | 1.495 | 1.379 | 19.73 | 35.79 | 20.71 | 19.72 | 19.43 | 18.68 |
4. Glycine | 4.890 | 49.02 | 47.66 | 21.57 | 43.58 | 57.62 | 47.40 | 47.19 |
5. Detection of E. coli | 3.796 | 7.156 | 14.00 | 32.72 | 6.606 | 9.061 | 11.22 | 12.08 |
Methodology | LOD (CFU/mL) | Linear Range (CFU/mL) | References |
---|---|---|---|
Electrochemical biosensor | 48 | 100–107 | Lin et al. [32] |
Optical biosensor | 100 | - | Pen et al. [33] |
QCM aptasensor | 1.46 × 103 | 102–105 | Yu et al. [18] |
Electrochemical biosensor | 78 | 102–106 | Zhang et al. [34] |
SPR plastic optical fiber | 104–108 | - | Wandermur et al. [35] |
SPR microcontact cell imprinting | 1.54 × 106 | 0.5–4.0 McFarland | Yilmaz et al. [17] |
QCM microcontact cell imprinting | 3.72 × 105 | 0.5–3.0 McFarland | Yilmaz et al. [17] |
Optical biosensor | 10 | 100–105 | Yaghubi et al. [36] |
Optical biosensor | 12 | 30–300 | Suaifan et al. [37] |
Lectin-based Q.C.M. | ~3.7 | 1.0 × 103–1.0 × 105 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eshun, G.B.; Crapo, H.A.; Yazgan, I.; Cronmiller, L.; Sadik, O.A. Sugar–Lectin Interactions for Direct and Selective Detection of Escherichia coli Bacteria Using QCM Biosensor. Biosensors 2023, 13, 337. https://doi.org/10.3390/bios13030337
Eshun GB, Crapo HA, Yazgan I, Cronmiller L, Sadik OA. Sugar–Lectin Interactions for Direct and Selective Detection of Escherichia coli Bacteria Using QCM Biosensor. Biosensors. 2023; 13(3):337. https://doi.org/10.3390/bios13030337
Chicago/Turabian StyleEshun, Gaddi B., Heather A. Crapo, Idris Yazgan, Lauren Cronmiller, and Omowunmi A. Sadik. 2023. "Sugar–Lectin Interactions for Direct and Selective Detection of Escherichia coli Bacteria Using QCM Biosensor" Biosensors 13, no. 3: 337. https://doi.org/10.3390/bios13030337
APA StyleEshun, G. B., Crapo, H. A., Yazgan, I., Cronmiller, L., & Sadik, O. A. (2023). Sugar–Lectin Interactions for Direct and Selective Detection of Escherichia coli Bacteria Using QCM Biosensor. Biosensors, 13(3), 337. https://doi.org/10.3390/bios13030337