Progress and Trends of Optical Microfiber-Based Biosensors
Abstract
1. Introduction
2. Tapered Optical Fiber for Biosensing Applications
2.1. Fabrication of Tapered Optical Fiber
2.2. Classifications of Tapered Optical Fiber
2.3. Generation of Evanescent Waves on the Surface of a Tapered Optical Fiber
3. Microfiber Bragg Gratings for Biosensing Applications
Fabrication of MFBG
4. D-Shaped Fiber for Biosensing Applications
Fabrication of D-Shaped Fiber
5. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín-Blanco, C.; Zamorano, M.; Lizárraga, C.; Molina-Moreno, V. The Impact of COVID-19 on the Sustainable Development Goals: Achievements and Expectations. Int. J. Environ. Res. Public Health 2022, 19, 16266. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 10 December 2022).
- Yang, H.; Li, Y.; Lei, M.; Li, X. All-fiber hydrofluoric acid sensor based on the dynamic corrosion process of the end face of a fiber tip. Opt. Fiber Technol. 2022, 73, 103065. [Google Scholar] [CrossRef]
- Satija, J.; Karunakaran, B.; Mukherji, S. A dendrimer matrix for performance enhancement of evanescent wave absorption-based fiber-optic biosensors. RSC Adv. 2014, 4, 5841–15848. [Google Scholar] [CrossRef]
- Divagar, M.; Gayathri, R.; Rasool, R.; Shamlee, J.K.; Bhatia, H.; Satija, J.; Sai, V.V.R. Plasmonic Fiberoptic Absorbance Biosensor (P-FAB) for Rapid Detection of SARS-CoV-2 Nucleocapsid Protein. IEEE Sens. J. 2021, 21, 22758–22766. [Google Scholar] [CrossRef]
- Poh, A.H.; Hassan, M.R.A.; Bakar, M.H.A.; Adikan, F.R.M.; Moghavvemi, M. Profile Morphology of Fiber Bragg Gratings During Initial Cracking: A Case Study on Proof Load Testing of an Arch Spandrel Segment. IEEE Sens. J. 2022, 22, 5678–5687. [Google Scholar] [CrossRef]
- Owji, E.; Mokhtari, H.; Ostovari, F.; Darazereshki, B.; Shakiba, N. 2D materials coated on etched optical fibers as humidity sensor. Sci. Rep. 2021, 11, 1771. [Google Scholar] [CrossRef]
- Alkhabet, M.M.; Yaseen, Z.M.; Eldirderi, M.M.A.; Khedher, K.M.; Jawad, A.H.; Girei, S.H.; Salih, H.K.; Paiman, S.; Arsad, N.; Mahdi, M.A. Palladium/Graphene Oxide Nanocomposite for Hydrogen Gas Sensing Applications Based on Tapered Optical Fiber. Materials 2022, 15, 8167. [Google Scholar] [CrossRef]
- Zakaria, R.B.; Mezher, M.H.; Zahid, A.; Rohizat, N.S.; Patel, S.K.; Amiri, I.S. Nonlinear studies of graphene oxide and its application to moisture detection in transformer oil using D-shaped optical fibre. J. Mod. Opt. 2020, 67, 619–627. [Google Scholar] [CrossRef]
- Mohsin, A.Z.; Sukor, R.; Mustapha-Kamil, Y.; Shatar, L.; Selamat, J.; Meor-Hussin, A.S.; Ismail, I.K.; Mahdi, M.A. Sensitive Detection of Goat αs1-Casein Using Tapered Optical Fiber Sensor. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Zainuddin, N.H.; Chee, H.Y.; Ahmad, M.Z.; Mahdi, M.A.; Abu Bakar, M.H.; Yaacob, M.H. Sensitive Leptospira DNA detection using tapered optical fiber sensor. J. Biophotonics 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Kawasaki, B.S.; Hill, K.O.; Lamont, R.G. Biconical-taper single-mode fiber coupler. Opt. Lett. 1981, 6, 327–328. [Google Scholar] [CrossRef]
- Kumar, A.; Subrahmanyam, T.V.B.; Sharma, A.D.; Thyagarajan, K.; Pal, B.P.; Goyal, I.C. Novel refractometer using a tapered optical fibre. Electron. Lett. 1984, 20, 34–535. [Google Scholar] [CrossRef]
- Sidhik, S.; Ittiarah, J.V.; Gangopadhyay, T.K. Design and Analysis of Chemically Etched and Biconically Tapered Fiber for Chemical Sensing Application. IEM Optronix 2015, 166, 173–179. [Google Scholar]
- Mononobe, S.; Maheswari, R.U.; Ohtsu, M. Fabrication of a pencil-shaped fiber probe with a nanometric protrusion from a metal film for near-field optical microscopy. Opt. Express 1997, 1, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Gangopadhyay, T.K.; Halder, A.; Das, S.; Paul, M.C.; Pal, M.; Salza, M.; Gagliardi, G. Fabrication of tapered single mode fiber by chemical etching and used as a chemical sensor based on evanescent field absorption. SPIE 2010, 8173, 817310–817321. [Google Scholar]
- Musa, B.; Mustapha Kamil, Y.; Abu Bakar, M.H.; Noor, A.S.M.; Ismail, A.; Mahdi, M.A. Effects of taper parameters on free spectral range of non-adiabatic tapered optical fibers for sensing applications. Microw. Opt. Technol. Lett. 2016, 58, 798–803. [Google Scholar] [CrossRef]
- Abdul Hamid, I.S.L.; Mustapha Kamil, Y.; Abd Manaf, A.; Mahdi, M.A. Fabrication and characterization of micro fluidic based fiber optic refractive index sensor. Sens. Bio-Sensing Res. 2017, 13, 70–74. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Abdullah, J.; Mustapha Kamil, Y.; Daniyal, W.M.E.M.M.; Sadrolhosseini, A.R.; Mahdi, M.A. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci. Rep. 2020, 10, 2374. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.E.; Ravets, S.; Grover, J.A.; Solano, P.; Kordell, P.R.; Wong-Campos, J.D.; Orozco, L.A.; Rolston, A.L. Ultrahigh transmission optical nanofibers. AIP Adv. 2014, 4, 67124. [Google Scholar] [CrossRef]
- Nagai, R.; Aoki, T. Ultra-low-loss tapered optical fibers with minimal lengths. Opt. Express 2014, 22, 28427–28436. [Google Scholar] [CrossRef]
- Chormaic, S.N.; Morrissey, M.; Deasy, K.; Nagabhushan, T.B.; Ward, J.; Shortt, B. Evanescent Field Atom Optics Using Micro-Tapered Fibers. paper LTuK3. In Proceedings of the Frontiers in Optics + Laser Science 2006, Rochester, New York, USA, 10 October 2006. [Google Scholar]
- Musa, B.; Kamil, Y.M.; Abu Bakar, M.H.; Mohd Noor, A.S.; Ismail, A.; Mahdi, M.A. Investigating the effect of taper length on sensitivity of the tapered-fiber based temperature sensor. J. Teknol. 2016, 78, 135–140. [Google Scholar] [CrossRef][Green Version]
- Aizawa, T.W.K. Penetration-Depth Characteristics of Evanescent Fields at Metal Attenuated Total Reflection. Jpn. J. Appl. Phys. 2005, 44, 4272. [Google Scholar]
- Kamil, Y.M.; Bakar, M.A.; Mustapa, M.A.; Yaacob, M.H.; Abidin, N.H.Z.; Syahir, A.; Lee, H.J.; Mahdi, M.A. Label-free Dengue E protein detection using a functionalized tapered optical fiber sensor. Sens. Actuators B Chem. 2018, 257, 820–828. [Google Scholar] [CrossRef]
- Omar, N.A.S.; Fen, Y.W.; Ramli, I.; Sadrolhosseini, A.R.; Abdullah, J.; Yusof, N.A.; Kamil, Y.M.; Mahdi, M.A. An Optical Sensor for Dengue Envelope Proteins Using Polyamidoamine Dendrimer Biopolymer-Based Nanocomposite Thin Film: Enhanced Sensitivity, Selectivity, and Recovery Studies. Polymers 2021, 13, 762. [Google Scholar] [CrossRef]
- Botewad, S.N.; Pahurkar, V.G.; Muley, G.G.; Gaikwad, D.K.; Bodkhe, G.A.; Shirsat, M.D.; Pawar, P.P. PANI-ZnO Cladding-Modified Optical Fiber Biosensor for Urea Sensing Based on Evanescent Wave Absorption. Front. Mater. 2020, 7, 184. [Google Scholar] [CrossRef]
- Kamil, Y.M.; Bakar, M.H.A.; Yaacob, M.H.; Syahir, A.; Lim, H.N.; Mahdi, M.A. Dengue E Protein Detection Using a Graphene Oxide Integrated Tapered Optical Fiber Sensor. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar]
- Alwahib, A.A.A.; Kamil, Y.M.; Bakar, M.H.A.; Noor, A.S.M.; Yaacob, M.H.; Lim, H.N.; Huang, N.M.; Mahdi, M.A. Reduced graphene oxide/maghemite nanocomposite for detection of Lead ions in water using surface plasmon resonanc. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Mustapha Kamil, Y.; Al-Rekabi, S.H.; Yaacob, M.H.; Syahir, A.; Chee, H.Y.; Mahdi, M.A.; Abu Bakar, M.H. Detection of dengue using PAMAM dendrimer integrated tapered optical fiber sensor. Sci. Rep. 2019, 9, 13483. [Google Scholar] [CrossRef]
- Kamil, Y.M.; Bakar, M.H.A.; Al-Rekabi, S.H.; Yaacob, M.H.; Syahir, A.; Mahdi, M.A. PAMAM-Graphene Oxide-Integrated Microfiber Sensor for Label-Free Dengue II E Protein Detection. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–6. [Google Scholar] [CrossRef]
- Li, H.C.; Leng, Y.K.; Liao, Y.C.; Liu, B.; Luo, W.; Liu, J.; Wu, Q. Tapered Microfiber MZI Biosensor for Highly Sensitive Detection of Staphylococcus Aureus. IEEE Sens. J. 2022, 22, 5531–5539. [Google Scholar] [CrossRef]
- Chen, L.; Leng, Y.K.; Qiu, S.; Liu, B.; Liu, J.; Wan, S.P.; Wu, T.; Xu, H.; Xiong, Y.; Yuan, J. Ultrahigh-sensitivity label-free singlemode-tapered no core-singlemode fiber immunosensor for Listeria monocytogenes detection. Sens. Actuators B Chem. 2023, 376, 132930. [Google Scholar] [CrossRef]
- Tong, Z.; Zhao, Y.; Wang, X.; Li, P.; Zhang, W.; Zhang, J. Research on dual-parameter biosensor based on no-core fiber coated by composite film. Optik (Stuttg). 2022, 259, 169027. [Google Scholar] [CrossRef]
- Sharma, P.; Semwal, V.; Gupta, B.D. A highly selective LSPR biosensor for the detection of taurine realized on optical fiber substrate and gold nanoparticles. Opt. Fiber Technol. 2019, 52, 101962. [Google Scholar] [CrossRef]
- Liu, T.; Ding, H.; Zhan, C.; Huang, J.; Wang, S. Simply and cost-effectively fabricated AuNP-based fusion spliced transmissive optical fiber LSPR probes. Opt. Express 2021, 29, 7398–7409. [Google Scholar] [CrossRef] [PubMed]
- Aslan, K.; Lakowicz, J.R.; Geddes, C.D. Nanogold-plasmon-resonance-based glucose sensing. Anal. Biochem. 2004, 330, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Chocarro-Ruiz, B.; Pérez-Carvajal, J.; Avci, C.; Calvo-Lozano, O.; Alonso, M.I.; Maspoch, D.; Lechuga, L.M. A CO2 optical sensor based on self-assembled metal–organic framework nanoparticles. J. Mater. Chem. A 2018, 6, 13171–13177. [Google Scholar] [CrossRef]
- Idris, S.; Azeman, N.H.; Noor Azmy, N.A.; Ratnam, C.T.; Mahdi, M.A.; Bakar, A.A.A. Gamma irradiated Py/PVA for GOx immobilization on tapered optical fiber for glucose biosensing. Sens. Actuators B Chem. 2018, 273, 1404–1412. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Qian, S.; Liu, Z.; Wang, Q.; Gu, Y.; Wu, Z.; Jing, Z.; Sun, C.; Peng, W. A Novel Fiber Optic Surface Plasmon Resonance Biosensors with Special Boronic Acid Derivative to Detect Glycoprotein. Sensors 2017, 17, 2259. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhou, X.; Zhang, Y.; Chen, N.; Wang, S.; Zhang, S.; Zhao, Y. Optical fiber sensors for glucose concentration measurement: A. review. Opt. Laser Technol. 2021, 139, 106981. [Google Scholar] [CrossRef]
- Mustapha Kamil, Y.; Abu Bakar, M.H.; Mustapa, M.A.; Yaacob, M.H.; Syahir, A.; Mahdi, M.A. Sensitive and Specific Protein Sensing Using Single-Mode Tapered Fiber Immobilized With Biorecognition Molecules. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Suryandi, A.A.; Sarma, N.; Mohammed, A.; Peesapati, V.; Djurović, S. Fiber Optic Fiber Bragg Grating Sensing for Monitoring and Testing of Electric Machinery: Current State of the Art and Outlook. Machines 2022, 10, 1103. [Google Scholar] [CrossRef]
- Sun, D.; Guo, T.; Ran, Y.; Huang, Y.; Guan, B.-O. In-situ DNA hybridization detection with a reflective microfiber grating biosensor. Biosens. Bioelectron. 2014, 61, 541–546. [Google Scholar] [CrossRef] [PubMed]
- DeLisa, M.P.; Zhang, Z.; Shiloach, M.; Pilevar, S.; Davis, C.C.; Sirkis, J.S.; Bentley, W.E. Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor. Anal. Chem. 2000, 72, 2895–2900. [Google Scholar]
- Tang, J.-L.; Cheng, S.-F.; Hsu, W.-T.; Chiang, T.-Y.; Chau, L.-K. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sens. Actuators B Chem. 2006, 119, 105–109. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, H.; Liu, B.; Miao, Y. Tilted fiber Bragg gratings: Principle and sensing applications. Photonic Sens. 2011, 1, 6–30. [Google Scholar] [CrossRef]
- Delmdahl, R.; Buchwald, K. Optics Fabrication: Fiber Bragg grating fabrication system is automated. Laser Focus World 2017. Available online: https://www.laserfocusworld.com/fiber-optics/article/16547082/optics-fabrication-fiber-bragg-grating-fabrication-system-is-automated (accessed on 15 December 2022).
- Wang, T.; Liu, K.; Jiang, J.; Xue, M.; Chang, P.; Liu, T. Temperature-insensitive refractive index sensor based on tilted moiré FBG with high resolution. Opt. Express 2017, 25, 14900–14909. [Google Scholar]
- Hu, C.; Ma, X.; Wang, C.; Zhou, S.; Wu, H.; Sun, K. High-quality rapid fabrication method of a D-shaped optical fiber based on a CO2 laser. Opt. Mater. Express 2021, 11, 2025–2036. [Google Scholar] [CrossRef]
- Marques, L.; Hernandez, F.U.; James, S.W.; Morgan, S.P.; Clark, M.; Tatam, R.P.; Korposh, S. Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosens. Bioelectron. 2016, 75, 222–231. [Google Scholar] [CrossRef]
- Bekmurzayeva, A.; Dukenbayev, K.; Shaimerdenova, M.; Bekniyazov, I.; Ayupova, T.; Sypabekova, M.; Molardi, C.; Tosi, D. Etched Fiber Bragg Grating Biosensor Functionalized with Aptamers for Detection of Thrombin. Sensors 2018, 18, 4298. [Google Scholar] [CrossRef]
- Kavitha, B.S.; Radhika, N.K.; Gorthi, S.S.; Asokan, S. Etched Fiber Bragg Grating Sensor for Quantification of DNA. IEEE Sens. J. 2021, 21, 1588–1595. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Liang, X.; Qiu, X.; Huang, Y.; Xie, C.; Xu, P.; Mao, W.; Guan, B.-O.; Albert, J. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings. Biosens. Bioelectron. 2016, 78, 221–228. [Google Scholar] [CrossRef]
- Shevchenko, Y.; Camci-Unal, G.; Cuttica, D.F.; Dokmeci, M.R.; Albert, J.; Khademhosseini, A. Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosens. Bioelectron. 2014, 56, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Guo, T.; Xie, C.; Xu, P.; Lao, J.; Zhang, X.; Xu, J.; Chen, X.; Huang, Y.; Liang, X.; et al. Specific Detection of Aquaporin-2 Using Plasmonic Tilted Fiber Grating Sensors. J. Light Technol. 2017, 35, 3360–3365. [Google Scholar] [CrossRef]
- Wang, Q.; Rajan, G.; Farrell, G.; Wang, P.; Semenova, Y.; Freir, T. Macrobending fibre loss filter, ratiometric wavelength measurement and application. Meas. Sci. Technol. 2007, 18, 3082–3088. [Google Scholar] [CrossRef]
- Ying, Y.; Si, G.; Luan, F.; Xu, K.; Qi, Y.; Li, H. Recent research progress of optical fiber sensors based on D-shaped structure. Opt. Laser Technol. 2017, 90, 149–157. [Google Scholar] [CrossRef]
- Cennamo, N.; Pasquardini, L.; Arcadio, F.; Vanzetti, L.E.; Bossi, A.M.; Zeni, L. D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Sci. Rep. 2019, 9, 18740. [Google Scholar] [CrossRef]
- Cennamo, N.; Pasquardini, L.; Arcadio, F.; Lunelli, L.; Vanzetti, L.; Carafa, V.; Altucci, L.; Zeni, L. SARS-CoV-2 spike protein detection through a plasmonic D-shaped plastic optical fiber aptasensor. Talanta 2021, 233, 122532. [Google Scholar] [CrossRef]
- Arcadio, F.; Zeni, L.; Perri, C.; D’Agostino, G.; Chiaretti, G.; Minardo, A.; Cennamo, N.; Porto, G. Bovine Serum Albumin Protein Detection by a Removable SPR Chip Combined with a Specific MIP Receptor. Chemosensors 2021, 9, 218. [Google Scholar] [CrossRef]
- Soares, M.S.; Silva, L.C.; Vidal, M.; Loyez, M.; Facão, M.; Caucheteur, C.; Segatto, M.E.V.; Costa, F.M.; Leitão, C.; Pereira, S.O.; et al. Label-free plasmonic immunosensor for cortisol detection in a D-shaped optical fiber. Biomed. Opt. Express 2022, 13, 3259–3274. [Google Scholar] [CrossRef]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.A.; Ridzwan, A.H.; Mansoor, A.; Dambul, K.D. Tapered optical fibre coated with chitosan for lead (II) ion sensing. Electron. Lett. 2016, 52, 1049–1050. [Google Scholar] [CrossRef]
Targeted Analyte | Sensing Layer | Sensitivity | Limit of Detection | Ref. |
---|---|---|---|---|
Uricase | Graphene oxide | 0.0089 nm/µM | 259 µM | [36] |
Staphylococcus | Dual-taper | - | 11 CFU/mL | [32] |
Taurine dioxygenase | Gold nanoparticles | 0.0190 AU/mM | 53 µM | [35] |
Urease | polyaniline-zinc oxide | - | 10 nM | [27] |
Lipase | Zeolitic imidazolate framework | 0.9 nm/nM | 0.23 nM | [38] |
Glucose | Gold nanoparticles | 0.9261 nm/mM | 322 µM | [37] |
Glucose | pyrrole/poly(vinyl alcohol)-glucose oxidase | 8.7 × 10−3 µWmM−1 | - | [39] |
Glucose | graphene oxide + gold nanoparticles | 1.06 nm/mM | 2.26 mM | [34] |
Glucose | poly (phenylboronic acid) | 0.1787%/nM | 5 mM | [41] |
Listeria monocytogenes | tapered single more no core fiber | - | 1.0 cell/mL | [33] |
Dengue E protein | Anti-Dengue E antibody | 5.02 nm/nM | 1 pM | [25] |
Dengue E protein | PAMAM | 19.53 nm/nM | 1 pM | [30] |
Dengue E protein | Graphene oxide | 12.77 nm/nM | 1 pM | [28] |
Dengue E protein | PAMAM + Graphene oxide | 13.25 nm/nM | 1 pM | [31] |
Avidin | Biotin | 20.368 nm/μM | - | [42] |
Targeted Analyte | Sensing Layer | Grating Architecture | Sensor Performance | Ref. |
---|---|---|---|---|
Thrombin | Thrombin-linking aptamers | Etched fiber Bragg grating | LOD: 10 nM | [52] |
DNA | Graphene oxide | Etched fiber Bragg grating | LOD: 261.87 pg/uL | [53] |
Streptavidin | Gold nanomaterials modified with biotin | Etched long period fiber Bragg grating | LOD: 6.88 nm/(ng/mm2) | [51] |
Proteinuria in rat urine | Gold layers of different thickness | Tilted fiber Bragg grating | LOD: 1.5 × 10−3 mg/mL | [54] |
Cellular behavior | Gold layer + fibronectin | Tilted fiber Bragg grating | - | [55] |
Aquaporin-2 | Gold layer + aquaporin-2-antibodies | Tilted fiber Bragg grating | 1.5 ng/mL | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapha Kamil, Y.; Abu Bakar, M.H.; Zainuddin, N.H.; Yaacob, M.H.; Mahdi, M.A. Progress and Trends of Optical Microfiber-Based Biosensors. Biosensors 2023, 13, 270. https://doi.org/10.3390/bios13020270
Mustapha Kamil Y, Abu Bakar MH, Zainuddin NH, Yaacob MH, Mahdi MA. Progress and Trends of Optical Microfiber-Based Biosensors. Biosensors. 2023; 13(2):270. https://doi.org/10.3390/bios13020270
Chicago/Turabian StyleMustapha Kamil, Yasmin, Muhammad Hafiz Abu Bakar, Nurul Hida Zainuddin, Mohd Hanif Yaacob, and Mohd Adzir Mahdi. 2023. "Progress and Trends of Optical Microfiber-Based Biosensors" Biosensors 13, no. 2: 270. https://doi.org/10.3390/bios13020270
APA StyleMustapha Kamil, Y., Abu Bakar, M. H., Zainuddin, N. H., Yaacob, M. H., & Mahdi, M. A. (2023). Progress and Trends of Optical Microfiber-Based Biosensors. Biosensors, 13(2), 270. https://doi.org/10.3390/bios13020270