Highly Sensitive Detection of Chymotrypsin Based on Metal Organic Frameworks with Peptides Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Instruments
2.2. Methods
3. Results
3.1. Preparation of PCN@AuNPs
3.2. Sensitive Detection Based on PCN@Au NPs
3.3. Preparation of PCN@GO@Au NPs
3.4. Kinetic Analysis Based on PCN@GO@AuNPs
3.5. Sensitive Detection Based on PCN@GO@Au NPs
3.6. Selective Analysis Based on PCN@GO@Au NPs
3.7. Application in Real Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oldziej, A.; Bolkun, L.; Galar, M.; Kalita, J.; Ostrowska, H.; Romaniuk, W.; Kloczko, J. Assessment of proteasome concentration and chymotrypsin-like activity in plasma of patients with newly diagnosed multiple myeloma. Leukemia Res. 2014, 38, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Piovarci, I.; Hianik, T.; Ivanov, I.N. Detection of chymotrypsin by optical and acoustic methods. Biosensors 2021, 11, 63. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhao, Y.; Lai, C.; Liang, Y.; Lin, W. A non-peptide probe for detecting chymotrypsin activity based on protection-deprotection strategy in living systems. J. Mater. Chem. B 2021, 9, 8417–8423. [Google Scholar] [CrossRef] [PubMed]
- John, G.; Lieb, I.I.; Peter, V.; Gastroenterology, D.J. Pancreatic function testing: Here to stay for the 21st century. World J. Gastroenterol. 2008, 14, 3149–3158. [Google Scholar]
- Zhang, Z.; Luo, L.; Zhu, L.; Ding, Y.; Deng, D.; Wang, Z.J. Aptamer-linked biosensor for thrombin based on AuNPs/thionine-graphene nanocomposite. Analyst 2013, 138, 5365–5370. [Google Scholar] [CrossRef]
- Mu, S.; Xu, Y.; Zhang, Y.; Guo, X.; Li, J.; Wang, Y.; Liu, X.; Zhang, H. A non-peptide NIR fluorescent probe for detection of chymotrypsin and its imaging application. J. Mater. Chem. B 2019, 7, 2974–2980. [Google Scholar] [CrossRef]
- He, L.; Pagneux, Q.; Larroulet, I.; Serrano, A.Y.; Szunerits, S.J.B. Bioelectronics. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosens. Bioelectron. 2017, 89, 606–611. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Zhao, X.E.; Zhang, W.; Liu, Z.Y.; Qi, W.J.; Anjum, S.; Xu, G.B. Fluorescence detection of glutathione reductase activity based on deoxyribonucleic acid-templated silver nanoclusters. Anal. Chim. Acta 2013, 786, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Chaiendoo, K.; Tuntulani, T.; Ngeontae, W. A paper-based ferrous ion sensor fabricated from an ion exchange polymeric membrane coated on a silver nanocluster-impregnated filter paper. Mater. Chem. Phys. 2017, 199, 272–279. [Google Scholar] [CrossRef]
- Zheng, Y.; Lai, L.; Liu, W.; Jiang, H.; Wang, X. Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv. Colloid Interface Sci. 2017, 242, 1. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Petryayeva, E.; Algar, W.R. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration. Anal. Chem. 2014, 86, 11181–11188. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.H.; Geng, J.; Miyoshi, D.; Ren, J.S.; Sugimoto, N.; Qu, X.G. A rapid and sensitive “add-mix-measure” assay for multiple proteinases based on one gold nanoparticle-peptide-fluorophore conjugate. Biosens. Bioelectron. 2010, 26, 743–747. [Google Scholar] [CrossRef]
- Okorochenkova, Y.; Hlavac, J. Novel ratiometric xanthene-based probes for protease detection. Dyes Pigm. 2017, 143, 232–238. [Google Scholar] [CrossRef]
- Okorochenkova, Y.; Porubsky, M.; Benicka, S.; Hlavac, J. A novel three-fluorophore system as a ratiometric sensor for multiple protease detection. Chem. Commun. 2018, 54, 7589–7592. [Google Scholar] [CrossRef]
- Huang, X.L.; He, Z.M.; Guo, D.; Liu, Y.J.; Song, J.B.; Yung, B.C.; Lin, L.S.; Yu, G.C.; Zhu, J.J.; Xiong, Y.H.; et al. Three-in-one” nanohybrids as synergistic nanoquenchers to enhance no-wash fluorescence biosensors for ratiometric detection of cancer biomarkers. Theranostics 2018, 8, 3461–3473. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.S.; Yang, X.Y.; Niu, G.; Song, J.B.; Yang, H.H.; Chen, X.Y. Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics. Nanoscale 2016, 8, 2116–2122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lou, Y.; Guo, C.; Jia, Q.; Song, Y.; Tian, J.Y.; Zhang, S.; Wang, M.; He, L.; Du, M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci. Tech. 2021, 118, 569–588. [Google Scholar] [CrossRef]
- Zhao, Y.; Zeng, H.; Zhu, X.W.; Lu, W.; Li, D. Metal-organic frameworks as photoluminescent biosensing platforms: Mechanismsand applications. Chem. Soc. Rev. 2021, 50, 4484–4513. [Google Scholar] [CrossRef]
- Karmakar, A.; Samanta, P.; Dutta, S.; Ghosh, S.K. Fluorescent “turn-on” sensing based on metal-organic frameworks (MOFs). Chem. Asian J. 2019, 14, 4506–4519. [Google Scholar] [CrossRef]
- Wu, F.; Ye, J.H.; Cao, Y.L.; Wang, Z.Y.; Miao, T.T.; Shi, Q. Recent advances in fluorescence sensors based on DNA–MOF hybrids. Luminescence 2020, 35, 437–621. [Google Scholar] [CrossRef]
- Chen, R.; Chen, X.R.; Zhou, T.F.; Lin, T.; Leng, Y.K.; Huang, X.L.; Xiong, Y.H. Three-in-One “Multifunctional nanohybrids with colorimetric magnetic catalytic activities to enhance immunochromatographic diagnosis”. ACS Nano 2022, 16, 3351–3361. [Google Scholar] [CrossRef] [PubMed]
- Das, H.T.; Barai, P.; Dutta, S.; Das, N.; Das, P.; Roy, M.; Alauddin, M.; Barai, H.R. Polymer composites with quantum dots as potential electrode materials for supercapacitors application: A review. Polymers 2022, 14, 1053. [Google Scholar] [CrossRef]
- Li, X.G.; Zhang, F.; Gao, Y.; Zhou, Q.M.; Zhao, Y.; Li, Y.; Huo, J.Z.; Zhao, X.J. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens. Bioelectron. 2016, 86, 270–276. [Google Scholar] [CrossRef]
- Liao, X.Q.; Li, R.Y.; Long, X.H.; Li, Z.J. Ultra sensitive and wide-range pH sensor based on the BSA-capped Cu nanoclusters fabricated by fast synthesis through the use of hydrogen peroxide additive. RSC Adv. 2015, 5, 48835–48841. [Google Scholar]
- Zheng, X.J.; Liang, R.P.; Li, Z.J.; Zhang, L.; Qiu, J.D. One-step, stabilizer-free and green synthesis of Cu nanoclusters as fluorescent probes for sensitive and selective detection of nitrite ions. Sens. Actuators B Chem. 2016, 230, 314. [Google Scholar] [CrossRef]
- Momeni, S.; Ahmadi, R.; Safavi, A.; Nabipour, I. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions. Talanta 2017, 175, 514. [Google Scholar] [CrossRef]
- Chen, L.Y.; Luque, R.; Li, Y.W. Controllable design of tunable nanostructures inside metal–organic frameworks. Chem. Soc. Rev. 2017, 46, 4614. [Google Scholar] [CrossRef]
- Volosskiy, B.; Niwa, K.; Chen, Y.; Zhao, Z.P.; Weiss, N.O.; Zhong, X.; Ding, M.N.; Lee, C.; Huang, Y.; Duan, X.F. Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires. ACS Nano 2015, 9, 3044–3049. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, Q.; Jiang, H.L. Metal–organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808. [Google Scholar] [CrossRef] [PubMed]
- He, C.B.; Liu, D.M.; Lin, W.B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108. [Google Scholar] [CrossRef]
- Bu, X.N.; Fu, Y.X.; Jiang, X.W.; Jin, H.; Gui, R.J. Self-assembly of DNA-templated copper nanoclusters and carbon dots for ratiometric fluorometric and visual determination of arginine and acetaminophen with a logic-gate operation. Microchim. Acta 2020, 187, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.N.; Fu, Y.X.; Jin, H.; Gui, R.J. Specific enzymatic synthesis of 2,3-diaminophenazine and copper nanoclusters used for dual-emission ratiometric and naked-eye visual fluorescence sensing of choline. New J. Chem. 2018, 42, 17323–17330. [Google Scholar] [CrossRef]
- Jiang, X.W.; Jin, H.; Sun, Y.J.; Sun, Z.J.; Gui, R.J. Assembly of black phosphorus quantum dots-doped MOF and silver nanoclusters as a versatile enzyme-catalyzed biosensor for solution, flexible substrate and latent fingerprint visual detection of baicalin. Biosens. Bioelectron. 2020, 152, 112012. [Google Scholar] [CrossRef] [PubMed]
- Borse, S.; Murthy, Z.V.P.; Park, T.-J.; Kailasa, S.K. Pepsin mediated synthesis of blue fluorescent copper nanoclusters for sensing of flutamide and chloramphenicol drugs. Microchem. J. 2021, 164, 105947. [Google Scholar] [CrossRef]
- Bhamore, J.R.; Jha, S.; Mungara, A.K.; Singhal, R.K.; Sonkeshariya, D.; Kailasa, S.K. One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging. Biosens. Bioelectron. 2016, 80, 243–248. [Google Scholar] [CrossRef]
- Bhamore, J.R.; Deshmukh, B.; Haran, V.; Jha, S.; Singhal, R.K.; Lenka, N.; Kailasa, S.K.; Murthy, Z.V.P. One-step eco-friendly approach for the fabrication of synergistically engineered fluorescent copper nanoclusters: Sensing of Hg2+ ion and cellular uptake and bioimaging properties. New J. Chem. 2018, 42, 1510–1520. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, M.; Jiao, M.X.; Luo, X.L. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Anal. Bioanal. Chem. 2018, 410, 5871–5878. [Google Scholar] [CrossRef]
- Wang, M.K.; Wang, S.; Su, D.D.; Su, X.G. Copper nanoclusters/polydopamine nanospheres based fluorescence aptasensor for protein kinase activity determination. Anal. Chim. Acta 2018, 1035, 184–191. [Google Scholar] [CrossRef]
- Qian, H.S.; Huang, Y.; Duan, X.L.; Wei, X.T.; Fan, Y.P.; Gan, D.L.; Yue, S.J.; Cheng, W.; Chen, T.M. Fiber optic surface plasmon resonance biosensor for detection of PDGF-BB in serum based on self-assembled aptamer and antifouling peptide monolayer. Biosens. Bioelectron. 2019, 140, 111350. [Google Scholar] [CrossRef]
- Sun, H.; Panicker, R.C.; Shao, Q.Y. Activity based fingerprinting of proteases using FRET peptides. Biopolymers 2010, 88, 141–149. [Google Scholar] [CrossRef]
- Bhunia, S.K.; Jana, N.R. Peptide-functionalized colloidal graphene via interdigited bilayer coating and fluorescence turn-on detection of enzyme. ACS Appl. Mater. Interfaces 2011, 3, 3335–3341. [Google Scholar] [CrossRef]
- Miao, H.; Wang, L.; Zhuo, Y.; Zhou, Z.N.; Yang, X.M. Bioelectronics. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens. Bioelectron. 2016, 86, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Wei, Z.K.; Luo, X.D.; Wan, Q.; Qiu, R.L.; Wang, S.Z. An ultrasensitive homogeneous aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Talanta 2019, 195, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cao, J.; Jiang, X.; Pan, Z.; Fu, N. A sensitive ratiometric fluorescence probe for chymotrypsin activity and inhibitor screening. Sens. Actuators B Chem. 2018, 273, 204–210. [Google Scholar] [CrossRef]
- Li, S.Q.; Fu, Y.W.; Ma, X.J.; Zhang, Y.D. Label-free fluorometric detection of chymotrypsin activity using graphene oxide/nucleic-acid-stabilized silver nanoclusters hybrid materials. Biosens. Bioelectron. 2017, 88, 210–216. [Google Scholar] [CrossRef] [PubMed]
Method | Analyst | Detection Limit | Reference |
---|---|---|---|
Fluorescence detection | AuNPs/peptide | 0.095 ng mL−1 | [12] |
Fluorescence detection | Fluorophore/peptide | 10 ng mL−1 | [40] |
Fluorescence detection | Colloidal GO | 0.0475 ng mL−1 | [41] |
Fluorescence detection | carbon dots | 0.3 ng mL−1 | [42] |
Fluorescence detection | GO/up-conversion nanoparticles | 7.9 pg mL−1 | [43] |
Fluorescence detection | Ratiometric fluorescence probe | 8.4 ng mL−1 | [44] |
Fluorescence detection | GO/dC12-AgNCs | 3 ng mL−1 | [45] |
Fluorescence detection | PCN@GO@AuNPs/CuNCs | 3.91 pg mL−1 | This study |
Samples | Added (pg mL−1) | Obtained (pg mL−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 0 | 0 | -- | -- |
2 | 10 | 11.004 | 110.04 | 1.92 |
3 | 50 | 48.012 | 96.02 | 2.43 |
4 | 100 | 103.524 | 103.52 | 1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Liu, C.; Gao, L. Highly Sensitive Detection of Chymotrypsin Based on Metal Organic Frameworks with Peptides Sensors. Biosensors 2023, 13, 263. https://doi.org/10.3390/bios13020263
Liu L, Liu C, Gao L. Highly Sensitive Detection of Chymotrypsin Based on Metal Organic Frameworks with Peptides Sensors. Biosensors. 2023; 13(2):263. https://doi.org/10.3390/bios13020263
Chicago/Turabian StyleLiu, Lei, Cheng Liu, and Li Gao. 2023. "Highly Sensitive Detection of Chymotrypsin Based on Metal Organic Frameworks with Peptides Sensors" Biosensors 13, no. 2: 263. https://doi.org/10.3390/bios13020263