Ultrafast Nucleic Acid Detection Equipment with Silicon-Based Microfluidic Chip
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chip Design and Fabrication
2.2. PCR Kit and Thermocycling Protocol
2.3. Optical Detection Module
2.4. Thermocycling Module
2.5. Control System
3. Results and Discussion
3.1. Design and Configuration of the Instrument
3.2. Thermal Performance
3.3. Optical Performance
3.4. Ultrafast PCR Detection
3.5. Comparison of the System’s Linearity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Inspection Items | Standard Requirements | Test Conditions | Working Condition | Result |
---|---|---|---|---|
Fluorescence intensity detection | Repeat the test with high, medium and low concentration calibration dye, and the coefficient of variation (CV, %) shall not be greater than 3%. | High Concentration Dye (1.33 μmol/L) | Initial test | 0.0 (+) % |
Rated working low temperature test, AC198V | 0.0 (+) % | |||
Low temperature storage test | 0.0 (+) % | |||
Rated working high temperature test, AV242V | 1% | |||
Operation test, AV242V | 1% | |||
High temperature storage test | 0.0 (+) % | |||
Rated working damp heat test | 1% | |||
Damp heat storage test | 0.0 (+) % | |||
Vibration test | 1% | |||
Impact test | 1% | |||
Medium concentration dye (0.889 μmol/L) | Initial test | 0.0 (+) % | ||
Low Concentration Dye (0.593 μmol/L) | Initial test | 3 (−) % | ||
Randomly select m (m ≤ 4) detection holes and use medium and high concentration calibration dyes for detection. The coefficient of variation (CV, %) shall not be greater than 5%. | High Concentration Dye (1.33 μmol/L) | 0.0 (+) % | ||
Medium concentration dye (0.889 μmol/L) | 0.0 (+) % | |||
Low Concentration Dye (0.593 μmol/L) | 0.0 (+) % | |||
Fluorescence interference of different channels | The background fluorescence intensity of other channels is not higher than the fluorescence threshold of the current target detection channel. | FAM channel fluorescence threshold: 25.77 | 0.00 | |
ROX channel fluorescence threshold: 26.55 | 2.23 | |||
Sample detection repeatability | The CV of Ct value shall not be greater than 3% for the detection of high, medium and low concentration nucleic acid samples. | High Concentration Dye (1.0 × 108 copies/mL) | FAM | 2% |
ROX | 2% | |||
Medium concentration dye (2.0 × 107 copies/mL) | FAM | 2% | ||
ROX | 1% | |||
Low Concentration Dye (4.0 × 106 copies/mL) | FAM | 2% | ||
ROX | 1% |
Kit | Conventional PCR Equipment | Ultrafast PCR Equipment | |||||||
---|---|---|---|---|---|---|---|---|---|
Brand | Detection Target | Number of Cycles | Temperature (°C) | Time | Total Time | Total Time | Time | Temperature (°C) | Number of Cycles |
BoJie | 2019-nCoV | 95 | 5 min | 1 h 13 min | 9 min | 1 min | 95 | ||
40 | 95 | 10 s | 1 s | 95 | 40 | ||||
55 | 40 s | 5 s | 55 | ||||||
ShuoShi | 97 | 1 min | 59 min | 9 min | 1 min | 95 | |||
40 | 97 | 5 s | 1 s | 95 | 40 | ||||
58 | 30 s | 5 s | 55 | ||||||
MoLe | 95 | 30 s | 1 h 19 min | 8 min 38 s | 1 min | 95 | |||
40 | 94 | 10 s | 1 s | 94 | 40 | ||||
58 | 60 s | 5 s | 58 | ||||||
58 | 60 s | 5 s | 58 | ||||||
ZhiJiang | HBV | 37 | 2 min | 1 h 22 min | 9 min 30 s | 2 min | 94 | ||
94 | 2 min | ||||||||
40 | 93 | 15 s | 1 s | 93 | 40 | ||||
60 | 60 s | 5 s | 60 | ||||||
Mycoplasma pneumoniae and chlamydia pneumoniae | 94 | 2 min | 1 h 22 min | 8 min 30 s | 45 s | 94 | |||
40 | 93 | 15 s | 1 s | 93 | 40 | ||||
60 | 60 s | 5 s | 60 | ||||||
HuaFeng | Tgo | 94 | 5 min | 56 min 38 s | 8 min 38 s | 45 s | 95 | ||
40 | 95 | 5 s | 1 s | 95 | 40 | ||||
60 | 25 s | 5 s | 60 | ||||||
ZiJian | Influenza A + B virus | 95 | 10 min | 1 h 14 min | 15 min | 60 s | 95 | ||
40 | 95 | 5 s | 5 s | 95 | 40 | ||||
60 | 45 s | 10 s | 60 | ||||||
DFV | 95 | 10 min | 1 h 14 min | 8 min 32 s | 60 s | 95 | |||
40 | 95 | 5 s | 1 s | 95 | 40 | ||||
60 | 45 s | 5 s | 60 | ||||||
DFV-I | 95 | 10 min | 1 h 14 min | 15 min | 60 s | 95 | |||
40 | 95 | 5 s | 5 s | 95 | 40 | ||||
60 | 45 s | 10 s | 60 | ||||||
DFV-II | 95 | 10 min | 1 h 14 min | 14 min 35 s | 60 s | 95 | |||
40 | 95 | 5 s | 5 s | 95 | 40 | ||||
60 | 45 s | 10 s | 60 | ||||||
DFV-III | 95 | 10 min | 1 h 14 min | 14 min 34 s | 60 s | 95 | |||
40 | 95 | 5 s | 5 s | 95 | 40 | ||||
60 | 45 s | 10 s | 60 | ||||||
DFV-IV | 95 | 10 min | 1 h 14 min | 14 min 35 s | 60 s | 95 | |||
40 | 95 | 5 s | 5 s | 95 | 40 | ||||
60 | 45 s | 10 s | 60 | ||||||
Chikungunya virus | 95 | 10 min | 1 h 14 min | 8 min 34 s | 60 s | 95 | |||
40 | 95 | 5 s | 1 s | 95 | 40 | ||||
60 | 45 s | 5 s | 60 |
References
- WHO. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 14 October 2022).
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, S.M.; Kim, B.N.; Kwon, O.S.; Rho, W.Y.; Jun, B.H. Emerging ultrafast nucleic acid amplification technologies for next-generation molecular diagnostics. Biosens. Bioelectron. 2019, 141, 111448. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, Y.; Rauch, C.B.; Stevens, R.L.; Liu, R.H.; Lenigk, R.; Grodzinski, P. High sensitivity PCR assay in plastic micro reactors. Lab Chip 2002, 2, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Qian, S.; Abrams, W.R.; Malamud, D.; Bau, H.H. Thermosiphon-based PCR reactor: Experiment and modeling. Anal. Chem. 2004, 76, 3707–3715. [Google Scholar] [CrossRef]
- Liao, C.S.; Lee, G.B.; Wu, J.J.; Chang, C.C.; Hsieh, T.M.; Huang, F.C.; Luo, C.H. Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases. Biosens. Bioelectron. 2005, 20, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Wong, I.; Chan, K.; Hsieh, Y.; Wong, S. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings. PLoS ONE 2015, 10, e0131701. [Google Scholar] [CrossRef] [PubMed]
- Farrar, J.S.; Wittwer, C.T. Extreme PCR: Efficient and specific DNA amplification in 15-60 seconds. Clin. Chem. 2015, 61, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Park, S.H.; Yang, H.; Chung, K.H.; Yoon, T.H.; Kim, S.J.; Kim, K.; Kim, Y.T. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab Chip 2004, 4, 401–407. [Google Scholar] [CrossRef]
- Yin, H.; Tong, Z.; Shen, C.; Xu, X.; Ma, H.; Wu, Z.; Qi, Y.; Mao, H. Micro-PCR chip-based multifunctional ultrafast SARS-CoV-2 detection platform. Lab Chip 2022, 22, 2671–2681. [Google Scholar] [CrossRef]
- Khandurina, J.; McKnight, T.E.; Jacobson, S.C.; Waters, L.C.; Foote, R.S.; Ramsey, J.M. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal. Chem. 2000, 72, 2995–3000. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Q.; Wiederkehr, R.S.; Fauvart, M.; Fiorini, P.; Majeed, B.; Tsukuda, M.; Matsuno, T.; Stakenborg, T. Multiplex SNP genotyping in whole blood using an integrated microfluidic lab-on-a-chip. Lab Chip 2016, 16, 4012–4019. [Google Scholar] [CrossRef] [PubMed]
- Oda, R.P.; Strausbauch, M.A.; Huhmer, A.F.; Borson, N.; Jurrens, S.R.; Craighead, J.; Wettstein, P.J.; Eckloff, B.; Kline, B.; Landers, J.P. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal. Chem. 1998, 70, 4361–4368. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, M.; Liu, X.; Sharma, A.; Ding, X. A Point-of-Need infrared mediated PCR platform with compatible lateral flow strip for HPV detection. Biosens. Bioelectron. 2017, 96, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Fermér, C.; Nilsson, P.; Larhed, M. Microwave-assisted high-speed PCR. Eur. J. Pharm. Sci. 2003, 18, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Vanloon, J.; Yan, H. Influence of microwave irradiation on DNA hybridization and polymerase reactions. Tetrahedron Lett. 2019, 60, 151060. [Google Scholar] [CrossRef]
- Son, J.H.; Cho, B.; Hong, S.; Lee, S.H.; Hoxha, O.; Haack, A.J.; Lee, L.P. Ultrafast photonic PCR. Light Sci. Appl. 2015, 4, e280. [Google Scholar] [CrossRef]
- Lee, B.; Lee, Y.; Kim, S.-M.; Kim, K.; Kim, M.-G. Rapid membrane-based photothermal PCR for disease detection. Sens. Actuators B Chem. 2022, 360, 131554. [Google Scholar] [CrossRef]
- Pal, D.; Venkataraman, V. A portable battery-operated chip thermocycler based on induction heating. Sens. Actuators A Phys. 2002, 102, 151–156. [Google Scholar] [CrossRef]
- Chen, X.; Song, L.; Assadsangabi, B.; Fang, J.; Ali, M.S.M.; Takahata, K. Wirelessly addressable heater array for centrifugal microfluidics and escherichia coli sterilization. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5505–5508. [Google Scholar]
- Tong, R.; Zhang, L.; Song, Q.; Hu, C.; Chen, X.; Lou, K.; Gong, X.; Gao, Y.; Wen, W. A fully portable microchip real-time polymerase chain reaction for rapid detection of pathogen. Electrophoresis 2019, 40, 1699–1707. [Google Scholar] [CrossRef]
- Kopp, M.U.; Mello, A.J.; Manz, A. Chemical amplification: Continuous-flow PCR on a chip. Science 1998, 280, 1046–1048. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, H.; Saito, M.; Tsuji, K.; Yamanaka, K.; Hoa, L.Q.; Tamiya, E. Self-propelled continuous-flow PCR in capillary-driven microfluidic device: Microfluidic behavior and DNA amplification. Sens. Actuators B Chem. 2015, 206, 303–310. [Google Scholar] [CrossRef]
- Krishnan, M.; Ugaz, V.M.; Burns, M.A. PCR in a Rayleigh-Benard convection cell. Science 2002, 298, 793. [Google Scholar] [CrossRef]
- Khodakov, D.; Li, J.; Zhang, J.X.; Zhang, D.Y. Highly multiplexed rapid DNA detection with single-nucleotide specificity via convective PCR in a portable device. Nat. Biomed. Eng. 2021, 5, 702–712. [Google Scholar] [CrossRef]
- Li, H.; Jacob, K.I.; Wong, C.P. An improvement of thermal conductivity of underfill materials for flip-chip packages. IEEE Trans. Adv. Packag. 2003, 26, 25–32. [Google Scholar] [CrossRef]
- Ahmed, S.; Liske, R.; Wunderer, T.; Leonhardt, M.; Ziervogel, R.; Fansler, C.; Grotjohn, T.; Asmussen, J.; Schuelke, T. Extending the 3ω-method to the MHz range for thermal conductivity measurements of diamond thin films. Diam. Relat. Mater. 2006, 15, 389–393. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, C.; Ai, T.; Wu, K.; Zhao, F.; Gu, H. A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2009, 40, 830–836. [Google Scholar] [CrossRef]
- Cai, Q.; Fauvart, M.; Wiederkehr, R.S.; Jones, B.; Cools, P.; Goos, P.; Vaneechoutte, M.; Stakenborg, T. Ultra-fast, sensitive and quantitative on-chip detection of group B streptococci in clinical samples. Talanta 2019, 192, 220–225. [Google Scholar] [CrossRef]
- Ye, Y.; Yi, Z.; Gao, S.; Qin, M.; Huang, Q.-A. Effect of Insulation Trenches on Micromachined Silicon Thermal Wind Sensors. IEEE Sens. J. 2017, 17, 8324–8331. [Google Scholar] [CrossRef]
- Zhong, K.; Chen, Z.; Huang, J.; Mao, H.; Hu, K. A LED-induced confocal fluorescence detection system for quantitative PCR instruments. In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October 2011; pp. 1014–1018. [Google Scholar]
- Novak, L.; Neuzil, P.; Pipper, J.; Zhang, Y.; Lee, S. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 2007, 7, 27–29. [Google Scholar] [CrossRef]
- Evers, E.; Slenders, R.; van Gils, R.; de Jager, B.; Oomen, T. Thermoelectric modules in mechatronic systems: Temperature-dependent modeling and control. Mechatronics 2021, 79, 102647. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Huang, M.-Y.; Young, K.-C.; Chang, T.-T.; Wu, C.-Y. A rapid micro-polymerase chain reaction system for hepatitis C virus amplification. Sens. Actuators B Chem. 2000, 71, 2–8. [Google Scholar] [CrossRef]
- Paul, N.; Shum, J.; Le, T. Hot start PCR. Methods Mol. Biol. 2010, 630, 301–318. [Google Scholar] [CrossRef]
Brand | Kit | Total Time (Conventional) | Total Time (Ultrafast) |
---|---|---|---|
BoJie | 2019-nCoV | 1 h 13 min | 9 min |
ShuoShi | 59 min | 9 min | |
MoLe | 1 h 19 min | 8 min 38 s | |
ZhiJiang | HBV | 1 h 22 min | 9 min 30 s |
Mycoplasma pneumoniae and chlamydia pneumoniae | 1 h 22 min | 8 min 30 s | |
HuaFeng | Tgo | 56 min 38 s | 8 min 38 s |
ZiJian | Influenza A + B virus | 1 h 14 min | 15 min |
DFV | 1 h 14 min | 8 min 32 s | |
DFV-I | 1 h 14 min | 15 min | |
DFV-II | 1 h 14 min | 14 min 35 s | |
DFV-III | 1 h 14 min | 14 min 34 s | |
DFV-IV | 1 h 14 min | 14 min 35 s | |
Chikungunya virus | 1 h 14 min | 8 min 34 s |
Concentration | Ct Value | |
---|---|---|
Conventional PCR Equipment | Ultrafast PCR Equipment | |
5 × 107 copies/mL | 19.29 | 20.05 |
5 × 106 copies/mL | 23.06 | 23.29 |
5 × 105 copies/mL | 26.44 | 26.74 |
5 × 104 copies/mL | 29.23 | 29.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, Z.; Liu, L.; Zhang, T.; Hu, L.; Hu, C.; Chen, H.; Ding, R.; Liu, B.; Chen, C. Ultrafast Nucleic Acid Detection Equipment with Silicon-Based Microfluidic Chip. Biosensors 2023, 13, 234. https://doi.org/10.3390/bios13020234
Zhang J, Yang Z, Liu L, Zhang T, Hu L, Hu C, Chen H, Ding R, Liu B, Chen C. Ultrafast Nucleic Acid Detection Equipment with Silicon-Based Microfluidic Chip. Biosensors. 2023; 13(2):234. https://doi.org/10.3390/bios13020234
Chicago/Turabian StyleZhang, Jiali, Zhuo Yang, Liying Liu, Tinglu Zhang, Lilei Hu, Chunrui Hu, Hu Chen, Ruihua Ding, Bo Liu, and Chang Chen. 2023. "Ultrafast Nucleic Acid Detection Equipment with Silicon-Based Microfluidic Chip" Biosensors 13, no. 2: 234. https://doi.org/10.3390/bios13020234
APA StyleZhang, J., Yang, Z., Liu, L., Zhang, T., Hu, L., Hu, C., Chen, H., Ding, R., Liu, B., & Chen, C. (2023). Ultrafast Nucleic Acid Detection Equipment with Silicon-Based Microfluidic Chip. Biosensors, 13(2), 234. https://doi.org/10.3390/bios13020234