A New Highly Sensitive Electrochemical Biosensor for Ethanol Detection Based on Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Nanocomposite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Equipment and Materials
2.3. Preparation of ADH-Sol-Gel/AuNPs-ERGO-PAH/SPE Biosensor
3. Results and Discussion
3.1. Morphological Characterization of the Electrodes
3.2. Cyclic Voltammetry Studies
3.3. Optimization of Working Potential
3.4. Optimization of the Amount of ADH
3.5. Optimization of the NAD+ Concentration
3.6. Optimization of the Working pH
3.7. Calibration Curve of ADH-Sol-Gel/AuNPs-ERGO-PAH/SPE Biosensor
3.8. Stability of the ADH-Sol-Gel/AuNPs-ERGO-PAH/SPE Biosensor
3.9. Selectivity of the ADH-Sol-Gel/AuNPs-ERGO-PAH/SPE Biosensor
3.10. Analysis of Alcoholic Beverages Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Chen, S.-M. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review. Sensors 2008, 8, 739–766. [Google Scholar] [CrossRef]
- Gurban, A.-M.; Noguer, T.; Bala, C.; Rotariu, L. Improvement of NADH detection using Prussian blue modified screen-printed electrodes and different strategies of immobilisation. Sens. Actuators B Chem. 2008, 128, 536–544. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, X.Y.; Shan, D.; Yuan, P.X.; Zhang, X.J. Sensitive electrochemical detection of NADH and ethanol at low potential based on pyrocatechol violet electrodeposited on single walled carbon nanotubes-modified pencil graphite electrode. Talanta 2014, 130, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Onat, E.K.; Kamac, M.B.; Yilmaz, M. A disposable non-enzymatic dual sensor for simultaneous amperometric determination of NADH and H2O2. J. Appl. Electrochem. 2023, 15, 2213–2227. [Google Scholar] [CrossRef]
- Kochana, J.; Adamski, J. Detection of NADH and ethanol at a graphite electrode modified with titania sol-gel/Meldola’s Blue/MWCNT/Nafion nanocomposite film. Open Chem. 2012, 10, 224–231. [Google Scholar] [CrossRef]
- Prieto-Simón, B.; Macanás, J.; Muñoz, M.; Fàbregas, E. Evaluation of different mediator-modified screen-printed electrodes used in a flow system as amperometric sensors for NADH. Talanta 2007, 71, 2102–2107. [Google Scholar] [CrossRef]
- Moscoso, R.; Barrientos, C.; Abarca, S.; Squella, J.A. Electrochemical characterization of nitrocoumarin-modified nanostructured electrode platforms: New precursors for the electrocatalysis of NADH. Electrochim. Acta 2023, 443, 15. [Google Scholar] [CrossRef]
- Pandey, P.C.; Upadhyay, S.; Upadhyay, B.C.; Pathak, H.C. Ethanol Biosensors and Electrochemical Oxidation of NADH. Anal. Biochem. 1998, 260, 195–203. [Google Scholar] [CrossRef]
- Doumeche, B.; Blum, L.J. NADH oxidation on screen-printed electrode modified with a new phenothiazine diazonium salt. Electrochem. Commun. 2010, 12, 1398–1402. [Google Scholar] [CrossRef]
- Gallay, P.; Eguilaz, M.; Rivas, G. Multi-walled Carbon Nanotubes Non-covalently Functionalized with Polyarginine: A New Alternative for the Construction of Reagentless NAD(+)/Dehydrogenase-based Ethanol Biosensor. Electroanalysis 2019, 31, 805–812. [Google Scholar] [CrossRef]
- Soylemez, S.; Kanik, F.E.; Uzun, S.D.; Hacioglu, S.O.; Toppare, L. Development of an efficient immobilization matrix based on a conducting polymer and functionalized multiwall carbon nanotubes: Synthesis and its application to ethanol biosensors. J. Mater. Chem. B 2014, 2, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, L.L.; Li, X.; Shang, R.; Yang, X.L.; Zhou, X.Y.; Chen, Y. Highly sensitive NADH detection by utilising an aluminium hydroxide/iron hydroxide/MWCNTs nanocomposite film-modified electrode. Micro Nano Lett. 2020, 15, 997–1002. [Google Scholar] [CrossRef]
- Amouzadeh Tabrizi, M.; Jalilzadeh Azar, S.; Nadali Varkani, J. Eco-synthesis of graphene and its use in dihydronicotinamide adenine dinucleotide sensing. Anal. Biochem. 2014, 460, 29–35. [Google Scholar] [CrossRef]
- Gan, T.; Hu, S. Electrochemical sensors based on graphene materials. Microchim. Acta 2011, 175, 1–19. [Google Scholar] [CrossRef]
- Gasnier, A.l.; Laura Pedano, M.; Rubianes, M.D.; Rivas, G.A. Graphene paste electrode: Electrochemical behavior and analytical applications for the quantification of NADH. Sens. Actuators B Chem. 2013, 176, 921–926. [Google Scholar] [CrossRef]
- Guo, K.; Qian, K.; Zhang, S.; Kong, J.; Yu, C.; Liu, B. Bio-electrocatalysis of NADH and ethanol based on graphene sheets modified electrodes. Talanta 2011, 85, 1174–1179. [Google Scholar] [CrossRef]
- Mutyala, S.; Mathiyarasu, J. A highly sensitive NADH biosensor using nitrogen doped graphene modified electrodes. J. Electroanal. Chem. 2016, 775, 329–336. [Google Scholar] [CrossRef]
- Borges, P.H.S.; Nossol, E. Reduced Graphene Oxide/Ruthenium Oxide Hexacyanoferrate Nanocomposite for Electrochemical Determination of Ethanol in Commercial Samples. J. Braz. Chem. Soc. 2021, 32, 1259–1269. [Google Scholar] [CrossRef]
- Hua, E.; Wang, L.; Jing, X.; Chen, C.; Xie, G. One-step fabrication of integrated disposable biosensor based on ADH/NAD+/meldola’s blue/graphitized mesoporous carbons/chitosan nanobiocomposite for ethanol detection. Talanta 2013, 111, 163–169. [Google Scholar] [CrossRef]
- Ahuja, T.; Mir, I.A.; Kumar, D.; Rajesh. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007, 28, 791–805. [Google Scholar] [CrossRef]
- de Assis dos Santos Silva, F.; Lopes, C.B.; de Oliveira Costa, E.; Lima, P.R.; Kubota, L.T.; Goulart, M.O.F. Poly-xanthurenic acid as an efficient mediator for the electrocatalytic oxidation of NADH. Electrochem. Commun. 2010, 12, 450–454. [Google Scholar] [CrossRef]
- Gerard, M.; Chaubey, A.; Malhotra, B.D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345–359. [Google Scholar] [CrossRef]
- Jarjes, Z.A.; Samian, M.R.; Ab Ghani, S. Conductive polymers: Their preparations and catalyses on NADH oxidation at carbon cloth electrodes. Arab. J. Chem. 2015, 8, 726–731. [Google Scholar] [CrossRef]
- Rajaram, R.; Anandhakumar, S.; Mathiyarasu, J. Electrocatalytic oxidation of NADH at low overpotential using nanoporous poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode. J. Electroanal. Chem. 2015, 746, 75–81. [Google Scholar] [CrossRef]
- Tig, G.A. Highly sensitive amperornetric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-Cysteine)/reduced graphene oxide nanocomposite. Talanta 2017, 175, 382–389. [Google Scholar] [CrossRef]
- Benvidi, A.; Dehghani-Firouzabadi, A.; Mazloum-Ardakani, M.; Mirjalili, B.-B.F.; Zare, R. Electrochemical deposition of gold nanoparticles on reduced graphene oxide modified glassy carbon electrode for simultaneous determination of levodopa, uric acid and folic acid. J. Electroanal. Chem. 2015, 736, 22–29. [Google Scholar] [CrossRef]
- Chen, S.Y.; Shang, K.S.; Gao, X.Y.; Wang, X. The development of NAD(+)-dependent dehydrogenase screen-printed biosensor based on enzyme and nanoporous gold co-catalytic strategy. Biosens. Bioelectron. 2022, 211, 8. [Google Scholar] [CrossRef] [PubMed]
- Samphao, A.; Kunpatee, K.; Prayoonpokarach, S.; Wittayakun, J.; Svorc, L.; Stankovic, D.M.; Zagar, K.; Ceh, M.; Kalcher, K. An Ethanol Biosensor Based on Simple Immobilization of Alcohol Dehydrogenase on Fe3O4@Au Nanoparticles. Electroanalysis 2015, 27, 2829–2837. [Google Scholar] [CrossRef]
- Tiwari, I.; Gupta, M. Neutral red interlinked gold nanoparticles/multiwalled carbon nanotubes hybrid nanomaterial and its application for the detection of NADH. Mater. Res. Bull. 2014, 49, 94–101. [Google Scholar] [CrossRef]
- Gurusamy, T.; Rajaram, R.; Kandregula, G.R.; Ramanujam, K. Electrochemical sensing of NADH using 4-nitrobenzenediazonium tetrafluoroborate salt functionalized multiwalled carbon nanotubes. Dalton Trans. 2023, 52, 6041–6051. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L. Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens. Bioelectron. 2010, 25, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.W.; Chen, Y.; Ma, Y.H.; Shi, J.G.; Wang, Y.X.; Qi, C.H.; Li, Q.S. Recent Advances in the Dehydrogenase Biosensors Based on Carbon Nanotube Modified Electrodes. Chin. J. Anal. Chem. 2014, 42, 759–765. [Google Scholar] [CrossRef]
- Li, X.; Zhong, A.; Wei, S.; Luo, X.; Liang, Y.; Zhu, Q. Polyelectrolyte functionalized gold nanoparticles-reduced graphene oxide nanohybrid for electrochemical determination of aminophenol isomers. Electrochim. Acta 2015, 164, 203–210. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Chen, L.; Qin, X.; Huang, Z.; Zhou, Y.; Meng, Y.; Li, J.; Huang, S.; Liu, Y.; et al. Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide polythionine nanocomposite film. Sens. Actuators B Chem. 2013, 181, 280–287. [Google Scholar] [CrossRef]
- Mao, X.Y.; Wen, Y.; Xiong, M.L.; Niu, Z.; Jiang, L.; Zhang, H.L.; Yang, L.J.; Chen, R.J. Electrochemical Biosensors Based on Carbon Nanocages for the Detection of NADH and Ethanol. Int. J. Electrochem. Sci. 2021, 16, 11. [Google Scholar] [CrossRef]
- Wang, S.Z.; Yao, Z.; Yang, T.T.; Zhang, Q.; Gao, F. An Enzymatic Electrode Integrated with Alcohol Dehydrogenase and Chloranil in Liquid-Crystalline Cubic Phases on Carbon Nanotubes for Sensitive Amperometric Detection of NADH and Ethanol. J. Electrochem. Soc. 2019, 166, G116–G121. [Google Scholar] [CrossRef]
- Zhang, M.G.; Gorski, W. Amperometric Ethanol Biosensors Based on Chitosan-NAD(+)-Alcohol Dehydrogenase Films. Electroanalysis 2011, 23, 1856–1862. [Google Scholar] [CrossRef]
- Zhang, S.J.; Xie, Y.; Feng, J.Y.; Chu, Z.Y.; Jin, W.Q. Screen-printing of nanocube-based flexible microchips for the precise biosensing of ethanol during fermentation. Aiche J. 2021, 67, 12. [Google Scholar] [CrossRef]
- Istrate, O.-M.; Rotariu, L.; Marinescu, V.E.; Bala, C. NADH sensing platform based on electrochemically generated reduced graphene oxide–gold nanoparticles composite stabilized with poly(allylamine hydrochloride). Sens. Actuators B Chem. 2016, 223, 697–704. [Google Scholar] [CrossRef]
- Walker, J.R.L. Spectrophotometric determination of enzyme activity: Alcohol dehydrogenase (ADH). Biochem. Educ. 1992, 20, 42–43. [Google Scholar] [CrossRef]
- Istrate, O.M.; Rotariu, L.; Bala, C. A Novel Amperometric Biosensor Based on Poly(allylamine hydrochloride) for Determination of Ethanol in Beverages. Sensors 2021, 21, 6510. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.R.; Schraft, H.; Chen, A.C. A high-performance enzyme entrapment platform facilitated by a cationic polymer for the efficient electrochemical sensing of ethanol. Analyst 2017, 142, 2595–2602. [Google Scholar] [CrossRef] [PubMed]
- Baretta, R.; Raucci, A.; Cinti, S.; Frasconi, M. Porous hydrogel scaffolds integrating Prussian Blue nanoparticles: A versatile strategy for electrochemical (bio)sensing. Sens. Actuator B Chem. 2023, 376, 10. [Google Scholar] [CrossRef]
Electrode Material | E (mV) | Linear Range (µM) | LOD (µM) | Sensitivity (µA/mM·cm2) | Ref. |
---|---|---|---|---|---|
AuNPs/NFPBA/SPBM | +600 | 500–50,000 | N.R. | 0.7 | [38] |
AH/IH/MWCNTs/GCE | +150 | 20–400 | 5 | 68.53 | [12] |
TCBQ-LCPs/SWCNTS/GCE | +130 | 200–13,000 | 50 | 3.65 | [36] |
Au-AgNPs/P(l-Cys)-ERGO/GCE | +350 | 17–658 658–1845 | 5 | 4.549 1.25 | [25] |
SWCNTs-rGO/GCE | +500 | 5–400 | 0.16 | 26.27 | [42] |
MWCNTs-Polyarg/GCE | +350 | 5–100 | 0.65 | 4.461 | [10] |
PBNPs-CMC/SPE | +400 | 0–1000 | 300 | - | [43] |
PAH/SPE | +500 | 50–200 200–2000 | 20 | 13.45 5.74 | [41] |
AuNPs-ERGO-PAH/SPE | +400 | 50–200 200–2000 | 10 | 44.6 10.51 | This work |
Sample | Found (M) | Commercial (M) | Recovery (%) |
---|---|---|---|
Beer | 1.12 | 0.86 | 130 ± 12 |
Aperitif drink | 1.95 | 1.80 | 108 ± 10 |
Sparkling wine | 1.90 | 1.88 | 101.1 ± 9.2 |
Herbal liqueur | 6.25 | 6.09 | 103 ± 11 |
Lemon liqueur | 5.02 | 5.14 | 97.6 ± 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Istrate, O.-M.; Bala, C.; Rotariu, L. A New Highly Sensitive Electrochemical Biosensor for Ethanol Detection Based on Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Nanocomposite. Biosensors 2023, 13, 954. https://doi.org/10.3390/bios13110954
Istrate O-M, Bala C, Rotariu L. A New Highly Sensitive Electrochemical Biosensor for Ethanol Detection Based on Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Nanocomposite. Biosensors. 2023; 13(11):954. https://doi.org/10.3390/bios13110954
Chicago/Turabian StyleIstrate, Oana-Maria, Camelia Bala, and Lucian Rotariu. 2023. "A New Highly Sensitive Electrochemical Biosensor for Ethanol Detection Based on Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Nanocomposite" Biosensors 13, no. 11: 954. https://doi.org/10.3390/bios13110954
APA StyleIstrate, O. -M., Bala, C., & Rotariu, L. (2023). A New Highly Sensitive Electrochemical Biosensor for Ethanol Detection Based on Gold Nanoparticles/Reduced Graphene Oxide/Polyallylamine Hydrochloride Nanocomposite. Biosensors, 13(11), 954. https://doi.org/10.3390/bios13110954