pH Quantification in Human Dermal Interstitial Fluid Using Ultra-Thin SOI Silicon Nanowire ISFETs and a High-Sensitivity Constant-Current Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silicon-On-Insulator Nanowire FETs
2.2. Constant Current Operation
2.3. Sample Preparation and ISF Collection
3. Results
3.1. pH Sensing in Top-Gate Configuration
3.2. pH Sensing in Constant Current Operation
3.3. pH Sensing in Real Human ISF
3.3.1. Protocol
3.3.2. Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCA | BiCinchoninic acid Assay |
ICU | Intensive Care Unit |
ISF | Interstitial Fluid |
ISFETs | Ion-Sensitive Field-Effect Transistors |
PBS | Phosphate-Buffered Saline |
pH | Potentiel of hydrogen |
SiNWs | Silicon Nanowires |
References
- Samanta, S.; Singh, R.K.; Baronia, A.K.; Mishra, P.; Poddar, B.; Azim, A.; Gurjar, M. Early pH change predicts intensive care unit mortality. Indian J. Crit. Care Med. 2018, 22, 697. [Google Scholar] [PubMed]
- Kraut, J.A.; Madias, N.E. Treatment of acute metabolic acidosis: A pathophysiologic approach. Nat. Rev. Nephrol. 2012, 8, 589–601. [Google Scholar] [CrossRef]
- Gauthier, P.M.; Szerlip, H.M. Metabolic acidosis in the intensive care unit. Crit. Care Clin. 2002, 18, 289–308. [Google Scholar] [CrossRef] [PubMed]
- Taleb, S.; Yassine, H.M.; Benslimane, F.M.; Smatti, M.K.; Schuchardt, S.; Albagha, O.; Al-Thani, A.A.; Ait Hssain, A.; Diboun, I.; Elrayess, M.A. Predictive biomarkers of intensive care unit and mechanical ventilation duration in critically-ill coronavirus disease 2019 patients. Front. Med. 2021, 8, 733657. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kutovyi, Y.; Zadorozhnyi, I.; Boichuk, N.; Vitusevich, S. Monitoring of dynamic processes during detection of cardiac biomarkers using silicon nanowire field-effect transistors. Adv. Mater. Interfaces 2020, 7, 2000508. [Google Scholar] [CrossRef]
- He, B.; Morrow, T.J.; Keating, C.D. Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 2008, 12, 522–528. [Google Scholar] [CrossRef]
- Tran, D.P.; Pham, T.T.T.; Wolfrum, B.; Offenhäusser, A.; Thierry, B. CMOS-compatible silicon nanowire field-effect transistor biosensor: Technology development toward commercialization. Materials 2018, 11, 785. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, A. Silicon Nanowire Field-Effect Transistors for Sensing Applications. Ph.D. Thesis, University of Basel, Basel, Switzerland, 2012. [Google Scholar]
- Cho, S.K.; Cho, W.J. Ultra-high sensitivity pH-sensors using silicon nanowire channel dual-gate field-effect transistors fabricated by electrospun polyvinylpyrrolidone nanofibers pattern template transfer. Sens. Actuators B Chem. 2021, 326, 128835. [Google Scholar] [CrossRef]
- Zhou, K.; Zhao, Z.; Yu, P.; Wang, Z. Highly sensitive pH sensors based on double-gate silicon nanowire field-effect transistors with dual-mode amplification. Sens. Actuators B Chem. 2020, 320, 128403. [Google Scholar] [CrossRef]
- Dervisevic, M.; Dervisevic, E.; Esser, L.; Easton, C.D.; Cadarso, V.J.; Voelcker, N.H. Wearable microneedle array-based sensor for transdermal monitoring of pH levels in interstitial fluid. Biosens. Bioelectron. 2023, 222, 114955. [Google Scholar] [CrossRef]
- Midahuen, R.; Previtali, B.; Fontelaye, C.; Nonglaton, G.; Barraud, S.; Stambouli, V. Wafer-scale fabrication of biologically sensitive Si nanowire FET: From pH sensing to electrical detection of DNA hybridization. In Proceedings of the ESSCIRC 2021—IEEE 47th European Solid State Circuits Conference (ESSCIRC), Grenoble, France, 13–22 September 2021; pp. 175–178. [Google Scholar] [CrossRef]
- Capua, L.; Sprunger, Y.; Elettro, H.; Risch, F.; Grammoustianou, A.; Midahuen, R.; Ernst, T.; Barraud, S.; Gill, R.; Ionescu, A. Label-free C-reactive protein Si nanowire FET sensor arrays with super-Nernstian back-gate operation. IEEE Trans. Electron Devices 2022, 69, 2159–2165. [Google Scholar] [CrossRef]
- Haljamäe, H.; Fredén, H. Comparative analysis of the protein content of local subcutaneous tissue fluid and plasma. Microvasc. Res. 1970, 2, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Ellmerer, M.; Schaupp, L.; Brunner, G.A.; Sendlhofer, G.; Wutte, A.; Wach, P.; Pieber, T.R. Measurement of interstitial albumin in human skeletal muscle and adipose tissue by open-flow microperfusion. Am. J.-Physiol.-Endocrinol. Metab. 2000, 278, E352–E356. [Google Scholar] [CrossRef]
- Rutili, G.; Arfors, K.E. Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue. Acta Physiol. Scand. 1977, 99, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marunaka, Y. Roles of interstitial fluid pH in diabetes mellitus: Glycolysis and mitochondrial function. World J. Diabetes 2015, 6, 125. [Google Scholar] [CrossRef]
- Marunaka, Y. Roles of interstitial fluid pH and weak organic acids in development and amelioration of insulin resistance. Biochem. Soc. Trans. 2021, 49, 715–726. [Google Scholar] [CrossRef]
- Samant, P.P.; Prausnitz, M.R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl. Acad. Sci. USA 2018, 115, 4583–4588. [Google Scholar] [CrossRef]
- Miller, P.R.; Taylor, R.M.; Tran, B.Q.; Boyd, G.; Glaros, T.; Chavez, V.H.; Krishnakumar, R.; Sinha, A.; Poorey, K.; Williams, K.P.; et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol. 2018, 1, 173. [Google Scholar] [CrossRef]
- Street, D.; Bangsbo, J.; Juel, C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J. Physiol. 2001, 537, 993. [Google Scholar] [CrossRef]
- García-Guzmán, J.J.; Pérez-Ráfols, C.; Cuartero, M.; Crespo, G.A. Toward in vivo transdermal pH sensing with a validated microneedle membrane electrode. ACS Sens. 2021, 6, 1129–1137. [Google Scholar] [CrossRef]
- Nakazato, K. An integrated ISFET sensor array. Sensors 2009, 9, 8831–8851. [Google Scholar] [CrossRef] [PubMed]
Sample | pH Meter Reading | pH SiNWs in Top-Gate | Error % | pH SiNWs in Constant Current Operation | Error % |
---|---|---|---|---|---|
ISF-like S1 | 7.61 | 7.68 | 0.92 | 7.68 | 0.92 |
ISF-like S2 | 7.59 | 7.68 | 1.19 | 7.62 | 0.40 |
ISF-like S3 | 7.62 | 7.75 | 1.71 | 7.66 | 0.52 |
Method | pH Meter Reading | pH Measured | Error % |
---|---|---|---|
Top-gate sweeping | 8.60 | 8.79 | 2.2 |
Top-gate real-time | 8.60 | 8.78 | 2.2 |
Constant-current | 8.60 | 8.61 | 0.2 |
Sensor | Method | Substrate | Sensitivity (mV/pH) | Accuracy (pH Units) | Matrix |
---|---|---|---|---|---|
[11] | Potentiometry | Polyaniline-coated PMNA | 62.9 | ±0.036 | Artificial ISF buffer |
[9] | Dual-Gate ISFETs | Silicon nanowires | 938.4 | N.A | pH calibrators |
[22] | Potentiometry | Hydrogen selective membrane (HSM) | >50 | ±0.3 | Euthanized rat ISF |
[23] | Constant current | Silicon nitride | 41 | N.A | pH calibrators |
This work | Top-gate ISFETs | Silicon nanowires | 42 ± 10 | ±0.18 | Human ISF |
This work | Constant current | Silicon nanowires | ≈400 | ±0.01 | Human ISF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sprunger, Y.; Capua, L.; Ernst, T.; Barraud, S.; Locca, D.; Ionescu, A.; Saeidi, A. pH Quantification in Human Dermal Interstitial Fluid Using Ultra-Thin SOI Silicon Nanowire ISFETs and a High-Sensitivity Constant-Current Approach. Biosensors 2023, 13, 908. https://doi.org/10.3390/bios13100908
Sprunger Y, Capua L, Ernst T, Barraud S, Locca D, Ionescu A, Saeidi A. pH Quantification in Human Dermal Interstitial Fluid Using Ultra-Thin SOI Silicon Nanowire ISFETs and a High-Sensitivity Constant-Current Approach. Biosensors. 2023; 13(10):908. https://doi.org/10.3390/bios13100908
Chicago/Turabian StyleSprunger, Yann, Luca Capua, Thomas Ernst, Sylvain Barraud, Didier Locca, Adrian Ionescu, and Ali Saeidi. 2023. "pH Quantification in Human Dermal Interstitial Fluid Using Ultra-Thin SOI Silicon Nanowire ISFETs and a High-Sensitivity Constant-Current Approach" Biosensors 13, no. 10: 908. https://doi.org/10.3390/bios13100908
APA StyleSprunger, Y., Capua, L., Ernst, T., Barraud, S., Locca, D., Ionescu, A., & Saeidi, A. (2023). pH Quantification in Human Dermal Interstitial Fluid Using Ultra-Thin SOI Silicon Nanowire ISFETs and a High-Sensitivity Constant-Current Approach. Biosensors, 13(10), 908. https://doi.org/10.3390/bios13100908