Tunable Magneto-Plasmonic Nanosensor for Sensitive Detection of Foodborne Pathogens
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents
2.2. Instrumentations
2.3. Bacterial Culture
2.4. Synthesis of Gold Nanoparticles (GNPs)
2.5. Synthesis of Iron Oxide Nanoparticles (IONPs)
2.6. Synthesis of Magneto-Plasmonic Nanosensors (MPnS)
2.7. Procedure for MPnS-Based Detection Assay
2.8. Specificity and Cross-Reactivity Detection Studies
2.9. Evaluation of Assay Performance in Complex Matrices
2.10. Procedure for MPnS Saturation Assay
3. Results and Discussion
3.1. Working Principle of Functional MPnS-Ab for Detection of E. coli O157:H7
3.2. Synthesis, Functionalization, and Characterization of MPnS
3.3. Sensitive Detection of E. coli O157:H7 in Aqueous Buffer Solution
3.4. Specificity in the Detection of E. coli O157:H7
3.5. Saturation Studies for MPnS-mAb
3.6. Sensitive and Specific Detection of E. coli O157:H7 in Complex Media
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, N.L.; Byrne, L.; Smith, G.A.; Elson, R.; Harris, J.P.; Salmon, R.; Smith, R.; O’Brien, S.J.; Adak, G.K.; Jenkins, C. Shiga Toxin-Producing Escherichia coli O157, England and Wales, 1983-2012. Emerg. Infect. Dis. 2016, 22, 590–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, E.P.; Hirneisen, K.A.; Hoover, D.G.; Kniel, K.E. Fate of Escherichia coli O157:H7 in Ground Beef Following High-Pressure Processing and Freezing. J. Appl. Microbiol. 2010, 108, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Scullen, O.J.; Sheen, S.; Liu, Y.; Johnson, J.R.; Sommers, C.H. Inactivation of Extraintestinal Pathogenic E. coli Suspended in Ground Chicken Meat by High Pressure Processing and Identification of Virulence Factors Which May Affect Resistance to High Pressure. Food Control 2020, 111, 107070. [Google Scholar] [CrossRef]
- Riley, L.W.; Remis, R.S.; Helgerson, S.D.; McGee, H.B.; Wells, J.G.; Davis, B.R.; Hebert, R.J.; Olcott, E.S.; Johnson, L.M.; Hargrett, N.T.; et al. Hemorrhagic Colitis Associated with a Rare Escherichia coli Serotype. N. Engl. J. Med. 1983, 308, 681–685. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://apps.who.int/inf-fs/en/fact237.html (accessed on 28 June 2021).
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global Incidence of Human Shiga Toxin-Producing Escherichia coli Infections and Deaths: A Systematic Review and Knowledge Synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control. Estimates of Foodborne Illness in the United States. Available online: https://www.cdc.gov/foodborneburden/index.html (accessed on 28 June 2021).
- Xu, M.; Wang, R.; Li, Y. Electrochemical Biosensors for Rapid Detection of Escherichia coli O157:H7. Talanta 2017, 162, 511–522. [Google Scholar] [CrossRef]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [Green Version]
- Maguire, M.; Kase, J.A.; Roberson, D.; Muruvanda, T.; Brown, E.W.; Allard, M.; Musser, S.M.; González-Escalona, N. Precision Long-Read Metagenomics Sequencing for Food Safety by Detection and Assembly of Shiga Toxin-Producing Escherichia coli in Irrigation Water. PLoS ONE 2021, 16, e0245172. [Google Scholar] [CrossRef]
- Paswan, R.; Park, Y.W. Survivability of Salmonella and Escherichia coli O157:H7 Pathogens and Food Safety Concerns on Commercial Powder Milk Products. Dairy 2020, 1, 189–201. [Google Scholar] [CrossRef]
- Koseki, S.; Nakamura, N.; Shiina, T. Comparison of Desiccation Tolerance among Listeria monocytogenes, Escherichia coli O157:H7, Salmonella enterica, and Cronobacter sakazakii in Powdered Infant Formula. J. Food Prot. 2015, 78, 104–110. [Google Scholar] [CrossRef]
- Davidson, G.R.; Kaminski-Davidson, C.N.; Ryser, E.T. Persistence of Escherichia coli O157:H7 during Pilot-Scale Processing of Iceberg Lettuce Using Flume Water Containing Peroxyacetic Acid-Based Sanitizers and Various Organic Loads. Int. J. Food Microbiol. 2017, 248, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Center for Science in the Public Interest (CSPI). Outbreak Alert! 2008. Available online: http://www.cspinet.org/new/pdf/outbreak_alert_2008_report_final.pdf (accessed on 28 June 2021).
- Chien, S.-Y.; Sheen, S.; Sommers, C.; Sheen, L.-Y. Modeling the Inactivation of Escherichia coli O157:H7 and Uropathogenic E. Coli in Ground Beef by High Pressure Processing and Citral. Food Control 2017, 73, 672–680. [Google Scholar] [CrossRef]
- Zhou, Y.; Karwe, M.V.; Matthews, K.R. Differences in Inactivation of Escherichia coli O157:H7 Strains in Ground Beef Following Repeated High Pressure Processing Treatments and Cold Storage. Food Microbiol. 2016, 58, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Kuruwita, D.P.; Jiang, X.; Darby, D.; Sharp, J.L.; Fraser, A.M. Persistence of Escherichia coli O157:H7 and Listeria Monocytogenes on the Exterior of Three Common Food Packaging Materials. Food Control 2020, 112, 107153. [Google Scholar] [CrossRef]
- Dass, S.D.; Bosilevac, J.M.; Weinroth, M.; Elowsky, C.G.; Zhou, Y.; Anandappa, A.; Wang, R. Impact of Mixed Biofilm Formation with Environmental Microorganisms on E. Coli O157:H7 Survival against Sanitization. NPJ Sci. Food 2020, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Spika, J.S.; Parsons, J.E.; Nordenberg, D.; Wells, J.G.; Gunn, R.A.; Blake, P.A. Hemolytic Uremic Syndrome and Diarrhea Associated with Escherichia coli O157:H7 in a Day Care Center. J. Pediatr. 1986, 109, 287–291. [Google Scholar] [CrossRef]
- Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 Outbreaks, United States, 1982-2002. Emerg. Infect. Dis. 2005, 11, 603–609. [Google Scholar] [CrossRef]
- Money, P.; Kelly, A.F.; Gould, S.W.J.; Denholm-Price, J.; Threlfall, E.J.; Fielder, M.D. Cattle, Weather and Water: Mapping Escherichia coli O157:H7 Infections in Humans in England and Scotland: Cattle, Weather, Water and Escherichia coli O157:H7. Environ. Microbiol. 2010, 12, 2633–2644. [Google Scholar] [CrossRef]
- Varma, J.K.; Greene, K.D.; Reller, M.E.; DeLong, S.M.; Trottier, J.; Nowicki, S.F.; DiOrio, M.; Koch, E.M.; Bannerman, T.L.; York, S.T.; et al. An Outbreak of Escherichia coli O157 Infection Following Exposure to a Contaminated Building. JAMA 2003, 290, 2709–2712. [Google Scholar] [CrossRef]
- Schmidt, J.W.; Arthur, T.M.; Bosilevac, J.M.; Kalchayanand, N.; Wheeler, T.L. Detection of Escherichia coli O157:H7 and Salmonella Enterica in Air and Droplets at Three U.S. Commercial Beef Processing Plants. J. Food Prot. 2012, 75, 2213–2218. [Google Scholar] [CrossRef]
- Riley, L.W. Pandemic Lineages of Extraintestinal Pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014, 20, 380–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munns, K.D.; Selinger, L.B.; Stanford, K.; Guan, L.; Callaway, T.R.; McAllister, T.A. Perspectives on Super-Shedding of Escherichia coli O157:H7 by Cattle. Foodborne Pathog. Dis. 2015, 12, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-G.; Lee, J.-H.; Gwon, G.; Kim, S.-I.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 36377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M.S.; Roels, T.; Koehler, J.E.; Feldman, L.; Bibb, W.F.; Blake, P. Escherichia coli O157:H7 Outbreak Associated with an Improperly Chlorinated Swimming Pool. Clin. Infect. Dis. 1999, 29, 298–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikhail, A.F.W.; Jenkins, C.; Dallman, T.J.; Inns, T.; Douglas, A.; Martín, A.I.C.; Fox, A.; Cleary, P.; Elson, R.; Hawker, J. An Outbreak of Shiga Toxin-Producing Escherichia coli O157:H7 Associated with Contaminated Salad Leaves: Epidemiological, Genomic and Food Trace Back Investigations—CORRIGENDUM. Epidemiol. Infect. 2018, 146, 1879. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Samadpour, M.; Grimm, L.; Clausen, C.R.; Besser, T.E.; Baylor, M.; Kobayashi, J.M.; Neill, M.A.; Schoenknecht, F.D.; Tarr, P.I. Characteristics of Antibiotic-Resistant Escherichia coli O157:H7 in Washington State, 1984–1991. J. Infect. Dis. 1994, 170, 1606–1609. [Google Scholar] [CrossRef]
- Zhao, S.; White, D.G.; Ge, B.; Ayers, S.; Friedman, S.; English, L.; Wagner, D.; Gaines, S.; Meng, J. Identification and Characterization of Integron-Mediated Antibiotic Resistance among Shiga Toxin-Producing Escherichia coli Isolates. Appl. Environ. Microbiol. 2001, 67, 1558–1564. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Schroeder, C.M.; Meng, J.; White, D.G.; McDermott, P.F.; Wagner, D.D.; Yang, H.; Simjee, S.; Debroy, C.; Walker, R.D.; et al. Identification of Antimicrobial Resistance and Class 1 Integrons in Shiga Toxin-Producing Escherichia coli Recovered from Humans and Food Animals. J. Antimicrob. Chemother. 2005, 56, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Murinda, S.E.; Ebner, P.D.; Nguyen, L.T.; Mathew, A.G.; Oliver, S.P. Antimicrobial Resistance and Class 1 Integrons in Pathogenic Escherichia coli from Dairy Farms. Foodborne Pathog. Dis. 2005, 2, 348–352. [Google Scholar] [CrossRef]
- Guerra, B.; Junker, E.; Schroeter, A.; Helmuth, R.; Guth, B.E.C.; Beutin, L. Phenotypic and Genotypic Characterization of Antimicrobial Resistance in Escherichia coli O111 Isolates. J. Antimicrob. Chemother. 2006, 57, 1210–1214. [Google Scholar] [CrossRef]
- Karmali, M.A.; Gannon, V.; Sargeant, J.M. Verocytotoxin-Producing Escherichia coli (VTEC). Vet. Microbiol. 2010, 140, 360–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Center for Food Safety; Applied Nutrition. BAM Chapter 4A: Diarrheagenic Escherichia coli. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4a-diarrheagenic-escherichia-coli (accessed on 28 June 2021).
- Grützke, J.; Malorny, B.; Hammerl, J.A.; Busch, A.; Tausch, S.H.; Tomaso, H.; Deneke, C. Fishing in the Soup—Pathogen Detection in Food Safety Using Metabarcoding and Metagenomic Sequencing. Front. Microbiol. 2019, 10, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottesen, A.; Ramachandran, P.; Chen, Y.; Brown, E.; Reed, E.; Strain, E. Quasimetagenomic Source Tracking of Listeria Monocytogenes from Naturally Contaminated Ice Cream. BMC Infect. Dis. 2020, 20, 83. [Google Scholar] [CrossRef] [Green Version]
- Moss, E.L.; Maghini, D.G.; Bhatt, A.S. Complete, Closed Bacterial Genomes from Microbiomes Using Nanopore Sequencing. Nat. Biotechnol. 2020, 38, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, D.; Shaw, J.; Kalathiyappan, M.; Ng, A.H.Q.; Kumar, M.S.; Li, C.; Dvornicic, M.; Soldo, J.P.; Koh, J.Y.; Tong, C.; et al. Hybrid Metagenomic Assembly Enables High-Resolution Analysis of Resistance Determinants and Mobile Elements in Human Microbiomes. Nat. Biotechnol. 2019, 37, 937–944. [Google Scholar] [CrossRef]
- Gu, G.; Ottesen, A.; Bolten, S.; Luo, Y.; Rideout, S.; Nou, X. Microbiome Convergence Following Sanitizer Treatment and Identification of Sanitizer Resistant Species from Spinach and Lettuce Rinse Water. Int. J. Food Microbiol. 2020, 318, 108458. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations. Front. Microbiol. 2014, 5, 770. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lin, C.-W.; Wang, J.; Oh, D.H. Advances in Rapid Detection Methods for Foodborne Pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for Detection of Pathogenic Bacteria. Biosens. Bioelectron. 1999, 14, 599–624. [Google Scholar] [CrossRef]
- Li, L.; Liang, J.; Hong, W.; Zhao, Y.; Sun, S.; Yang, X.; Xu, A.; Hang, H.; Wu, L.; Chen, S. Evolved Bacterial Biosensor for Arsenite Detection in Environmental Water. Environ. Sci. Technol. 2015, 49, 6149–6155. [Google Scholar] [CrossRef]
- Zhou, H.; Zou, F.; Koh, K.; Lee, J. Multifunctional Magnetoplasmonic Nanomaterials and Their Biomedical Applications. J. Biomed. Nanotechnol. 2014, 10, 2921–2949. [Google Scholar] [CrossRef] [PubMed]
- Otieno, B.A.; Krause, C.E.; Latus, A.; Chikkaveeraiah, B.V.; Faria, R.C.; Rusling, J.F. On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers. Biosens. Bioelectron. 2014, 53, 268–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Guan, Z.; Liu, D.; Jia, S.; Li, J.; Lei, Z.; Lin, S.; Ji, T.; Tian, Z.; Yang, C.J. Translating molecular recognition into a pressure signal to enable rapid, sensitive, and portable biomedical analysis. Angew. Chem. Int. Ed. 2015, 54, 10448–10453. [Google Scholar] [CrossRef]
- Kwon, J.; Mao, X.; Lee, J. Fe-based multifunctional nanoparticles with various physicochemical properties. Curr. Appl. Phys. 2017, 17, 1066–1078. [Google Scholar] [CrossRef]
- Duan, D.; Fan, K.; Zhang, D.; Tan, S.; Liang, M.; Liu, Y.; Zhang, J.; Zhang, P.; Liu, W.; Qiu, X. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron. 2015, 74, 134–141. [Google Scholar] [CrossRef]
- Fu, A.; Micheel, C.M.; Cha, J.; Chang, H.; Yang, H.; Alivisatos, A.P. Discrete Nanostructures of Quantum Dots/Au with DNA. J. Am. Chem. Soc. 2004, 126, 10832–10833. [Google Scholar] [CrossRef]
- Zhang, J.; Post, M.; Veres, T.; Jakubek, Z.J.; Guan, J.; Wang, D.; Normandin, F.; Deslandes, Y.; Simard, B. Laser-assisted synthesis of superparamagnetic Fe@Au core–shell nanoparticles. J. Phys. Chem. B. 2006, 110, 7122–7128. [Google Scholar] [CrossRef] [Green Version]
- Spasova, M.; Salgueiriño-Maceira, V.; Schlachter, A.; Hilgendorff, M.; Giersig, M.; Liz-Marzán, F.; Farle, M. Magnetic and optical tunable microspheres with a magnetite/gold nanoparticle shell. J. Mater. Chem. 2005, 15, 2095–2098. [Google Scholar] [CrossRef]
- Lee, W.-R.; Kim, M.G.; Choi, J.R.; Park, J.I.; Ko, S.J.; Oh, S.J.; Cheon, J. Redox-transmetalation process as a generalized synthetic strategy for core–shell magnetic nanoparticles. J. Am. Chem. Soc. 2005, 127, 16090–16097. [Google Scholar] [CrossRef]
- Cho, S.-J.; Shahin, A.M.; Long, G.J.; Davies, J.E.; Liu, K.; Grandjean, F.; Kauzlarich, S.M. Magnetic and Mössbauer spectral study of core/shell structured Fe/Au nanoparticles. Chem. Mater. 2006, 18, 960–967. [Google Scholar] [CrossRef] [Green Version]
- Santra, S.; Kaittanis, C.; Grimm, J.; Perez, J. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009, 5, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B. 2006, 110, 15700–15707. [Google Scholar] [CrossRef] [PubMed]
- Panchal, N.; Jain, V.; Elliott, R.; Flint, Z.; Worsley, P.; Duran, C.; Banerjee, T.; Santra, S. Plasmon-Enhanced Bimodal Nanosensor: An Enzyme-Free Signal Amplification Strategy for Ultrasensitive Detection of Pathogens. Anal. Chem. 2022, 94, 13968–13977. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.; Sulthana, S.; Shelby, T.; Heckert, B.; Jewell, J.; Woody, K.; Karimnia, V.; McAfee, J.; Santra, S. Multiparametric Magneto-Fluorescent Nanosensors for the Ultrasensitive Detection of Escherichia coli O157:H7. ACS Infect. Dis. 2016, 2, 667–673. [Google Scholar] [CrossRef]
- Fu, J.; Zhou, Y.; Huang, X.; Zhang, W.; Wu, Y.; Fang, H.; Zhang, C.; Xiong, Y. Dramatically Enhanced Immunochromatographic Assay Using Cascade Signal Amplification for Ultrasensitive Detection of Escherichia coli O157:H7 in Milk. Agric. Food Chem. 2020, 68, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Zhao, C.; Li, L.; Song, X.; Xu, K.; Wang, J.; Liu, Y.; Fu, K.; Bao, H.; Song, D.; et al. Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal. Biochem. 2018, 542, 58–62. [Google Scholar] [CrossRef]
- Sun, D.; Fan, T.; Liu, F.; Wang, F.; Gao, D.; Lin, J.M. A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E.coli O157:H7. Biosens. Bioelectron. 2022, 212, 114390. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yang, Y.; Hu, F.; Cai, Y.; Liu, X.; He, X. Rapid detection of Escherichia coli O157:H7 by a fluorescent microsphere-based immunochromatographic assay and immunomagnetic separation. Anal. Biochem. 2019, 564, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Xing, G.; Liu, X.; Lin, H.; Lin, J.M. Fully Integrated Microfluidic Biosensor with Finger Actuation for the Ultrasensitive Detection of Escherichia coli O157:H7. Anal. Chem. 2022, 94, 16787–16795. [Google Scholar]
- Xia, J.; Bu, T.; Jia, P.; He, K.; Wang, X.; Sun, X.; Wang, L. Polydopamine nanospheres-assisted direct PCR for rapid detection of Escherichia coli O157:H7. Anal. Biochem. 2022, 654, 114797. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xu, L.; Xiao, R.; Zhou, Z.; Wang, C.; Wang, S.; Gu, B. Rapid, Quantitative, High-Sensitive Detection of Escherichia coli O157:H7 by Gold-Shell Silica-Core Nanospheres-Based Surface-Enhanced Raman Scattering Lateral Flow Immunoassay. Front. Microbiol. 2020, 11, 596005. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, T.; Panchal, N.; Sutton, C.; Elliott, R.; Patel, T.; Kajal, K.; Arogunyo, E.; Koti, N.; Santra, S. Tunable Magneto-Plasmonic Nanosensor for Sensitive Detection of Foodborne Pathogens. Biosensors 2023, 13, 109. https://doi.org/10.3390/bios13010109
Banerjee T, Panchal N, Sutton C, Elliott R, Patel T, Kajal K, Arogunyo E, Koti N, Santra S. Tunable Magneto-Plasmonic Nanosensor for Sensitive Detection of Foodborne Pathogens. Biosensors. 2023; 13(1):109. https://doi.org/10.3390/bios13010109
Chicago/Turabian StyleBanerjee, Tuhina, Nilamben Panchal, Carissa Sutton, Rebekah Elliott, Truptiben Patel, Kajal Kajal, Eniola Arogunyo, Neelima Koti, and Santimukul Santra. 2023. "Tunable Magneto-Plasmonic Nanosensor for Sensitive Detection of Foodborne Pathogens" Biosensors 13, no. 1: 109. https://doi.org/10.3390/bios13010109
APA StyleBanerjee, T., Panchal, N., Sutton, C., Elliott, R., Patel, T., Kajal, K., Arogunyo, E., Koti, N., & Santra, S. (2023). Tunable Magneto-Plasmonic Nanosensor for Sensitive Detection of Foodborne Pathogens. Biosensors, 13(1), 109. https://doi.org/10.3390/bios13010109