State-of-the-Art Development in Liquid Crystal Biochemical Sensors
Abstract
:1. Introduction
2. General Aspects of LC Sensors
2.1. Properties of LC
2.2. Detection Principle
2.2.1. Phase Change
2.2.2. Orientational Change
3. LC-Based Sensing Platforms
3.1. LC-Solid Platform
3.2. LC–Aqueous Platform
3.3. LC Droplet
4. Applications in LC Biochemical Sensors
4.1. Metal Ion Detection
LC Material | Sensing Platform | Analytes | Detection Probe | Principle | LOD | Ref. |
---|---|---|---|---|---|---|
UV-treated 5CB | LC–aqueous | Cu2+ | Urease | LC keep the orientation when urea contacts with the Cu2+-blocked urease | 10 μM | [39] |
Stearic-acid-doped 5CB | LC droplet | Cu2+/Co2+ | Stearic acid | HM ions attached to the deprotonated acid, interrupt the self-assembly of stearic acid and LC orientation | 0.3–0.5 nM | [40] |
Stearic-acid-doped 5CB | LC droplet | Cu2+ | Stearic acid | Spectral shift of WGM with the adsorption of HM ions on 5CB microdroplet | 40 pM | [41] |
Fluorophore/5CB | LC-solid | Cu2+ | Biotinylated oligopeptide | Combination between multidentate oligopeptide ligand Cu2+, inducing LC reorientation | 0.1 μM | [56] |
ZT-doped 5CB | LC–aqueous | Hg2+ | ZT | Complexation between ZT and Hg2+, inducing LC reorientation | 10 μM | [42] |
5CB | LC–aqueous | Hg2+ | MeDTC | Complexation between MeDTC and Hg2+, inducing LC reorientation | 0.5 μM | [43] |
5CB | LC-solid | Hg2+ | T-T base pairs | Formation of DNA duplexes containing T–Hg2+–T, inducing LC reorientation | 0.1 nM | [44] |
5CB | LC-solid | Cd2+ | PS-Oligo | Cd2+ induced bending of PS-oligo, inducing LC reorientation | 0.1 nM | [45] |
5CB | LC–aqueous | Pb2+ | SRNA | Formation of SRNA-Pb2+ complex, inducing LC reorientation | 3 nM | [35] |
5CB | LC droplet | Pb2+ | DNAzyme | Binding of Pb2+ and DNAzyme releases OTAB, inducing LC droplets order transition | 0.7 nM | [46] |
5CB | LC-solid/aqueous | Pb2+ | DNAzyme | Catalytic hydrolysis of DNAzyme by Pb2+, inducing LC reorientation | 36.8 nM | [47] |
AIEgen-doped 5CB | LC-solid/aqueous | Pb2+ | DNAzyme | Catalytic hydrolysis of DNAzyme by Pb2+, inducing LC/AIEgen reorientation and fluorescence change | 0.65 nM | [48] |
5CB | LC–aqueous | Pb2+ | NiFe2O4 nanoparticle | Interaction between Pb2+ and -OH on the nanoparticle, inducing LC reorientation | 100 ppb | [49] |
CLC | CLC film | K+ | Crown ether derivative | Binding between K+ and crown ether derivative, inducing reflection peak shift | 120 nm M−1 | [50] |
CLC | PSCLC film | K+/Ba2+ | Crown ether | Binding between K+/Ba2+ and crown ether, inducing reflection peak shift | \ | [51] |
CLC | CLC film | Ca2+ | Benzoic acid group | Coordination interaction between Ca2+ and -COO−, inducing reflection peak shift | 10−4 M | [53] |
CLC | CLC film | Ca2+ | Poly(acrylic acid) | Coordination interaction between Ca2+ and -COO−, inducing reflection peak shift | 0.35 mM | [54] |
5CB | LC–aqueous | Ca2+ | PAA-b-LCP | Coordination interaction between Ca2+ and -COO−, inducing LC reorientation | 2.5 mM | [55] |
4.2. Nucleic Acid Detection
4.3. Protein Detection
4.3.1. Immunoreaction-Based Sensing
4.3.2. Enzymatic-Reaction-Based Sensing
4.3.3. Aptamer-Based Sensing
LC Material | Sensing Platform | Analytes | Detection Probe | Principle | LOD | Ref. |
---|---|---|---|---|---|---|
UV-treated 5CB | LC–aqueous | Urease/Cu2+ | CBA | NH3 from urease-catalyzed reaction triggered deprotonation of CBA and LC orientational change | 1 nM | [99] |
5CB | LC-droplet | Urease | stearic acid | Urease activity triggers the LC droplet configuration change | \ | [100] |
5CB | LC-SEC substrate | Urease/Cu2+ | SEC | Enzymatic reaction of urease leads to pH change and disassembly of SEC, inducing LC reorientation | 0.03 mU/mL | [101] |
dodecanal-doped 5CB | LC–aqueous | Catalase | Dodecanal, carboxylic acid | Oxidation of dodecanal by hydrogen peroxide into carboxylic acid leads to planar-to-homeotropic state transition | 1 nM | [103] |
5CB | LC–aqueous | AchE/inhibitor | Myr | Hydrolysis of Myr by AchE, inducing LC reorientation | 0.000827 U/mL, 1 fM | [104] |
5CB | LC-droplet | AchE/inhibitor | Myr | Hydrolysis of Myr by AchE, inducing radial-to-bipolar change of LC droplet | \ | [105] |
PBA-doped 5CB | LC-droplet | pH/penicillinase | PBA | Deprotonation of PBA, inducing LC droplet LC droplet configuration change | \ | [106] |
dodecyl β-d-glucopyranoside d-doped 5CB | LC–aqueous | Cellulase/cysteine | dodecyl β-d-glucopyranoside d | Enzymatic hydrolysis between cellulase and surfactant, inducing LC reorientation | 1 × 10−5 mg/mL and 82.5 μM | [107] |
OTB-doped 5CB | LC–aqueous | Carboxylesterases (CES) | OTB | Enzymatic cleavage of OTB, inducing LC reorientation | 18 U/L | [108] |
5CB | LC–aqueous | lipase | phospholipid | Enzymatic hydrolysis of phospholipid, inducing LC reorientation | \ | [109] |
5CB | LC optical fiber sensor | PLA2 | L-DLPC | Hydrolysis between PLA2 and L-DLPC reorders LC | 1 nM | [110] |
DOPG-decorated 5CB | LC–aqueous | Trypsin | PLL | Enzymatic reaction with PLL induces LC reorientation | 1 μg/mL | [111] |
5CB | LC–aqueous | Trypsin | BSA | Enzymatic cleavage of BSA disrupts LC orientation | 10 ng/mL | [113] |
5CB | LC–aqueous | Trypsin | CTAB-embedded gelatin | Decomposition of gelatin releases CTAB, inducing LC realignment | 0.34 ng/mL | [114] |
DOPG-decorated 5CB | LC–aqueous | Thrombin | PLA | Enzymatic reaction with PLA induces LC reorientation | 0.25 ng/mL | [112] |
5CB | LC-solid | Thrombin | Thrombin-specific aptamer | Specific interaction between thrombin and its aptamer | 1 pg/mL | [118] |
5CB | LC-based assay | Protease | Casein | Enzymatic cleavage of casein into peptide fragments disrupts LC orientation | 10 ng/mL | [115] |
5CB | LC-based assay | Protease inhibitor | Protease | Interaction between protease inhibitors and protease | \ | [116] |
5CB | LC-solid | Carcinoembryonic (CEA) | CEA aptamer | Specific interaction between CEA and its aptamer | 0.12 pg/mL | [119] |
5CB | LC-solid | Interferon-γ (IFN-γ) | IFN-γ aptamer | Specific interaction between IFN-γ and its aptamer | 17 pg/mL | [120] |
5CB | LC-solid | Alpha-synuclein (α-syn) | DNA aptamer | Specific interaction between α-syn and DNA aptamer, disrupting LC alignment | 50 nM | [121] |
5CB | LC-solid | HIV-1 surface glycoprotein | RNA aptamer B40t77 | Binding event of gp-120 and B40t77, disrupting LC alignment | 1 µg/mL | [122] |
5CB | LC–aqueous | Cancer biomarkers (PDGF-BB/adenosine) | MBs preassembled with ligation DNA, linear padlock DNA, and aptamers | Aptamer-target recognition triggered in situ RCA on MBs, inducing LC reorientation | 0.12 pM /31 pM | [123] |
5CB | LC–aqueous | Tumor markers (CEA/AFP/PSA) | Apt1-coated MBs, signal DNA and Apt2 | Target-induced dissociation of the aptamer and release of signal DNA, DNA hybridization induces LC reorientation | \ | [124] |
4.4. Detection of Other Biochemical Targets
4.4.1. Glucose
4.4.2. Cholesterol and Bile Acid
4.4.3. Other Toxic Analytes
LC Material | Sensing Platform | Analytes | Detection Probe | Principle | LOD | Ref. |
---|---|---|---|---|---|---|
5CB | LC–aqueous | Cholesterol | ChO and HRP | Enzymatic reaction of cholesterol induced pH change and LC orientational change | 0.8 mM | [134] |
5CB | LC–aqueous | Cholic acid | SDS | Competitive interaction between CA and SDS | 10 μM | [137] |
5CB | LC droplet | Cholic acid | SDS | Competitive interaction between CA and SDS | 5 μM | [138] |
5CB | LC droplet-based capillary platform | Bile acid | SDS | Competitive interaction between CA and SDS | \ | [139] |
5CB | LC droplet-embedded hydrogel film | Bile acid | SC14S | Competitive adsorption of the bile acid | \ | [140] |
5CB | LC droplet | Bile acid | SDS | Removal of SDS from the surface of LC droplet | \ | [141] |
5CB | LC–aqueous | Lithocholic acid | β-CD | Competitive host-guest inclusion between SDS/β-CD and LCA/β-CD complex | 2 μM | [142] |
5CB | LC droplet | Bile acid | β-CD | Competitive host-guest recognition induced SC14S displacement from β-CD | \ | [143] |
5CB | LC droplet | DMMP | Cu(ClO4)2 | Competitive coordination interaction of Cu(ClO4)2 with DMMP and LC | 2 ppb | [153] |
5CB | LC droplet | DDVP | Alkaline phosphatase (ALP) | ALP hydrolysis of SMP | 0.1 ng/mL | [154] |
5CB | LC droplet | AChE-inhibiting pesticides | AChE | Enzymatic event of AChE and myristoylcholine (Myr) | \ | [155] |
5CB | LC–aqueous | malathion | DNA aptamer | Formation of aptamer-malathion complex changed LC orientation | 0.465 nM | [36] |
5CB | LC–aqueous | Cocaine | Aptamer | Specific interaction between aptamer and cocaine, inducing LC reorientation | 1 nM | [157] |
5CB | LC–aqueous | Ibuprofen | DNA aptamer | Specific binding of ibuprofen with aptamer releases CTAB, inducing LC reorientation | 12.5 μg/mL | [158] |
5CB | LC–aqueous | Xanthine oxidase (XOD) inhibitor | XOD and its aptamer | Xanthine oxidation by XOD prevents the specific binding of xanthine and aptamer, inducing LC reorientation | \ | [159] |
5CB | LC-solid | amoxicillin (AMX) | AMX aptamer | Specific interaction between aptamer and AMX, inducing LC reorientation | 3.5 nM | [160] |
5CB | LC-solid | Kanamycin (Kana) | Kana aptamer | Formation of AuNPs–Kana–aptamer complex induces LC reorientation | 0.1 pM | [161] |
5CB | LC droplet | Kanamycin (Kana) | Kana aptamer | Specific recognition of kanamycin and aptamer releases CTAB, inducing LC reorientation | 0.17 nM | [162] |
5CB | LC droplet | penicillin G | Penicillinase and PBA | Enzymatic hydrolysis catalyzed by penicillinase leads to PBA protonation, inducing LC reorientation | 0.178 ng/mL | [163] |
5CB | LC-solid | ochratoxin A (OTA) | π-shaped aptamer | Conformational switch of aptamer when bind with OTA, inducing LC reorientation | 0.63 aM | [164] |
5CB | LC-solid | ochratoxin A (OTA) | P-shaped structure of DNA strands | Binding between OTA and aptamer disassembles the aptamer-locker hybrid, inducing LC realignment | 0.0078 aM | [165] |
5CB | LC microarray | Aflatoxin B1 (AFB1) | ssDNA | Binding between aptamer and AFB1 release complementary ssDNA, inducing LC order change reported by micro-spectral optical signal | 300 pM | [166] |
5. Machine-Learning-Assisted LC Sensor
6. Conclusions and Future Perspectives
- (1)
- Many LC sensors are non-reproducible, since some reactions between targets and probes are irreversible, such as enzyme hydrolysis and DNAzyme cleavage. Fabricating a reusable LC sensing platform is good for waste and cost reduction.
- (2)
- The stability of the LC-based platforms should be taken into consideration, especially LC–aqueous and LC droplet systems, since they are easily influenced by the environmental conditions (e.g., temperature, light, mechanical disturbance).
- (3)
- Some LC-based sensors can only achieve qualitative detection of the analytes, especially for LC droplet sensors; it is hard to distinguish tiny differences in the optical texture during the pre-radial state. How to achieve accurate quantitative analysis and standardize the parameters are essential questions in the LC sensing field.
- (4)
- Even though the LC sensor exhibits good sensitivity, it still faces certain gaps with some conventional sensors. The LOD needs further improvement by developing more signal amplification strategies.
- (5)
- Currently, the most commonly used material in LC sensors is nematic LC 5CB or E7. More LC materials should be explored in LC-based sensors, such as 8CB, 7CB, and cholesteric LC. Their special properties might provide new thoughts and breakthrough in LC sensors.
- (6)
- In fact, POM is always the most effective tool to report the LC orientation change. Besides the optical method, more signal transduction methods should be explored in the LC sensing platform, such as spectral, electronic, dielectric, fluorescence signal, and so on.
- (7)
- As mentioned in Section 5, despite a few works reporting the utilization of machine learning in LC-based sensors, this field is still in a fledging period. Therefore, more efforts are required to enhance artificial intelligence technology and it is expected to see breakthroughs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reinitzer, F. Beiträge zur Kenntniss des Cholesterins. Monatsh. Chem. 1888, 9, 421–441. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Lu, Y.; Zhang, L.; Ma, J.; Wang, L.; Sun, W. High-sensitivity Fabry–Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect. Opt. Lett. 2018, 43, 5355–5358. [Google Scholar] [CrossRef] [PubMed]
- Wani, O.M.; Zeng, H.; Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 2017, 8, 15546. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Y.; Luo, D. Polarization dependent light-driven liquid crystal elastomer actuators based on photothermal effect. Adv. Opt. Mater. 2020, 9, 2001861. [Google Scholar] [CrossRef]
- Kahn, F.J. Electric-field-induced orientational deformation of nematic liquid crystals: Tunable birefringence. Appl. Phys. Lett. 1972, 20, 199–201. [Google Scholar] [CrossRef]
- Wang, M.; He, L.; Zorba, S.; Yin, Y. Magnetically actuated liquid crystals. Nano Lett. 2014, 14, 3966–3971. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Zhou, P.; Chen, Q.; Su, Y. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Opt. Express 2018, 26, 3394–3403. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Yang, W.; Jiang, X.-F.; Jiang, X.; de Haan, L.T.; Yuan, D.; Zhao, W.; Zheng, N.; Jin, M.; et al. Stable and scalable smart window based on polymer stabilized liquid crystals. J. Appl. Polym. Sci. 2020, 137, 48917. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, H.; Fei, G.; Yu, B.; Tong, X.; Xia, H.; Zhao, Y. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv. Mater. 2018, 30, e1706597. [Google Scholar] [CrossRef]
- Gupta, V.K.; Skaife, J.J.; Dubrovsky, T.B.; Abbott, N.L. Optical amplification of ligand-receptor binding using liquid crystals. Science 1998, 279, 5359. [Google Scholar] [CrossRef] [Green Version]
- Skaife, J.J.; Abbott, N.L. Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens. Langmuir 2000, 16, 3529–3536. [Google Scholar] [CrossRef]
- Skaife, J.J.; Abbott, N.L. Influence of molecular-level interactions on the orientations of liquid crystals supported on nanostructured surfaces presenting specifically bound proteins. Langmuir 2001, 17, 5595–5604. [Google Scholar] [CrossRef]
- Skaife, J.J.; Brake, J.M.; Abbott, N.L. Influence of nanometer-scale topography of surfaces on the orientational response of liquid crystals to proteins specifically bound to surface-immobilized receptors. Langmuir 2001, 17, 5448–5457. [Google Scholar] [CrossRef]
- Brake, J.M.; Abbott, N.L. An experimental system for imaging the reversible adsorption of amphiphiles at aqueous−liquid crystal interfaces. Langmuir 2002, 18, 6101–6109. [Google Scholar] [CrossRef]
- Brake, J.M.; Daschner, M.K.; Luk, Y.-Y.; Abbott, N.L. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 2003, 302, 2094–2097. [Google Scholar] [CrossRef]
- Luk, Y.-Y.; Tingey, M.L.; Hall, D.J.; Israel, B.A.; Murphy, C.J.; Bertics, P.J.; Abbott, N.L. Using liquid crystals to amplify protein−receptor interactions design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors. Langmuir 2003, 19, 1671–1680. [Google Scholar] [CrossRef]
- Brake, J.M.; Daschner, M.K.; Abbott, N.L. Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals. Langmuir 2005, 21, 2218–2228. [Google Scholar] [CrossRef]
- Brake, J.M.; Abbott, N.L. Coupling of the orientations of thermotropic liquid crystals to protein binding events at lipid-decorated interfaces. Langmuir 2007, 23, 8497–8507. [Google Scholar] [CrossRef]
- Park, J.-S.; Abbott, N.L. Ordering transitions in thermotropic liquid crystals induced by the interfacial assembly and enzymatic processing of oligopeptide amphiphiles. Adv. Mater. 2008, 20, 1185–1190. [Google Scholar] [CrossRef]
- Luan, C.; Luan, H.; Luo, D. Application and technique of liquid crystal-based biosensors. Micromachines 2020, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xu, T.; Noel, A.; Chen, Y.C.; Liu, T. Applications of liquid crystals in biosensing. Soft Matter 2021, 17, 4675–4702. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Li, G. Design and Applications of liquid crystal biophotonic sensors for ion detection. Adv. Photonics Res. 2022, 2200007. [Google Scholar] [CrossRef]
- Qu, R.; Li, G. Overview of liquid crystal biosensors: From basic theory to advanced applications. Biosensors 2022, 12, 205. [Google Scholar] [CrossRef] [PubMed]
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: New York, NY, USA, 1972. [Google Scholar]
- Drapp, B.; Pauluth, D.; Krause, J.; Gauglitz, G. The application of the phase transition in nematic liquid crystals for the optical detection of volatile organic compounds. J. Anal. Chem. 1999, 364, 121–127. [Google Scholar] [CrossRef]
- Clare, B.H.; Guzmán, O.; de Pablo, J.J.; Abbott, N.L. Measurement of the azimuthal anchoring energy of liquid crystals in contact with oligo(ethylene glycol)-terminated self-assembled monolayers supported on obliquely deposited gold films. Langmuir 2006, 22, 4654–4659. [Google Scholar] [CrossRef] [PubMed]
- Cadwell, K.D.; Alf, M.E.; Abbott, N.L. Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces. J. Phys. Chem. B 2006, 110, 26081–26088. [Google Scholar] [CrossRef]
- Lowe, A.M.; Abbott, N.L. Liquid crystalline materials for biological applications. Chem. Mater. 2012, 24, 746–758. [Google Scholar] [CrossRef] [Green Version]
- Lowe, A.M.; Ozer, B.H.; Bai, Y.; Bertics, P.J.; Abbott, N.L. Design of surfaces for liquid crystal-based bioanalytical assays. ACS Appl. Mater. Interfaces 2010, 2, 722–731. [Google Scholar] [CrossRef]
- Woltman, S.J.; Jay, G.D.; Crawford, G.P. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 2007, 6, 929–938. [Google Scholar] [CrossRef]
- Miller, D.S.; Carlton, R.J.; Mushenheim, P.C.; Abbott, N.L. Introduction to optical methods for characterizing liquid crystals at interfaces. Langmuir 2013, 29, 3154–3169. [Google Scholar] [CrossRef] [Green Version]
- Popov, P.; Mann, E.K.; Jakli, A. Thermotropic liquid crystal films for biosensors and beyond. J. Mater. Chem. B 2017, 5, 5061–5078. [Google Scholar] [CrossRef]
- Popov, P.; Mann, E.K.; Jákli, A. Accurate optical detection of amphiphiles at liquid-crystal–water interfaces. Phys. Rev. Appl. 2014, 1, 034003. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.R.; Shin, J.-H.; Park, S.-Y. A liquid-crystal-based DNA biosensor for pathogen detection. Sci. Rep. 2016, 6, 22676. [Google Scholar] [CrossRef] [Green Version]
- Verma, I.; Devi, M.; Sharma, D.; Nandi, R.; Pal, S.K. Liquid crystal based detection of Pb(II) ions using spinach RNA as recognition probe. Langmuir 2019, 35, 7816–7823. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Jang, C.-H. A cationic surfactant-decorated liquid crystal-based aptasensor for label-free detection of malathion pesticides in environmental samples. Biosensors 2021, 11, 92. [Google Scholar] [CrossRef]
- Qu, R.; George, T.F.; Li, G. Development in liquid crystal microcapsules: Fabrication, optimization and application. J. Mater. Chem. C 2022, 10, 413–432. [Google Scholar] [CrossRef]
- Muševič, I.; Humar, M. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt. Express 2011, 19, 19836–19844. [Google Scholar]
- Hu, Q.Z.; Jang, C.H. Liquid crystal-based sensors for the detection of heavy metals using surface-immobilized urease. Colloids Surf. B Biointerfaces 2011, 88, 622–626. [Google Scholar] [CrossRef]
- Han, G.R.; Jang, C.H. Detection of heavy-metal ions using liquid crystal droplet patterns modulated by interaction between negatively charged carboxylate and heavy-metal cations. Talanta 2014, 128, 44–50. [Google Scholar] [CrossRef]
- Duan, R.; Li, Y.; Li, H.; Yang, J. Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets. Biomed. Opt. Express 2019, 10, 6073–6083. [Google Scholar] [CrossRef]
- Chen, C.-H.; Lin, Y.-C.; Chang, H.-H.; Lee, A.S. Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions. Anal. Chem. 2015, 87, 4546–4551. [Google Scholar] [CrossRef]
- Singh, S.K.; Nandi, R.; Mishra, K.; Singh, H.K.; Singh, R.K.; Singh, B. Liquid crystal based sensor system for the real time detection of mercuric ions in water using amphiphilic dithiocarbamate. Sens. Actuators B Chem. 2016, 226, 381–387. [Google Scholar] [CrossRef]
- Yang, S.; Wu, C.; Tan, H.; Wu, Y.; Liao, S.; Wu, Z.; Shen, G.; Yu, R. Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions. Anal. Chem. 2013, 85, 14–18. [Google Scholar] [CrossRef]
- Deng, S.; Jiang, Q.; Zhang, T.; Xiong, X.; Chen, P. Liquid crystal biosensor based on Cd2+ Inducing the bending of PS-oligo for the detection of cadmium. Health 2015, 07, 986–993. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.D.S.; Jang, C.-H. A label-free liquid crystal droplet-based sensor used to detect lead ions using single-stranded DNAzyme. Colloids Surf. A Physicochem. Eng. Asp. 2020, 604, 125304. [Google Scholar] [CrossRef]
- Niu, X.; Liu, Y.; Wang, F.; Luo, D. Highly sensitive and selective optical sensor for lead ion detection based on liquid crystal decorated with DNAzyme. Opt. Express 2019, 27, 30421–30428. [Google Scholar] [CrossRef]
- Du, X.; Liu, Y.; Wang, F.; Zhao, D.; Gleeson, H.F.; Luo, D. A fluorescence sensor for Pb2+ detection based on liquid crystals and aggregation-induced emission luminogens. ACS Appl. Mater. Interfaces 2021, 13, 22361–22367. [Google Scholar] [CrossRef]
- Zehra, S.; Gul, I.H.; Hussain, Z. Liquid crystal based optical platform for the detection of Pb2+ ions using NiFe2O4 nanoparticles. Results Phys. 2018, 9, 1462–1467. [Google Scholar] [CrossRef]
- Kado, S.; Takeshima, Y.; Nakahara, Y.; Kimura, K. Potassium-ion-selective sensing based on selective reflection of cholesteric liquid crystal membranes. J. Incl. Phenom. Macrocycl. Chem. 2011, 72, 227–232. [Google Scholar] [CrossRef]
- Stroganov, V.; Ryabchun, A.; Bobrovsky, A.; Shibaev, V. A novel type of crown ether-containing metal ions optical sensors based on polymer-stabilized cholesteric liquid crystalline films. Macromol. Rapid Commun. 2012, 33, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Bala, T.; Prasad, B.L.V.; Sastry, M.; Kahaly, M.U.; Waghmare, U.V. Interaction of different metal ions with carboxylic acid group a quantitative study. J. Phys. Chem. A 2007, 111, 6183–6190. [Google Scholar] [CrossRef]
- Moirangthem, M.; Arts, R.; Merkx, M.; Schenning, A.P.H.J. An optical sensor based on a photonic polymer film to detect calcium in serum. Adv. Funct. Mater. 2016, 26, 1154–1160. [Google Scholar] [CrossRef] [Green Version]
- Myung, D.-b.; Hussain, S.; Park, S.-Y. Photonic calcium and humidity array sensor prepared with reactive cholesteric liquid crystal mesogens. Sens. Actuators B Chem. 2019, 298, 126894. [Google Scholar] [CrossRef]
- Yeo, D.-H.; Park, S.-Y. Liquid-crystal-based biosensor for detecting Ca2+ in human saliva. J. Ind. Eng. Chem. 2019, 74, 193–198. [Google Scholar] [CrossRef]
- Ul Amin, N.; Yang, K.-L.; Majeed, N.; Siddiqi, H.M. Fabrication of a fluorophore/liquid-crystal-based oligopeptide biosensor for the detection of Cu (II) Ions. ChemistrySelect 2021, 6, 6607–6618. [Google Scholar] [CrossRef]
- Sassolas, A.; Leca-Bouvier, B.D.; Blum, L.J. DNA biosensors and microarrays. Chem. Rev. 2008, 108, 109–139. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.L.; Merkoçi, A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J. Am. Chem. Soc. 2003, 125, 3214–3215. [Google Scholar] [CrossRef]
- Wu, Z.S.; Jiang, J.H.; Fu, L.; Shen, G.L.; Yu, R.Q. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal. Biochem. 2006, 353, 22–29. [Google Scholar] [CrossRef]
- Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical DNA biosensors. Chem. Rev. 2014, 114, 7421–7441. [Google Scholar] [CrossRef]
- Kim, H.-R.; Kim, J.-H.; Kim, T.-S.; Oh, S.-W.; Choi, E.-Y. Optical detection of deoxyribonucleic acid hybridization using an anchoring transition of liquid crystal alignment. Appl. Phys. Lett. 2005, 87, 143901. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.L.; Huang, S.; Bi, X.; Bi, X.; Yang, K.-L. Optical imaging of surface-immobilized oligonucleotide probes on DNA microarrays using liquid crystals. Langmuir 2009, 25, 311–316. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, K.-L. Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals. Langmuir 2010, 26, 1427–1430. [Google Scholar] [CrossRef]
- Lai, S.L.; Tan, W.L.; Yang, K.-L. Detection of DNA targets hybridized to solid surfaces using optical images of liquid crystals. ACS Appl. Mater. Interfaces 2011, 3, 3389–3395. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K.-L. Applications of metal ions and liquid crystals for multiplex detection of DNA. J. Colloid Interface Sci. 2015, 439, 149–153. [Google Scholar] [CrossRef]
- Shen, J.; He, F.; Chen, L.; Ding, L.; Liu, H.; Wang, Y.; Xiong, X. Liquid crystal-based detection of DNA hybridization using surface immobilized single-stranded DNA. Microchim. Acta 2017, 184, 3137–3144. [Google Scholar] [CrossRef]
- Tan, H.; Yang, S.; Shen, G.; Yu, R.; Wu, Z. Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition. Angew. Chem. Int. Ed. 2010, 49, 8608–8611. [Google Scholar] [CrossRef] [PubMed]
- Symietz, C.; Schneider, M.; Brezesinski, G.; Möhwald, H. DNA alignment at cationic lipid monolayers at the air/water interface. Macromolecules 2004, 37, 3865–3873. [Google Scholar] [CrossRef]
- Price, A.D.; Schwartz, D.K. DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal aqueous interface. J. Am. Chem. Soc. 2008, 130, 8188–8194. [Google Scholar] [CrossRef]
- McUmber, A.C.; Noonan, P.S.; Schwartz, D.K. Surfactant–DNA interactions at the liquid crystal–aqueous interface. Soft Matter 2012, 8, 4335. [Google Scholar] [CrossRef]
- Tan, H.; Li, X.; Liao, S.; Yu, R.; Wu, Z. Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation. Biosens. Bioelectron. 2014, 62, 84–89. [Google Scholar] [CrossRef]
- Xu, Y.; Rather, A.M.; Song, S.; Fang, J.C.; Dupont, R.L.; Kara, U.I.; Chang, Y.; Paulson, J.A.; Qin, R.; Bao, X.; et al. Ultrasensitive and selective detection of SARS-CoV-2 using thermotropic liquid crystals and image-based machine learning. Cell Rep. Phys. Sci. 2020, 1, 100276. [Google Scholar] [CrossRef]
- Lai, S.L.; Hartono, D.; Yang, K.-L. Self-assembly of cholesterol DNA at liquid crystal/aqueous interface and its application for DNA detection. Appl. Phys. Lett. 2009, 95, 153702. [Google Scholar] [CrossRef]
- Zhou, J.; Dong, Y.; Zhang, Y.; Liu, D.; Yang, Z. The assembly of DNA amphiphiles at liquid crystal-aqueous interface. Nanomaterials 2016, 6, 229. [Google Scholar] [CrossRef] [Green Version]
- Verma, I.; Sidiq, S.; Pal, S.K. Poly(l-lysine)-coated liquid crystal droplets for sensitive detection of DNA and their applications in controlled release of drug molecules. ACS Omega 2017, 2, 7936–7945. [Google Scholar] [CrossRef]
- Popov, P.; Honaker, L.W.; Kooijman, E.E.; Mann, E.K.; Jákli, A.I. A liquid crystal biosensor for specific detection of antigens. Sens. Bio-Sens. Res. 2016, 8, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Yang, K.-L. Microfluidic immunoassay with plug-in liquid crystal for optical detection of antibody. Anal. Chim. Acta 2015, 853, 696–701. [Google Scholar] [CrossRef]
- Lee, K.; Gupta, K.C.; Park, S.-Y.; Kang, I.-K. Anti-IgG-anchored liquid crystal microdroplets for label free detection of IgG. J. Mater. Chem. B 2016, 4, 704–715. [Google Scholar] [CrossRef]
- Huan, Y.; Park, S.J.; Gupta, K.C.; Park, S.-Y.; Kang, I.-K. Slide cover glass immobilized liquid crystal microdroplets for sensitive detection of an IgG antigen. RSC Adv. 2017, 7, 37675. [Google Scholar] [CrossRef]
- Su, H.-W.; Lee, M.-J.; Lee, W. Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125. J. Biomed. Opt. 2015, 20, 57004. [Google Scholar] [CrossRef]
- Sun, S.-H.; Lee, M.-J.; Lee, Y.-H.; Lee, W.; Song, X.; Chen, C.-Y. Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture. Biomed. Opt. Express 2015, 6, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Shaban, H.; Lee, M.-J.; Lee, W. Label-free detection and spectrometrically quantitative analysis of the cancer biomarker CA125 based on lyotropic chromonic liquid crystal. Biosensors 2021, 11, 271. [Google Scholar] [CrossRef]
- He, Q.; Lei, H.; Luo, S.; Tang, P.; Peng, X.; Wang, X. Liquid crystal biosensor for detecting ischemia modified albumin. Res. Chem. Intermed. 2017, 43, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.-J.; Chen, F.-L.; Liou, J.-C.; Huang, Y.-W.; Chen, C.-H.; Hong, Z.-Y.; Lin, J.-D.; Hsiao, Y.-C. Label-free multi-microfluidic immunoassays with liquid crystals on polydimethylsiloxane biosensing chips. Polymers 2020, 12, 395. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-M.; Chuang, E.-Y.; Chen, F.-L.; Lin, J.-D.; Hsiao, Y.-C. Color-indicating, label-free, dye-doped liquid crystal organic-polymer-based-bioinspired sensor for biomolecule immunodetection. Polymers 2020, 12, 2294. [Google Scholar] [CrossRef]
- Xia, C.; Zhou, D.; Su, Y.; Zhou, G.; Yao, L.; Sun, W.; Liu, Y. A liquid-crystal-based immunosensor for the detection of cardiac troponin I. Analyst 2020, 145, 4569–4575. [Google Scholar] [CrossRef]
- Wu, P.-C.; Karn, A.; Lee, M.-J.; Lee, W.; Chen, C.-Y. Dye-liquid-crystal-based biosensing for quantitative protein assay. Dyes Pigm. 2018, 150, 73–78. [Google Scholar] [CrossRef]
- Shaban, H.; Yen, S.-C.; Lee, M.-J.; Lee, W. Signal amplification in an optical and dielectric biosensor employing liquid crystal-photopolymer composite as the sensing medium. Biosensors 2021, 11, 81. [Google Scholar] [CrossRef]
- Zhang, J.; Su, X.; Yang, D.; Luan, C. Label-free liquid crystal biosensor for cecropin B detection. Talanta 2018, 186, 60–64. [Google Scholar] [CrossRef]
- Su, X.; Huo, W.; Yang, D.; Luan, C.; Xu, J. Label-free liquid crystal immunosensor for detection of HBD-2. Talanta 2019, 203, 203–209. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Yang, R.; Liu, M.; Yao, J.; Zhang, M.; Li, N.; Yuan, Z.; Jin, M.; Shui, L. A label-free optical immunoassay based on birefringence of liquid crystal for insulin-like growth factor-I sensing. Sens. Actuators B Chem. 2022, 352, 131028. [Google Scholar] [CrossRef]
- Kim, H.J.; Rim, J.; Jang, C.-H. Liquid-crystal-based immunosensor for diagnosis of tuberculosis in clinical specimens. ACS Appl. Mater. Interfaces 2017, 9, 21209–21215. [Google Scholar] [CrossRef] [PubMed]
- Kemiklioglu, E.; Tuncgovde, E.B.; Ozsarlak-Sozer, G. Development of liquid crystal biosensor for the detection of amyloid beta-42 levels associated with Alzheimer’s disease. J. Biosci. Bioeng. 2021, 132, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Jang, C.-H. Visualization of cholylglycine hydrolase activities through nickel nanoparticle-assisted liquid crystal cells. Sens. Actuators B Chem. 2017, 239, 1268–1274. [Google Scholar] [CrossRef]
- Zhou, C.-H.; Zi, Q.-J.; Wang, J.; Zhao, W.-Y.; Cao, Q. Determination of alkaline phosphatase activity and of carcinoembryonic antigen by using a multicolor liquid crystal biosensor based on the controlled growth of silver nanoparticles. Mikrochim. Acta 2018, 186, 25. [Google Scholar] [CrossRef]
- Su, X.; Xu, J.; Zhang, J.; Yang, D.; Huo, W.; He, C. Detection of Cecropin B by liquid-crystal biosensor based on AuNPs signal amplification. Liq. Cryst. 2020, 47, 1794–1802. [Google Scholar] [CrossRef]
- Liu, H.; Su, X.; Zhang, J.; Xu, J.; Yang, D.; Chen, Q. Highly sensitive and rapid detection of protein kinase C based on liquid crystal biosensor. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127346. [Google Scholar] [CrossRef]
- Deng, H.-H.; Hong, G.-L.; Lin, F.-L.; Liu, A.-L.; Xia, X.-H.; Chen, W. Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal. Chim. Acta 2016, 915, 74–80. [Google Scholar] [CrossRef]
- Hu, Q.-Z.; Jang, C.-H. Using liquid crystals for the real-time detection of urease at aqueous/liquid crystal interfaces. J. Mater. Sci. 2012, 47, 969–975. [Google Scholar] [CrossRef]
- Liu, D.; Jang, C.-H. A new strategy for imaging urease activity using liquid crystal droplet patterns formed on solid surfaces. Sens. Actuators B Chem. 2014, 193, 770–773. [Google Scholar] [CrossRef]
- Qi, L.; Hu, Q.; Kang, Q.; Yu, L. A liquid crystal based method for detection of urease activity and heavy metal ions by using stimulus-responsive surfactant-encapsulated phosphotungstate clusters. Mikrochim. Acta 2018, 186, 27. [Google Scholar] [CrossRef]
- Kuswandi, B. Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions. Anal. Bioanal. Chem. 2003, 376, 1104–1110. [Google Scholar] [CrossRef]
- Hu, Q.-Z.; Jang, C.-H. Using liquid crystals for the label-free detection of catalase at aqueous-LC interfaces. J. Biotechnol. 2012, 157, 223–227. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Guo, Y.; Yu, L. A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor. Biosens. Bioelectron. 2015, 72, 25–30. [Google Scholar] [CrossRef]
- Duan, R.; Hao, X.; Li, Y.; Li, H. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode. Sens. Actuators B Chem. 2020, 308, 127672. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Xu, A.; Wang, L.; Zhang, L.; Liu, S.; Liu, Y.; Li, H. Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor. Sens. Actuators B Chem. 2018, 258, 1090–1098. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Tian, T.; Gao, Y.; Yu, L. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine. Colloids Surf. B Biointerfaces 2016, 147, 100–105. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, Q.; Fang, M.; Yu, L. Label-free, rapid, and sensitive detection of carboxylesterase using surfactant-doped liquid crystal sensor. J. Mol. Liq. 2019, 296, 111921. [Google Scholar] [CrossRef]
- Hussain, Z.; Zafiu, C.; Küpcü, S.; Pivetta, L.; Hollfelder, N.; Masutani, A.; Kilickiran, P.; Sinner, E.-K. Liquid crystal based sensors monitoring lipase activity: A new rapid and sensitive method for cytotoxicity assays. Biosens. Bioelectron. 2014, 56, 210–216. [Google Scholar] [CrossRef]
- Tang, J.; Li, Z.; Xie, M.; Zhang, Y.; Long, W.; Long, S.; Wen, T.; Fang, Z.; Zhu, W.; Zheng, H.; et al. Optical fiber bio-sensor for phospholipase using liquid crystal. Biosens. Bioelectron. 2020, 170, 112547. [Google Scholar] [CrossRef]
- Hu, Q.-Z.; Jang, C.-H. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer. ACS Appl. Mater. Interfaces 2012, 4, 1791–1795. [Google Scholar] [CrossRef]
- Zhang, M.; Jang, C.-H. Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer. Anal. Biochem. 2014, 455, 13–19. [Google Scholar] [CrossRef]
- Chuang, C.-H.; Lin, Y.-C.; Chen, W.-L.; Chen, Y.-H.; Chen, Y.-X.; Chen, C.-M.; Shiu, H.W.; Chang, L.-Y.; Chen, C.-H.; Chen, C.-H. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin. Biosens. Bioelectron. 2016, 78, 213–220. [Google Scholar] [CrossRef]
- Ping, J.; Qi, L.; Wang, Q.; Liu, S.; Jiang, Y.; Yu, L.; Lin, J.-M.; Hu, Q. An integrated liquid crystal sensing device assisted by the surfactant-embedded smart hydrogel. Biosens. Bioelectron. 2021, 187, 113313. [Google Scholar] [CrossRef] [PubMed]
- Jannat, M.; Yang, K.-L. Continuous protease assays using liquid crystal as a reporter. Sens. Actuators B Chem. 2018, 269, 8–14. [Google Scholar] [CrossRef]
- Jannat, M.; Yang, K.-L. Liquid crystal-enabled protease inhibition assays developed in a millifluidic device. Sens. Actuators B Chem. 2019, 296, 126595. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Z.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; An, Z.; Jang, C.-H. Label-free optical detection of thrombin using a liquid crystal-based aptasensor. Microchem. J. 2018, 141, 71–79. [Google Scholar] [CrossRef]
- Ren, H.; Jang, C.-H. A simple liquid crystal-based aptasensor using a hairpin-shaped aptamer for the bare-eye detection of carcinoembryonic antigen. BioChip J. 2019, 13, 352–361. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, C.-H. Liquid crystal-based aptasensor for the detection of interferon-γ and its application in the diagnosis of tuberculosis using human blood. Sens. Actuators B Chem. 2019, 282, 574–579. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Zhao, X.; Liao, W.; Zhang, C.X.; Yang, Z. A novel, label-free liquid crystal biosensor for Parkinson’s disease related alpha-synuclein. Chem. Commun. 2020, 56, 5441–5444. [Google Scholar] [CrossRef]
- Abbasi, A.D.; Hussain, Z.; Liaqat, U.; Arif, D.; Yang, K.-L. Liquid crystal based binding assay for detecting HIV-1 surface glycoprotein. Front. Chem. 2021, 9, 668870. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, Q.; Kang, Q.; Bi, Y.; Jiang, Y.; Yu, L. Detection of biomarkers in blood using liquid crystals assisted with aptamer-target recognition triggered in situ rolling circle amplification on magnetic beads. Anal. Chem. 2019, 91, 11653–11660. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Liu, S.; Jiang, Y.; Lin, J.-M.; Yu, L.; Hu, Q. Simultaneous detection of multiple tumor markers in blood by functional liquid crystal sensors assisted with target-induced dissociation of aptamer. Anal. Chem. 2020, 92, 3867–3873. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Jang, C.-H. Highly sensitive and selective glucose sensor based on ultraviolet-treated nematic liquid crystals. Biosens. Bioelectron. 2014, 59, 293–299. [Google Scholar] [CrossRef]
- Khan, W.; Choi, J.H.; Kim, G.M.; Park, S.-Y. Microfluidic formation of pH responsive 5CB droplets decorated with PAA-b-LCP. Lab Chip 2011, 11, 3493–3498. [Google Scholar] [CrossRef]
- Kim, J.; Khan, M.; Park, S.-Y. Glucose sensor using liquid-crystal droplets made by microfluidics. ACS Appl. Mater. Interfaces 2013, 5, 13135–13139. [Google Scholar] [CrossRef]
- Khan, M.; Park, S.-Y. Glucose biosensor based on GOx/HRP bienzyme at liquid-crystal/aqueous interface. J. Colloid Interface Sci. 2015, 457, 281–288. [Google Scholar] [CrossRef]
- Qi, L.; Hu, Q.; Kang, Q.; Yu, L. Fabrication of liquid-crystal-based optical sensing platform for detection of hydrogen peroxide and blood glucose. Anal. Chem. 2018, 90, 11607–11613. [Google Scholar] [CrossRef]
- Munir, S.; Park, S.-Y. Liquid-crystal droplets functionalized with a non-enzymatic moiety for glucose sensing. Sens. Actuators B Chem. 2018, 257, 579–585. [Google Scholar] [CrossRef]
- Munir, S.; Hussain, S.; Park, S.-Y. Patterned photonic array based on an intertwined polymer network functionalized with a nonenzymatic moiety for the visual detection of glucose. ACS Appl. Mater. Interfaces 2019, 11, 37434–37441. [Google Scholar] [CrossRef]
- Noh, K.-G.; Park, S.-Y. Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer. Adv. Funct. Mater. 2018, 28, 1707562. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Park, S.-Y. Optical multisensor array with functionalized photonic droplets by an interpenetrating polymer network for human blood analysis. ACS Appl. Mater. Interfaces 2020, 12, 47342–47354. [Google Scholar] [CrossRef]
- Munir, S.; Khan, M.; Park, S.-Y. Bienzyme liquid-crystal-based cholesterol biosensor. Sens. Actuators B Chem. 2015, 220, 508–515. [Google Scholar] [CrossRef]
- Jenkins, G.J.; Hardie, L. Bile Acids. Toxicology and Bioactivity, 1st ed.; Royal Society of Chemistry: Cambridge, UK, 2009; pp. 258–259. [Google Scholar]
- Wang, X.; Fu, X.; Van Ness, C.; Meng, Z.; Ma, X.; Huang, W. Bile acid receptors and liver cancer. Curr. Pathobiol. Rep. 2013, 1, 29–35. [Google Scholar] [CrossRef]
- He, S.; Liang, W.; Tanner, C.; Cheng, K.-L.; Fang, J.; Wu, S.-T. Liquid crystal based sensors for the detection of cholic acid. Anal. Methods 2013, 5, 4126–4130. [Google Scholar] [CrossRef]
- Niu, X.; Luo, D.; Chen, R.; Wang, F.; Sun, X.; Dai, H. Optical biosensor based on liquid crystal droplets for detection of cholic acid. Opt. Commun. 2016, 381, 286–291. [Google Scholar] [CrossRef]
- Kim, H.J.; Jang, C.-H. Liquid crystal-based capillary sensory platform for the detection of bile acids. Chem. Phys. Lipids 2017, 204, 10–14. [Google Scholar] [CrossRef]
- Deng, J.; Liang, W.; Fang, J. Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications. ACS Appl. Mater. Interfaces 2016, 8, 3928–3932. [Google Scholar] [CrossRef]
- Han, X.; Han, D.; Zeng, J.; Deng, J.; Hu, N.; Yang, J. Fabrication and performance of monodisperse liquid crystal droplet-based microchips for the on-chip detection of bile acids. Microchem. J. 2020, 157, 105057. [Google Scholar] [CrossRef]
- Ma, H.; Kang, Q.; Wang, T.; Xiao, J.; Yu, L. Liquid crystals-based sensor for the detection of lithocholic acid coupled with competitive host-guest inclusion. Colloids Surf. B Biointerfaces 2019, 173, 178–184. [Google Scholar] [CrossRef]
- Deng, J.; Wang, X.; Liang, W.; Richardson, D.; Lu, Q.; Fang, J. Surface modified liquid crystal droplets as an optical probe for the detection of bile acids in microfluidic channels. Colloids Surf. A Physicochem. Eng. Asp. 2018, 542, 52–58. [Google Scholar] [CrossRef]
- Bedolla Pantoja, M.A.; Abbott, N.L. Surface-controlled orientational transitions in elastically strained films of liquid crystal that are triggered by vapors of toluene. ACS Appl. Mater. Interfaces 2016, 8, 13114–13122. [Google Scholar] [CrossRef]
- Bolleddu, R.; Chakraborty, S.; Bhattacharjee, M.; Bhandaru, N.; Thakur, S.; Gooh-Pattader, P.S.; Mukherjee, R.; Bandyopadhyay, D. Pattern-directed phase transitions and voc sensing of liquid crystal films. Ind. Eng. Chem. Res. 2020, 59, 1902–1913. [Google Scholar] [CrossRef]
- Wang, J.; Jákli, A.; West, J.L. Liquid crystal/polymer fiber mats as sensitive chemical sensors. J. Mol. Liq. 2018, 267, 490–495. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, D.; Yang, K.-L. Monitoring the two-dimensional concentration profile of toluene vapors by using polymer-stabilized nematic liquid crystals in microchannels. Lab Chip 2020, 20, 1687–1693. [Google Scholar] [CrossRef]
- Zhan, X.; Luo, D.; Yang, K.-L. Multifunctional sensors based on liquid crystals scaffolded in nematic polymer networks. RSC Adv. 2021, 11, 38694–38702. [Google Scholar] [CrossRef]
- Wang, P.-H.; Yu, J.-H.; Zhao, Y.-B.; Li, Z.-J.; Li, G.-Q. A novel liquid crystal-based sensor for the real-time identification of organophosphonate vapors. Sens. Actuators B Chem. 2011, 160, 929–935. [Google Scholar] [CrossRef]
- Hunter, J.T.; Abbott, N.L. Adsorbate-induced anchoring transitions of liquid crystals on surfaces presenting metal salts with mixed anions. ACS Appl. Mater. Interfaces 2014, 6, 2362–2369. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Sridharamurthy, S.S.; Hunter, J.T.; Park, J.-S.; Abbott, N.L.; Hongrui, J. A sensing device using liquid crystal in a micropillar array supporting structure. J. Microelectromech. Syst. 2009, 18, 973–982. [Google Scholar] [CrossRef]
- Hunter, J.T.; Pal, S.K.; Abbott, N.L. Adsorbate-induced ordering transitions of nematic liquid crystals on surfaces decorated with aluminum perchlorate salts. ACS Appl. Mater. Interfaces 2010, 2, 1857–1865. [Google Scholar] [CrossRef]
- Liu, J.; Wang, T.; Xiao, J.; Yu, L. Portable liquid crystal droplet array in the capillary for rapid and sensitive detection of organophosphate nerve agents. Microchem. J. 2022, 178, 107334. [Google Scholar] [CrossRef]
- Zhou, L.; Hu, Q.; Kang, Q.; Yu, L. Construction of liquid crystal droplet-based sensing platform for sensitive detection of organophosphate pesticide. Talanta 2018, 190, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, Q.; Tian, T.; Yu, L. Simple and sensitive detection of pesticides using the liquid crystal droplet patterns platform. Sens. Actuators B Chem. 2017, 238, 676–682. [Google Scholar] [CrossRef]
- Esteves, C.; Ramou, E.; Porteira, A.R.P.; Barbosa, A.J.M.; Roque, A.C.A. Seeing the unseen: The role of liquid crystals in gas-sensing technologies. Adv. Opt. Mater. 2020, 8, 1902117. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, G.; Chen, Q.; Zhou, J.; Wu, Z. Sensing of cocaine using polarized optical microscopy by exploiting the conformational changes of an aptamer at the water/liquid crystal interface. Mikrochim. Acta 2019, 186, 724. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Z. Simple and rapid detection of ibuprofen horizontal line a typical pharmaceuticals and personal care products horizontal line by a liquid crystal aptasensor. Langmuir 2022, 38, 282–288. [Google Scholar] [CrossRef]
- Wu, W.; Wang, W.; Qi, L.; Wang, Q.; Yu, L.; Lin, J.-M.; Hu, Q. Screening of xanthine oxidase inhibitors by liquid crystal-based assay assisted with enzyme catalysis-induced aptamer release. Anal. Chem. 2021, 93, 6151–6157. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Jang, C.-H. A Label-free liquid crystal biosensor based on specific DNA aptamer probes for sensitive detection of amoxicillin antibiotic. Micromachines 2021, 12, 370. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Xiong, X.; Deng, S. A self-oriented beacon liquid crystal assay for kanamycin detection with AuNPs signal enhancement. Anal. Methods 2022, 14, 410–416. [Google Scholar] [CrossRef]
- Yin, F.; Cheng, S.; Liu, S.; Ma, C.; Wang, L.; Zhao, R.; Lin, J.-M.; Hu, Q. A portable digital optical kanamycin sensor developed by surface-anchored liquid crystal droplets. J. Hazard. Mater. 2021, 420, 126601. [Google Scholar] [CrossRef]
- Xie, S.; He, R.; Zhu, Q.; Jin, M.; Yang, R.; Shen, S.; Cui, J.; Zou, Y.; Zhang, M.; Shui, L. Label-free optical sensor based on liquid crystal sessile droplet array for penicillin G determination. Colloids Surf. A Physicochem. Eng. Asp. 2022, 644, 128728. [Google Scholar] [CrossRef]
- Khoshbin, Z.; Abnous, K.; Taghdisi, S.M.; Verdian, A. A novel liquid crystal-based aptasensor for ultra-low detection of ochratoxin a using a pi-shaped DNA structure: Promising for future on-site detection test strips. Biosens. Bioelectron. 2021, 191, 113457. [Google Scholar] [CrossRef] [PubMed]
- Verdian, A.; Khoshbin, Z.; Chen, C.-H. Development of a novel liquid crystal Apta-sensing platform using P-shape molecular switch. Biosens. Bioelectron. 2022, 199, 113882. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huang, T.; Zhou, J.; Chen, Q.; Wu, Z.; Yu, R. Partial induced reorientation of 5CB in a liquid crystal microarray and a signal-on sensing assay for the detection of aflatoxin B1. Chem. Commun. 2022, 58, 5009–5012. [Google Scholar] [CrossRef]
- Smith, A.D.; Abbott, N.; Zavala, V.M. Convolutional network analysis of optical micrographs for liquid crystal sensors. J. Phys. Chem. C 2020, 124, 15152–15161. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Zhao, H.; Liu, F.; Zhang, S.; Zhang, C.X.; Yang, Z. Combination of liquid crystal and deep learning reveals distinct signatures of Parkinson’s disease-related wild-type alpha-synuclein and six pathogenic mutants. Chem. Asian J. 2022, 17, e202101251. [Google Scholar] [CrossRef]
- Frazão, J.; Palma, S.; Costa, H.M.A.; Alves, C.; Roque, A.C.A.; Silveira, M. Optical gas sensing with liquid crystal droplets and convolutional neural networks. Sensors 2021, 21, 2854. [Google Scholar] [CrossRef]
- Miller, D.S.; Wang, X.; Buchen, J.; Lavrentovich, O.D.; Abbott, N.L. Analysis of the internal configurations of droplets of liquid crystal using flow cytometry. Anal. Chem. 2013, 85, 10296–10303. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Noh, J.; Park, C.; Smith, A.D.; Abbott, N.L.; Zavala, V.M. Using machine learning and liquid crystal droplets to identify and quantify endotoxins from different bacterial species. Analyst 2021, 146, 1224–1233. [Google Scholar] [CrossRef]
LC Material | Sensing Platform | Analytes | Detection Probe | Principle | LOD | Ref. |
---|---|---|---|---|---|---|
5CB | LC-solid | DNA target strand | ssDNA probe | DNA hybridization induces LC orientational change | \ | [61,62,63,64] |
5CB | LC-solid | DNA | PNA (Na+)-doped LC | Complexation between negatively charged DNA and metal ions | 10 fM | [65] |
5CB | LC-solid | DNA target | ssDNA probe | DNA hybridization induced increase in surface coverage | 0.1 nM | [66] |
5CB | LC–aqueous | ssDNA/dsDNA | Surfactant | ssDNA-surfactant complex induces LC reorientation | \ | [69,70] |
5CB | LC–aqueous | p53 mutation gene segment | DNA dendrimer | Formation of target-triggering DNA dendrimers induces LC reorientation | 0.08 nM | [71] |
5CB | LC–aqueous | Pathogen genomic DNAs | ssDNA probe/DTAB | Absorption of ssDNA targets with probes induces LC vertical alignment by DTAB | 0.05 nM | [34] |
E7 | LC–aqueous | SARS-CoV-2 ssRNA | Complementary ssDNA probe/ DTAB | Absorption of ssRNA targets with probes induces LC vertical alignment by DTAB | 30 fM | [72] |
5CB | LC–aqueous | complementary DNA targets | cholesterol-labeled DNA probes | Hybridization of self-assembled of cholesterol-labeled DNA probes with targets induces LC reorientation | 51 μg/ml | [73] |
5CB | LC–aqueous | complementary DNA targets | DNA–lipids | DNA hybridization causes de-assembly of DNA–lipids, inducing optical image change | \ | [74] |
5CB | LC droplet | ssDNA/dsDNA | PLL | Electrostatic interaction between ssDNA and PLL induces LC droplets configuration change | \ | [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.; Liu, Y.; Yang, K.-L.; Luo, D. State-of-the-Art Development in Liquid Crystal Biochemical Sensors. Biosensors 2022, 12, 577. https://doi.org/10.3390/bios12080577
Zhan X, Liu Y, Yang K-L, Luo D. State-of-the-Art Development in Liquid Crystal Biochemical Sensors. Biosensors. 2022; 12(8):577. https://doi.org/10.3390/bios12080577
Chicago/Turabian StyleZhan, Xiyun, Yanjun Liu, Kun-Lin Yang, and Dan Luo. 2022. "State-of-the-Art Development in Liquid Crystal Biochemical Sensors" Biosensors 12, no. 8: 577. https://doi.org/10.3390/bios12080577
APA StyleZhan, X., Liu, Y., Yang, K. -L., & Luo, D. (2022). State-of-the-Art Development in Liquid Crystal Biochemical Sensors. Biosensors, 12(8), 577. https://doi.org/10.3390/bios12080577