Progress and Prospects of Electrochemiluminescence Biosensors Based on Porous Nanomaterials
Abstract
:1. Introduction
2. Synthesis of Porous Nanomaterials with ECL Properties
2.1. Ordered Mesoporous Silica (OMS) with ECL Properties
2.2. Metal–Organic Frameworks (MOFs) with ECL Properties
2.2.1. In Situ Synthesis
2.2.2. Post-Synthesis Modification
2.2.3. Self-Luminous MOFs
2.3. Covalent Organic Frameworks (COFs) with ECL Properties
2.4. Metal–Polydopamine Frameworks (MPFs) with ECL Properties
3. Application of ECL Biosensors Based on Porous Nanomaterials
3.1. Biosensors for Detecting Heavy Metal Ions
3.2. Biosensors for Detecting Small Molecules
3.3. Biosensors for Detecting Protein
3.4. Biosensors for Detecting Nucleic Acids
4. Conclusions and Outlooks
- AI-ECL materials or techniques are still a new research direction in the field of sensors. The types of ligands currently used are relatively single, and the AI-ECL mechanism of most materials is almost the same. Therefore, the search for new organic ligands, the study of a new AI-ECL material reaction mechanism, and the design of synthesizing innovative structures of AI-ECL materials will be hot directions.
- Most of the current porous nanomaterials with functional groups have poor electrical conductivities, and the functional group types are relatively single. How to prepare porous nanomaterials with a high conductivity and multiple functional groups and how to combine them with luminescent substances with different functional groups to achieve the synergistic effect between each group are still needed to pay more attention to.
- At present, most of the ECL biosensors based on porous nanomaterials are still in the laboratory stage. The instrumentation and experimental conditions required for testing experiments are relatively strict. Consequently, combining ECL sensors with microfluidics and smartphone detection to build portable devices and instruments for environmental detection remains a great challenge.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Ma, H.; Padelford, J.W.; Qinchen, W.; Yu, W.; Wang, S.; Zhu, M.; Wang, G. Near Infrared Electrochemiluminescence of rod-shape 25-atom AuAg nanoclusters that is hundreds-fold stronger than that of Ru(bpy)32+ standard. J. Am. Chem. Soc. 2019, 141, 9603–9609. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, H.J.; Shin, I.-S.; Hong, J.-I. Potential-dependent electrochemiluminescence for selective molecular sensing of cyanide. Anal. Chem. 2020, 92, 6019–6025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, R.; Jiang, D.; Chen, H.Y. Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J. Am. Chem. Soc. 2019, 141, 10294–10299. [Google Scholar] [CrossRef] [PubMed]
- Hercules David, M. Chemiluminescence resulting from electrochemically generated species. Science 1964, 145, 808–809. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, K.S.V.; Bard, A.J. Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radical1. J. Am. Chem. Soc. 1965, 87, 139–140. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142. [Google Scholar] [CrossRef] [Green Version]
- Miao, W. Electrogenerated chemiluminescence and its biorelated applications. Chem. Rev. 2008, 108, 2506–2553. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Zhang, C. Electrogenerated chemiluminescence biosensing. Anal. Chem. 2020, 92, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhou, S.; Li, L.; Zhu, J.J. Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 2017, 12, 98–115. [Google Scholar] [CrossRef]
- Hu, L.; Xu, G. Applications and trends in electrochemiluminescence. Chem. Soc. Rev. 2010, 39, 3275–3304. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Cao, Y.; Gou, X.; Zhu, J.-J. Recent progress in electrochemiluminescence sensing and imaging. Anal. Chem. 2020, 92, 431–454. [Google Scholar] [CrossRef]
- Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef]
- Wang, R.; Xi, S.C.; Wang, D.Y.; Dou, M.; Dong, B. Defluorinated porous carbon nanomaterials for CO2 capture. ACS Appl. Nano Mater. 2021, 4, 10148–10154. [Google Scholar] [CrossRef]
- Jin, L.; Lv, S.; Miao, Y.; Liu, D.; Song, F. Recent development of porous porphyrin-based nanomaterials for photocatalysis. ChemCatChem 2021, 13, 140–152. [Google Scholar] [CrossRef]
- Han, T.; Cao, Y.; Chen, H.Y.; Zhu, J.J. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J. Electroanal. Chem. 2021, 902, 115821. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Wu, T.; Ran, G.; Song, Q. Template-free synthesis of porous fluorescent carbon nanomaterials with gluten for intracellular imaging and drug delivery. ACS Appl. Mater. Interfaces 2022, 14, 21310–21318. [Google Scholar] [CrossRef]
- Li, J.; Luo, M.; Yang, H.; Ma, C.; Cai, R.; Tan, W. Novel dual-signal electrochemiluminescence aptasensor involving the resonance energy transform system for kanamycin detection. Anal. Chem. 2022, 94, 6410–6416. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Wang, M.; Li, H.; Saqib, M.; Ge, C.; Zhang, X.; Jin, Y. Enhancing luminol electrochemiluminescence by combined use of cobalt-based metal organic frameworks and silver nanoparticles and its application in ultrasensitive detection of cardiac troponin I. Anal. Chem. 2019, 91, 3048–3054. [Google Scholar] [CrossRef]
- Han, Q.; Wang, C.; Liu, P.; Zhang, G.; Song, L.; Fu, Y. Achieving synergistically enhanced dual-mode electrochemiluminescent and electrochemical drug sensors via a multi-effect porphyrin-based metal-organic framework. Sens. Actuators B Chem. 2021, 330, 129388. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Liu, X.; Chen, Y.; Wang, X.; Fan, D.; Kuang, X.; Sun, X.; Wei, Q.; Ju, H. Highly-sensitive electrochemiluminescence biosensor for NT-proBNP using MoS2@Cu2S as signal-enhancer and multinary nanocrystals loaded in mesoporous UiO-66-NH2 as novel luminophore. Sens. Actuators B Chem. 2020, 307, 127619. [Google Scholar] [CrossRef]
- Liao, B.Y.; Chang, C.J.; Wang, C.F.; Lu, C.H.; Chen, J.K. Controlled antibody orientation on Fe3O4 nanoparticles and CdTe quantum dots enhanced sensitivity of a sandwich-structured electrogenerated chemiluminescence immunosensor for the determination of human serum albumin. Sens. Actuators B Chem. 2021, 336, 129710. [Google Scholar] [CrossRef]
- Wei, X.; Luo, X.; Xu, S.; Xi, F.; Zhao, T. A Flexible Electrochemiluminescence sensor equipped with vertically ordered mesoporous silica nanochannel film for sensitive detection of clindamycin. Front. Chem. 2022, 10, 2296–2646. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhao, L.; Luo, C.; Ren, X.; Yang, L.; Wei, Q. Peptide-based biosensor with a luminescent copper-based metal–organic framework as an electrochemiluminescence emitter for trypsin assay. Anal. Chem. 2021, 93, 9704–9710. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, F.; Yuan, R.; Zhong, X.; Zhuo, Y. Electrochemiluminescence covalent organic framework coupling with CRISPR/Cas12a-mediated biosensor for pesticide residue detection. Food Chem. 2022, 389, 133049. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yu, Y.; Mu, X.; Yu, C.; Zhou, Y.; Chen, J.; Zheng, S.; He, J. Enzyme-induced multicolor colorimetric and electrochemiluminescence sensor with a smartphone for visual and selective detection of Hg2+. J. Hazard. Mater. 2021, 415, 125538. [Google Scholar] [CrossRef]
- Li, X.; Yu, S.; Yan, T.; Zhang, Y.; Du, B.; Wu, D.; Wei, Q. A sensitive electrochemiluminescence immunosensor based on Ru(bpy)32+ in 3D CuNi oxalate as luminophores and graphene oxide–polyethylenimine as released Ru(bpy)32+ initiator. Biosens. Bioelectron. 2017, 89, 1020–1025. [Google Scholar] [CrossRef]
- Feng, D.; Wu, Y.; Tan, X.; Chen, Q.; Yan, J.; Liu, M.; Ai, C.; Luo, Y.; Du, F.; Liu, S.; et al. Sensitive detection of melamine by an electrochemiluminescence sensor based on tris(bipyridine)ruthenium(II)-functionalized metal-organic frameworks. Sens. Actuators B Chem. 2018, 265, 378–386. [Google Scholar] [CrossRef]
- Hong, D.; Jo, E.J.; Kim, K.; Song, M.B.; Kim, M.G. Ru(bpy)32+-Loaded mesoporous silica nanoparticles as electrochemiluminescent probes of a lateral flow immunosensor for highly sensitive and quantitative detection of troponin I. Small 2020, 16, 2004535. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Nie, Y.; Ma, Q.; Zhao, B. Surface plasmon coupling electrochemiluminescence assay based on the use of AuNP@C3N4QD@mSiO2 for the determination of the Shiga toxin-producing Escherichia coli (STEC) gene. Microchim. Acta 2019, 186, 656. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Ding, S.N. Dual-signal-amplified electrochemiluminescence biosensor for microRNA detection by coupling cyclic enzyme with CdTe QDs aggregate as luminophor. Biosens. Bioelectron. 2019, 134, 109–116. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, S.; Dai, H.; Lin, Y. An ultrasensitive ratiometric electrochemiluminescence immunosensor combining photothermal amplification for ovarian cancer marker detection. Biosens. Bioelectron. 2019, 146, 111768. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, W.; Zhang, J.; Luo, L.; Liu, X.; Li, X.; You, T.; Zhao, C. Label-free Hg(II) electrochemiluminescence sensor based on silica nanoparticles doped with a self-enhanced Ru(bpy)32+-carbon nitride quantum dot luminophore. J. Colloid Interface Sci. 2022, 608, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, J.; Kitte, S.A.; Qi, G.; Li, H.; Jin, Y. Light scattering and luminophore enrichment-enhanced electrochemiluminescence by a 2D porous Ru@SiO2 nanoparticle membrane and its application in ultrasensitive detection of prostate-specific antigen. Anal. Chem. 2021, 93, 11641–11647. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Chen, K.; Zhou, Q.; Zhao, J.; Xue, H.; Zhang, Y.; Shen, Y. Engineering of CdTe/SiO2 nanocomposites: Enhanced signal amplification and biocompatibility for electrochemiluminescent immunoassay of alpha-fetoprotein. Biosens. Bioelectron. 2019, 131, 178–184. [Google Scholar] [CrossRef]
- Li, L.; Chen, B.; Luo, L.; Liu, X.; Bi, X.; You, T. Sensitive and selective detection of Hg2+ in tap and canal water via self-enhanced ECL aptasensor based on NH2–Ru@SiO2-NGQDs. Talanta 2021, 222, 121579. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, J.; Chen, H.; Huang, X.; Huang, D.; Luo, F.; Wang, J.; Guo, L.; Qiu, B.; Lin, Z. Electrochemiluminescence biosensor for hyaluronidase based on the Ru(bpy)32+ doped SiO2 nanoparticles embedded in the hydrogel fabricated by hyaluronic acid and polyethylenimine. ACS Appl. Bio Mater. 2020, 3, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Zhuo, Y.; Xiong, C.; Zheng, Y.; Chai, Y.; Yuan, R. A sensitive immunosensor via in situ enzymatically generating efficient quencher for electrochemiluminescence of iridium complexes doped SiO2 nanoparticles. Biosens. Bioelectron. 2017, 94, 568–574. [Google Scholar] [CrossRef]
- Mo, G.; He, X.; Zhou, C.; Ya, D.; Feng, J.; Yu, C.; Deng, B. A novel ECL sensor based on a boronate affinity molecular imprinting technique and functionalized SiO2@CQDs/AuNPs/MPBA nanocomposites for sensitive determination of alpha-fetoprotein. Biosens. Bioelectron. 2019, 126, 558–564. [Google Scholar] [CrossRef]
- Zhao, W.-R.; Xu, Y.H.; Kang, T.F.; Zhang, X.; Liu, H.; Ming, A.J.; Cheng, S.Y.; Wei, F. Sandwich magnetically imprinted immunosensor for electrochemiluminescence ultrasensing diethylstilbestrol based on enhanced luminescence of Ru@SiO2 by CdTe@ZnS quantum dots. Biosens. Bioelectron. 2020, 155, 112102. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Meng, S.; Zhang, J.; Li, L.; You, T. Regulation of Ru(bpy)32+ electrochemiluminescence based on distance-dependent electron transfer of ferrocene for dual-signal readout detection of aflatoxin B1 with high sensitivity. Anal. Chem. 2022, 94, 1294–1301. [Google Scholar] [CrossRef]
- Lee, E.J.; Seo, Y.; Park, H.; Kim, M.J.; Yoon, D.; Choung, J.W.; Kim, C.H.; Choi, J.; Lee, K.Y. Development of etched SiO2@Pt@ZrO2 core-shell catalyst for CO and C3H6 oxidation at low temperature. Appl. Surf. Sci. 2022, 575, 151582. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, Y.-n.; Li, L.; Chen, W.; Li, F.; Kitagawa, S. Controllable modular growth of hierarchical MOF-on-MOF architectures. Angew. Chem. Int. Ed. 2017, 56, 15658–15662. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Gong, Y.; Lin, J. Metal–organic framework–derived Co9S8@CoS@CoO@C nanoparticles as efficient electro- and photo-catalysts for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 10495–10509. [Google Scholar] [CrossRef]
- Fonseca, J.; Gong, T.; Jiao, L.; Jiang, H.-L. Metal–organic frameworks (MOFs) beyond crystallinity: Amorphous MOFs, MOF liquids and MOF glasses. J. Mater. Chem. A 2021, 9, 10562–10611. [Google Scholar] [CrossRef]
- Miao, Y.B.; Ren, H.X.; Zhong, Q.; Song, F.X. Tailoring a luminescent metal−organic framework precise inclusion of Pt-Aptamer nanoparticle for noninvasive monitoring Parkinson’s disease. Chem. Eng. J. 2022, 441, 136009. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, N.; Wei, D.; Feng, R.; Fan, D.; Hu, L.; Wei, Q.; Ju, H. Double electrochemiluminescence quenching effects of Fe3O4@PDA-CuXO towards self-enhanced Ru(bpy)32+ functionalized MOFs with hollow structure and it application to procalcitonin immunosensing. Biosens. Bioelectron. 2019, 142, 111521. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.Q.; Peng, L.Z.; Lei, Y.M.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. Strong electrochemiluminescence from MOF accelerator enriched quantum dots for enhanced sensing of trace cTnI. Anal. Chem. 2018, 90, 3995–4002. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, G.; Li, X.; Fang, J.; Miao, J.; Wei, Q.; Cao, W. Electrochemiluminescence immunosensor of “signal-off” for β-amyloid detection based on dual metal-organic frameworks. Talanta 2020, 208, 120376. [Google Scholar] [CrossRef]
- Mo, G.; Qin, D.; Jiang, X.; Zheng, X.; Mo, W.; Deng, B. A sensitive electrochemiluminescence biosensor based on metal-organic framework and imprinted polymer for squamous cell carcinoma antigen detection. Sens. Actuators B Chem. 2020, 310, 127852. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, G.; Liu, L.; Li, X.; Wei, Q.; Cao, W. Ultrasensitive competitive method-based electrochemiluminescence immunosensor for diethylstilbestrol detection based on Ru(bpy)32+ as luminophor encapsulated in metal–organic frameworks UiO-67. Biosens. Bioelectron. 2018, 110, 201–206. [Google Scholar] [CrossRef]
- Nie, Y.; Tao, X.; Zhang, H.; Chai, Y.Q.; Yuan, R. Self-assembly of gold nanoclusters into a metal–organic framework with efficient electrochemiluminescence and their application for sensitive detection of rutin. Anal. Chem. 2021, 93, 3445–3451. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, Y.; Li, X.; Yue, Q.; Dong, X.; Du, B.; Cao, W.; Wei, Q. Dual-quenching electrochemiluminescence strategy based on three-dimensional metal–organic frameworks for ultrasensitive detection of amyloid-β. Anal. Chem. 2019, 91, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Du, Y.; Zhao, G.; Cao, W.; Fan, D.; Kuang, X.; Wei, Q.; Ju, H. Dual-signal electrochemiluminescence immunosensor for Neuron-specific enolase detection based on “dual-potential” emitter Ru(bpy)32+ functionalized zinc-based metal-organic frameworks. Biosens. Bioelectron. 2021, 192, 113505. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Yi, J.; Ma, D.; Xia, F.; Tian, D.; Zhou, C. A dual-signal electroluminescence aptasensor based on hollow Cu/Co-MOF-luminol and g-C3N4 for simultaneous detection of acetamiprid and malathion. Sens. Actuators B Chem. 2021, 331, 129412. [Google Scholar] [CrossRef]
- Huang, W.; Hu, G.B.; Liang, W.B.; Wang, J.M.; Lu, M.L.; Yuan, R.; Xiao, D.R. Ruthenium(II) complex-grafted hollow hierarchical metal–organic frameworks with superior electrochemiluminescence performance for sensitive assay of thrombin. Anal. Chem. 2021, 93, 6239–6245. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, D.; Shan, X.; Wang, W.; Xu, F.; Shiigi, H.; Chen, Z. Ternary electrochemiluminescence biosensor based on black phosphorus quantum dots doped perylene derivative and metal organic frameworks as a coreaction accelerator for the detection of chloramphenicol. Microchem. J. 2022, 172, 106927. [Google Scholar] [CrossRef]
- Xia, M.; Zhou, F.; Feng, X.; Sun, J.; Wang, L.; Li, N.; Wang, X.; Wang, G. A DNAzyme-based dual-stimuli responsive electrochemiluminescence resonance energy transfer platform for ultrasensitive anatoxin-a detection. Anal. Chem. 2021, 93, 11284–11290. [Google Scholar] [CrossRef]
- Fang, J.; Li, J.; Feng, R.; Yang, L.; Zhao, L.; Zhang, N.; Zhao, G.; Yue, Q.; Wei, Q.; Cao, W. Dual-quenching electrochemiluminescence system based on novel acceptor CoOOH@Au NPs for early detection of procalcitonin. Sens. Actuators B Chem. 2021, 332, 129544. [Google Scholar] [CrossRef]
- Huang, L.Y.; Hu, X.; Shan, H.-Y.; Yu, L.; Gu, Y.X.; Wang, A.J.; Shan, D.; Yuan, P.X.; Feng, J.J. High-performance electrochemiluminescence emitter of metal organic framework linked with porphyrin and its application for ultrasensitive detection of biomarker mucin-1. Sens. Actuators B Chem. 2021, 344, 130300. [Google Scholar] [CrossRef]
- Hu, G.B.; Xiong, C.Y.; Liang, W.B.; Zeng, X.S.; Xu, H.L.; Yang, Y.; Yao, L.Y.; Yuan, R.; Xiao, D.R. Highly stable mesoporous luminescence-functionalized mof with excellent electrochemiluminescence property for ultrasensitive immunosensor construction. ACS Appl. Mater. Interfaces 2018, 10, 15913–15919. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G.; Chi, H.; Yang, S.; Niu, Q.; Wu, D.; Cao, W.; Li, T.; Ma, H.; Wei, Q. Self-luminescent lanthanide metal–organic frameworks as signal probes in electrochemiluminescence immunoassay. J. Am. Chem. Soc. 2021, 143, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Ye, J.; Zhu, Q.; Zhu, L.; Huang, J.; Yang, X. Ultrasensitive immunosensor for cardiac troponin i detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal. Chem. 2019, 91, 10156–10163. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, M.; Song, X.; Liu, X.; Ju, H.; Ai, H.; Wei, Q.; Wu, D. Annihilation luminescent Eu-MOF as a near-infrared electrochemiluminescence probe for trace detection of trenbolone. Chem. Eng. J. 2022, 434, 134691. [Google Scholar] [CrossRef]
- Li, J.; Jia, H.; Ren, X.; Li, Y.; Liu, L.; Feng, R.; Ma, H.; Wei, Q. Dumbbell plate-shaped AIEgen-based luminescent MOF with high quantum yield as self-enhanced ECL tags: Mechanism insights and biosensing application. Small 2022, 18, 2106567. [Google Scholar] [CrossRef]
- Huang, W.; Hu, G.B.; Yao, L.Y.; Yang, Y.; Liang, W.B.; Yuan, R.; Xiao, D.R. Matrix coordination-induced electrochemiluminescence enhancement of tetraphenylethylene-based hafnium metal–organic framework: An electrochemiluminescence chromophore for ultrasensitive electrochemiluminescence sensor construction. Anal. Chem. 2020, 92, 3380–3387. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.Y.; Yang, F.; Hu, G.B.; Yang, Y.; Huang, W.; Liang, W.B.; Yuan, R.; Xiao, D.R. Restriction of intramolecular motions (RIM) by metal-organic frameworks for electrochemiluminescence enhancement:2D Zr12-adb nanoplate as a novel ECL tag for the construction of biosensing platform. Biosens. Bioelectron. 2020, 155, 112099. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, L.; Wang, C.; Jia, H.; Xue, J.; Wei, Q.; Ju, H. Copper doped terbium metal organic framework as emitter for sensitive electrochemiluminescence detection of CYFRA 21-1. Talanta 2022, 238, 123047. [Google Scholar] [CrossRef]
- Wang, J.M.; Yao, L.Y.; Huang, W.; Yang, Y.; Liang, W.B.; Yuan, R.; Xiao, D.R. Overcoming aggregation-induced quenching by metal−organic framework for electrochemiluminescence (ECL) enhancement: Zn-PTC as a new ECL emitter for ultrasensitive MicroRNAs detection. ACS Appl. Mater. Interfaces 2021, 13, 44079–44085. [Google Scholar] [CrossRef]
- Yao, L.Y.; Yang, F.; Liang, W.B.; Hu, G.B.; Yang, Y.; Huang, W.; Yuan, R.; Xiao, D.R. Ruthenium complex doped metal-organic nanoplate with high electrochemiluminescent intensity and stability for ultrasensitive assay of mucin 1. Sens. Actuators B Chem. 2019, 292, 105–110. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Ju, H. Copper-doped terbium luminescent metal organic framework as an emitter and a co-reaction promoter for amplified electrochemiluminescence immunoassay. Anal. Chem. 2021, 93, 14878–14884. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Pang, C.; Li, S.; Li, J.; Wang, M.; Xiong, Y.; Su, L.; Luo, J.; Xu, Z.; Lin, L. Biomimetic synthesis of ultrafine mixed-valence metal–organic framework nanowires and their application in electrochemiluminescence sensing. ACS Appl. Mater. Interfaces 2021, 13, 41987–41996. [Google Scholar] [CrossRef]
- Li, J.; Luo, M.; Jin, C.; Zhang, P.; Yang, H.; Cai, R.; Tan, W. Plasmon-enhanced electrochemiluminescence of PTP-decorated Eu MOF-Based Pt-tipped Au bimetallic nanorods for the lincomycin assay. ACS Appl. Mater. Interfaces 2022, 14, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, J.; Zhang, C.; Li, J.; Fu, X.; Mao, W.; Li, W.; Yu, C. Novel Ce(III)-metal organic framework with a luminescent property to fabricate an electrochemiluminescence immunosensor. ACS Appl. Mater. Interfaces 2020, 12, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, S.; Yang, C.; Hu, C.; Wang, X.; Zhen, S.; Huang, C.; Li, Y. Zinc–metal organic frameworks: A coreactant-free electrochemiluminescence luminophore for ratiometric detection of miRNA-133a. Anal. Chem. 2021, 93, 14178–14186. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Yang, Y.; Liu, X.P.; Wei, Y.P.; Mao, C.J.; Chen, J.S.; Niu, H.L.; Song, J.M.; Zhang, S.Y.; Jin, B.K.; et al. A facile in situ synthesis of MIL-101-CdSe nanocomposites for ultrasensitive electrochemiluminescence detection of carcinoembryonic antigen. Sens. Actuators B Chem. 2017, 242, 1073–1078. [Google Scholar] [CrossRef]
- Sun, M.F.; Liu, J.L.; Zhou, Y.; Zhang, J.Q.; Chai, Y.Q.; Li, Z.H.; Yuan, R. High-efficient electrochemiluminescence of BCNO quantum dot-equipped boron active sites with unexpected catalysis for ultrasensitive detection of MicroRNA. Anal. Chem. 2020, 92, 14723–147299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, Y.; Nie, Y.; Liu, Y.; Ma, Q. Wavelength-dependent surface plasmon coupling electrochemiluminescence biosensor based on sulfur-doped carbon nitride quantum dots for K-RAS gene detection. Anal. Chem. 2019, 91, 13780–13786. [Google Scholar] [CrossRef]
- Feng, D.; Wei, F.; Wu, Y.; Tan, X.; Li, F.; Lu, Y.; Fan, G.; Han, H. A novel signal amplified electrochemiluminescence biosensor based on MIL-53(Al)@CdS QDs and SiO2@AuNPs for trichlorfon detection. Analyst 2021, 146, 1295–1302. [Google Scholar] [CrossRef]
- Shan, X.; Pan, T.; Pan, Y.; Wang, W.; Chen, X.; Shan, X.; Chen, Z. Highly sensitive and selective detection of Pb(II) by NH2−SiO2/Ru(bpy)32+−UiO66 based solid-state ECL sensor. Electroanalysis 2020, 32, 462–469. [Google Scholar] [CrossRef]
- Cai, M.; Loague, Q.R.; Zhu, J.; Lin, S.; Usov, P.M.; Morris, A.J. Ruthenium(ii)-polypyridyl doped zirconium(iv) metal–organic frameworks for solid-state electrochemiluminescence. Dalton Trans. 2018, 47, 16807–16812. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Song, X.; Ren, X.; Wang, H.; Fan, D.; Wu, D.; Wei, Q. Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS2 hollow triple shelled nanoboxes for procalcitonin. Biosens. Bioelectron. 2021, 191, 113409. [Google Scholar] [CrossRef]
- Yang, Z.R.; Wang, M.M.; Wang, X.S.; Yin, X.B. Boric-acid-functional lanthanide metal–organic frameworks for selective ratiometric fluorescence detection of fluoride ions. Anal. Chem. 2017, 89, 1930–1936. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Zhang, Y.; Bao, S.; Wang, N.; Yu, S.; Luo, R.; Ma, J.; Ju, H.; Lei, J. Dual intrareticular oxidation of mixed-ligand metal–organic frameworks for stepwise electrochemiluminescence. J. Am. Chem. Soc. 2021, 143, 3049–3053. [Google Scholar] [CrossRef]
- Carrara, S.; Aliprandi, A.; Hogan, C.F.; De Cola, L. Aggregation-induced electrochemiluminescence of platinum(II) complexes. J. Am. Chem. Soc. 2017, 139, 14605–14610. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, G.B.; Liang, W.B.; Yao, L.Y.; Huang, W.; Zhang, Y.J.; Zhang, J.L.; Wang, J.M.; Yuan, R.; Xiao, D.R. An AIEgen-based 2D ultrathin metal–organic layer as an electrochemiluminescence platform for ultrasensitive biosensing of carcinoembryonic antigen. Nanoscale 2020, 12, 5932–5941. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.J.; Wang, K.; Liang, W.B.; Chai, Y.Q.; Yuan, R.; Zhuo, Y. Covalent organic frameworks as micro-reactors: Confinement-enhanced electrochemiluminescence. Chem. Sci. 2020, 11, 5410–5414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Yao, L.Y.; Yang, Y.; Liang, W.B.; Yuan, R.; Xiao, D.R. Conductive covalent organic frameworks with conductivity and pre-reduction-enhanced electrochemiluminescence for ultrasensitive biosensor construction. Anal. Chem. 2022, 94, 3685–3692. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, A.; Panneerselvam, P. A novel fluorescent sensing platform based on metal-polydopamine frameworks for the dual detection of kanamycin and oxytetracycline. Analyst 2019, 144, 2337–2344. [Google Scholar]
- Ren, R.; Cai, G.; Yu, Z.; Zeng, Y.; Tang, D. Metal-polydopamine framework: An innovative signal-generation tag for colorimetric immunoassay. Anal. Chem. 2018, 90, 11099–11105. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, A.; Panneerselvam, P.; Morad, N. Metal–polydopamine framework as an effective fluorescent quencher for highly sensitive detection of Hg(II) and Ag(I) ions through exonuclease III activity. ACS Appl. Mater. Interfaces 2018, 10, 20550–20558. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Zhao, M.; Zhuo, Y.; Chai, Y.; Yuan, R. Hollow porous polymeric nanospheres of a self-enhanced ruthenium complex with improved electrochemiluminescent efficiency for ultrasensitive aptasensor construction. Anal. Chem. 2017, 89, 9232–9238. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Luo, Y.; Qu, X.; Hu, Q.; Zou, J.; He, Y.; Liu, Z.; Zhang, Y.; Bao, Y.; Wang, W.; et al. Graphite-like carbon nitride nanotube for electrochemiluminescence featuring high efficiency, high stability, and ultrasensitive ion detection capability. J. Phys. Chem. Lett. 2021, 12, 11191–11198. [Google Scholar] [CrossRef] [PubMed]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Liao, H.; Jin, C.; Zhou, Y.; Chai, Y.; Yuan, R. Novel ABEI/dissolved O2/Ag3BiO3 nanocrystals ECL ternary system with high luminous efficiency for ultrasensitive determination of MicroRNA. Anal. Chem. 2019, 91, 11447–11454. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.B.; Zhang, J.J.; Wen, J.; Yang, X.X.; Ma, H.B.; Cao, D.K.; Jiang, D. Single-molecule MicroRNA electrochemiluminescence detection using cyclometalated dinuclear Ir(III) complex with synergistic effect. Anal. Chem. 2020, 92, 1268–1275. [Google Scholar] [CrossRef]
- Zhang, J.L.; Yang, Y.; Liang, W.B.; Yao, L.Y.; Yuan, R.; Xiao, D.R. Highly stable covalent organic framework nanosheets as a new generation of electrochemiluminescence emitters for ultrasensitive MicroRNA detection. Anal. Chem. 2021, 93, 3258–3265. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, R.; He, W.; Li, Q.; Yang, X.; Li, S.; Bai, W.; Li, Y. MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF–N-(4-aminobutyl)-N-ethylisoluminol/Ti3C2Tx composite and duplex-specific nuclease-assisted signal amplification. Microchim. Acta 2022, 189, 129. [Google Scholar] [CrossRef]
- Jian, Y.; Wang, H.; Lan, F.; Liang, L.; Ren, N.; Liu, H.; Ge, S.; Yu, J. Electrochemiluminescence based detection of microRNA by applying an amplification strategy and Hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II)tris(bipyridine). Microchim. Acta 2018, 185, 133. [Google Scholar] [CrossRef] [PubMed]
Nanocomposites | Methods | Luminous Body | Duration | Ref. |
---|---|---|---|---|
mSiO2@CdTe@SiO2 NSs | In situ synthesis | CdTe QDs | Microemulsion method | [30] |
g-C3N4@ms-SiO2 | Post-synthesis modification | g-C3N4 | Agitating | [31] |
Ru-QDs@SiO2 | In situ synthesis | CN QDs, Ru(bpy)32+ | Microemulsion method | [32] |
Ru@SiO2 | In situ synthesis | Ru(bpy)32+ | Self-assembly | [33] |
CdTe@SiO2 | In situ synthesis | CdTe QDs | Microemulsion method | [34] |
NH2–Ru@SiO2-NGQDs | Post-synthesis modification | CNQDs, Ru(bpy)32+ | Agitating | [35] |
Ru@SiO2 NPs | In situ synthesis | Ru(bpy)32+ | Microemulsion method | [36] |
SiO2@Ir | In situ synthesis | Ir(ppy)32+ | Microemulsion method | [37] |
SiO2@CQDs/AuNPs/MPBA | Post-synthesis modification | C QDs | Agitating | [38] |
Ru@SiO2 | Post-synthesis modification | Ru(bpy)32+ | Agitating | [39] |
SiO2@Ru-NGQDs | In situ synthesis | Ru(bpy)32+ | Microemulsion method | [40] |
MOF Composites | Ligands | Metal Source | Ref. |
---|---|---|---|
In situ synthesis | |||
MIL-101(Al)–NH2 | NH2-BDC | AlCl3 | [46] |
IRMOF-3 | NH2-BDC | Zn(NO3)2 | [47] |
Ru(bpy)32+/NH2-UiO-66 | NH2-BDC | ZrCl4 | [48] |
Fe(III)-MIL-88B-NH2 | NH2-BDC | FeCl3 | [49] |
UiO-67 | BPDC | ZrCl4 | [50] |
GSH-Au NCS@ZIF-8 | 2-MI | Zn(NO3)2 | [51] |
Zinc Oxalate MOFs | Oxalic acid | Zn(NO3)2 | [52] |
Post-synthesis modifications | |||
Ru-MOF-5 NFs | PTA | Zn(NO3)2 | [53] |
Cu/Co-MOF | 2-MI | Co(NO3)2, Cu(NO3)2 | [54] |
HH-Ru-UiO66-NH2 | NH2-BDC | ZrCl4 | [55] |
Co-Ni/MOF | 2-MI | Co(NO3)2, Ni (NO3)2 | [56] |
AgNPs@Ru-MOF | NH2-BDC | ZrCl4 | [57] |
g-C3N4@NH2-MIL-101 | NH2-BDC | FeCl3·6H2O | [58] |
Zn-Bp-MOFs | H3BTC,4,4-dipyridyl | Zn(NO3)2 | [59] |
Ru-PCN-777 | H3TATB | ZrOCl2 | [60] |
Self-luminous MOFs | |||
Eu-MOFs | 5-bop | EuCl3 | [61] |
RuMOF NS | [Ru(H2dcbpy)3]Cl2 | Zn(NO3)2 | [62] |
Eu-MOF | [Ru(H2dcbpy)3]Cl2 | Eu(NO3)3 | [63] |
Zr-TCBPE-MOF | H4TCBPE | ZrCl4 | [64] |
Hf-TCBPE | H4TCBPE | HfCl4 | [65] |
Zr12-adb | H2adb | ZrCl4 | [66] |
Tb-Cu-PA MOF | IPA | TbCl3, Cu(NO3)2 | [67] |
Zn-PTC | PTC | Zn(CH3COO)2 | [68] |
Ru@Zr12-BPDC | BPDC, H2dcbpy | ZrCl4 | [69] |
Cu:Tb-MOF | IPA | TbCl3, Cu(NO3)2 | [70] |
UMV-Ce-MOF | H3BTC | Ce(NO3)3 | [71] |
PTP/Eu MOF | H3BTC | Eu(NO3)3 | [72] |
Ce-TCPP-LMOF | TCPP | Ce(NO3)3 | [73] |
Zn-MOF | Hcptpy | ZnSO4 | [74] |
Analytes | Nanocomposites | Linear Range | LOD | Ref. |
---|---|---|---|---|
DES | Ru@SiO2 | 4.8 × 10−4~36.0 nM | 0.025 pM | [39] |
DES | UiO-67 | 0.01 pg/mL~50 ng/mL | 3.27 fg/mL | [50] |
Rutin | GSH-Au NCS@ZIF-8 | 0.05~100 μM | 10 nM | [51] |
Acetamiprid | Cu/Co-MOF | 0.1 μM~0.1 pM | 0.018 pM | [54] |
CAP | Co-Ni/MOF | 1.0 × 10−13~1.0 × 10−6 M | 2.9 × 10−14 M | [56] |
ATX-a | AgNPs@Ru-MOF | 0.001~1 mg/mL | 0.00034 mg/mL | [57] |
Trenbolone | Eu-MOF | 5 fg/mL~100 ng/mL | 4.83 fg/mL | [63] |
IMI | UMV-Ce-MOF | 2–120 nM | 0.34 nM | [71] |
Lincomycin | PTP/Eu MOF | 0.1 mg/mL~0.1 ng/mL | 0.026 ng/mL | [72] |
Analytes | Nanocomposites | Linear Range | LOD | Ref. |
---|---|---|---|---|
HE4 | g-C3N4@ms-SiO2 | 10−5 to 10 ng/mL | 3.3 × 10−6 ng/mL | [31] |
PSA | Ru@SiO2 | 10−15 to 10−6 g/mL | 0.169 fg/mL | [33] |
AFP | CdTe@SiO2 | 1.0 pg/mL to 100 ng/mL | 0.22 pg/mL | [34] |
HAase | Ru@SiO2 NPs | 2 to 60 U/mL | 2 U/mL | [36] |
BNPT | SiO2@Ir | 0.1 ng/mL to 200 ng/mL | 0.03 ng/mL | [37] |
AFP | SiO2@CQDs/AuNPs/MPBA | 0.001 to 1000 ng/m L | 0.0004 ng/mL | [38] |
PCT | MIL-101(Al)–NH2 | 0.0005 ng/mL to 100 ng /mL | 0.18 pg/mL | [46] |
cTnI | IRMOF-3 | 1 fg/mL to 10 ng/mL | 0.46 fg/mL | [47] |
SCCA | Fe(III)-MIL-88B-NH2 | 0.0001 to 100 ng/mL | 31 fg/mL | [49] |
Aβ | Zinc Oxalate MOFs | 100 fg/mL to 50 ng/mL | 13.8 fg/mL | [52] |
NSE | Ru-MOF-5 NFs | 0.0001 ng/mL to 200 ng/mL | 0.041 pg/mL | [53] |
Thrombin | HH-Ru-UiO66-NH2 | 100 fM to 100 nM | 31.6 fM | [55] |
PCT | NH2-MIL-101 | 0.014 pg/mL to 40 ng/mL | 3.4 fg/mL | [58] |
MUC1 | Zn-Bp-MOFs | 1 pg/mL to 10 ng/mL | 0.23 pg/mL | [59] |
MUC1 | Ru-PCN-777 | 100 fg/mL to 100 ng/mL | 33.3 fg/mL | [60] |
CYFRA21-1 | Eu-MOFs | 0.005 to 100 ng/mL | 0.126 pg/mL | [61] |
cTnI | RuMOFNSs | 1 fg/mL to 10 ng/mL | 0.48 fg/mL | [62] |
NSE | Zr-TCBPE-MOF | 0.0001 to 10 ng/mL | 52 fg/mL | [64] |
MUC1 | Hf-TCBPE | 1 fg/mL to 1 ng/mL | 0.49 fg/mL | [65] |
MUC1 | Zr12-adb | 1 fg/mL to 100 ng/mL | 100 ng/mL | [66] |
CYFRA21-1 | Tb-Cu-PA MOF | 0.01 to 100 ng/mL | 2.6 pg/mL | [67] |
MUC1 | Ru@Zr12-BPDC | 1 fg/mL to 10 ng/mL | 0.14 fg/mL | [69] |
ProGRP | Cu:Tb-MOF | 1.0 pg/mL to 50 ng/mL | 0.68 pg/mL | [70] |
Analytes | Nanocomposites | Linear Range | LOD | Ref. |
---|---|---|---|---|
miRNA-182 | mSiO2@CdTe@SiO2 NSs | 0.1 to 100 pM | 33 fM | [30] |
microRNA-21 | Zn-PTC | 100 aM to 100 pM | 29.5 aM | [68] |
miRNA-133a | Zn-MOF | 50 aM to 50 fM | 35.8 aM | [74] |
microRNA-21 | Py-sp2c-COF | 100 aM to 1 nM | 46 aM | [97] |
microRNA-21 | Co-MOF-ABEI/Ti3C2Tx | 0.00001 to 10 nM | 3.7 fM | [98] |
miRNA-155 | RuMOFs | 0.8 fM to 1.0 nM | 0.3 fM | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yang, J.; Xu, R.; Wang, H.; Zhang, Y.; Wei, Q. Progress and Prospects of Electrochemiluminescence Biosensors Based on Porous Nanomaterials. Biosensors 2022, 12, 508. https://doi.org/10.3390/bios12070508
Li C, Yang J, Xu R, Wang H, Zhang Y, Wei Q. Progress and Prospects of Electrochemiluminescence Biosensors Based on Porous Nanomaterials. Biosensors. 2022; 12(7):508. https://doi.org/10.3390/bios12070508
Chicago/Turabian StyleLi, Chenchen, Jinghui Yang, Rui Xu, Huan Wang, Yong Zhang, and Qin Wei. 2022. "Progress and Prospects of Electrochemiluminescence Biosensors Based on Porous Nanomaterials" Biosensors 12, no. 7: 508. https://doi.org/10.3390/bios12070508
APA StyleLi, C., Yang, J., Xu, R., Wang, H., Zhang, Y., & Wei, Q. (2022). Progress and Prospects of Electrochemiluminescence Biosensors Based on Porous Nanomaterials. Biosensors, 12(7), 508. https://doi.org/10.3390/bios12070508