Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review
Abstract
:1. Introduction
2. Recognition Elements for Pyrethroid Pesticide Detection
2.1. Enzyme-Based Biosensors
2.2. Antigen/Antibody-Based Biosensors
2.3. Aptamer-Based Biosensors
2.4. MIP-Based Sensors
3. Sensor-Based Methods for Pyrethroid Pesticide Determination
3.1. Detection of Pyrethroids Based on Electrochemical Sensors
3.2. Detection of Pyrethroids Based on Optical Sensors
3.2.1. Surface-Enhanced Raman Scattering Method
3.2.2. Surface Plasmon Resonance Method
3.2.3. Chemiluminescence Method
3.2.4. Fluorescence Method
3.3. Detection of Pyrethroids Based on Biosensors
3.3.1. Biochemical Method
3.3.2. Colorimetric Method
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asrorov, A.M.; Matušíková, I.; Ziyavitdinov, J.F.; Gregorová, Z.; Majerčíková, V.; Mamadrakhimov, A.A. Changes in Soluble Protein Profile in Cotton Leaves Indicate Rubisco Damage after Treatment with Sumi-Alpha Insecticide. Agriculture (Poľnohospodárstvo) 2020, 66, 40–44. [Google Scholar] [CrossRef]
- Hua, N. Progress and trend of pyrethroid pesticides. Pestic. Mark. News 2015, 3, 26–29. [Google Scholar] [CrossRef]
- Chen, Y.; Lai, J.H.; Zhang, M.M.; Zhao, T.Y.; Wang, S.; Li, J.L.; Liu, S.L. Status of pyrethroid pesticide pollution in agricultural products and its removal technology: A review. Food Sci. 2021, 43, 285–292. [Google Scholar] [CrossRef]
- Soderlund, D.M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Arch. Toxicol. 2011, 86, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.F.; Miller, G.W.; Harvey, D.J.; Brander, S.M.; Geist, J.; Connon, R.E.; Lein, P.J. Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). Aquat. Toxicol. 2018, 200, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Q.; Li, S.; Mi, P.; Chen, D.; Zhao, X.; Feng, X. Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): A comparative study of deltamethrin, acephate, and thiamethoxam. Chemosphere 2018, 199, 16–25. [Google Scholar] [CrossRef]
- Özdemir, S.; Altun, S.; Özkaraca, M.; Ghosi, A.; Toraman, E.; Arslan, H. Cypermethrin, chlorpyrifos, deltamethrin, and imidacloprid exposure up-regulates the mRNA and protein levels of bdnf and c-fos in the brain of adult zebrafish (Danio rerio). Chemosphere 2018, 203, 318–326. [Google Scholar] [CrossRef]
- Hua, J.; Relyea, R. The effect of a common pyrethroid insecticide on wetland communities. Environ. Res. Commun. 2019, 1, 015003. [Google Scholar] [CrossRef]
- Bragança, I.; Lemos, P.C.; Barros, P.; Delerue-Matos, C.; Domingues, V.F. Phytotoxicity of pyrethroid pesticides and its metabolite towards Cucumis sativus. Sci. Total Environ. 2018, 619–620, 685–691. [Google Scholar] [CrossRef] [Green Version]
- Bragança, I.; Mucha, A.P.; Tomasino, M.P.; Santos, F.; Lemos, P.C.; Delerue-Matos, C.; Domingues, V.F. Deltamethrin impact in a cabbage planted soil: Degradation and effect on microbial community structure. Chemosphere 2019, 220, 1179–1186. [Google Scholar] [CrossRef]
- Vorselaars, A.D.; van den Berg, P.M.; Drent, M. Severe pulmonary toxicity associated with inhalation of pyrethroid-based domestic insecticides (Bop/Sapolio): A case series and literature review. Curr. Opin. Pulm. Med. 2021, 27, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Mimura, M.; Sakon, N. Estimating household exposure to pyrethroids and the relative contribution of inhalation pathway in a sample of Japanese children. Environ. Sci. Pollut. Res. Int. 2021, 28, 19310–19324. [Google Scholar] [CrossRef] [PubMed]
- Işıldar, G.Y.; Günal, A.; Şahin, D.; Memmi, B.K.; Dinçel, A.S. How potential endocrine disruptor deltamethrin effects antioxidant enzyme levels and total antioxidant status on model organisms. Turk. J. Biochem. 2020, 45, 415–421. [Google Scholar] [CrossRef]
- Sheikh, I.; Beg, M. Structural Aspects of Potential Endocrine-Disrupting Activity of Stereoisomers for a Common Pesticide Permethrin against Androgen Receptor. Biology 2021, 10, 143. [Google Scholar] [CrossRef]
- Corcellas, C.; Feo, M.L.; Torres, J.P.; Malm, O.; Ocampo-Duque, W.; Eljarrat, E.; Barceló, D. Pyrethroids in human breast milk: Occurrence and nursing daily intake estimation. Environ. Int. 2012, 47, 17–22. [Google Scholar] [CrossRef]
- Wu, C.; Feng, C.; Qi, X.; Wang, G.; Zheng, M.; Chang, X.; Zhou, Z. Urinary metabolite levels of pyrethroid insecticides in infants living in an agricultural area of the Province of Jiangsu in China. Chemosphere 2013, 90, 2705–2713. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Ren, X.; Chen, X.; Wang, S.; Qin, C. Pyrethroids Toxicity to Male Reproductive System and Offspring as a Function of Oxidative Stress Induction: Rodent Studies. Front. Endocrinol. 2021, 12, 656106. [Google Scholar] [CrossRef]
- Knapke, E.T.; Magalhaes, D.d.P.; Dalvie, M.A.; Mandrioli, D.; Perry, M.J. Environmental and occupational pesticide exposure and human sperm parameters: A Navigation Guide review. Toxicology 2021, 465, 153017. [Google Scholar] [CrossRef]
- Shaikh, H.; Andaç, M.; Memon, N.; Bhanger, M.I.; Nizamani, S.M.; Denizli, A. Synthesis and characterization of molecularly imprinted polymer embedded composite cryogel discs: Application for the selective extraction of cypermethrins from aqueous samples prior to GC-MS analysis. RSC Adv. 2015, 5, 26604–26615. [Google Scholar] [CrossRef]
- Lin, X.-Y.; Mou, R.-X.; Cao, Z.-Y.; Cao, Z.-Z.; Chen, M.-X. Analysis of pyrethroid pesticides in Chinese vegetables and fruits by GC–MS/MS. Chem. Pap. 2018, 72, 1953–1962. [Google Scholar] [CrossRef]
- Tuck, S.; Furey, A.; Crooks, S.; Danaher, M. A review of methodology for the analysis of pyrethrin and pyrethroid residues in food of animal origin. Food Addit. Contam. Part A 2018, 35, 911–940. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Hoque, S.; Bhowmik, S.; Ferdousi, S.; Kabiraz, M.P.; van Brakel, M.L. Monitoring of pesticide residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method. Heliyon 2021, 7, e06390. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.; Feng, X.; Wang, J.; Pan, L.; Jing, J.; Zhou, Y.; Xin, J.; Pan, C.; Zhang, H. Method Development and Validation of Seven Pyrethroid Insecticides in Tea and Vegetable by Modified QuEChERS and HPLC–MS/MS. Bull. Environ. Contam. Toxicol. 2022, 108, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Fitsev, I.M.; Rakhmetova, E.R.; Mukhammetshina, A.G.; Burkin, K.E.; Shlyamina, O.V. Gas Chromatography–Mass Spectrometry Determination of Deltamethrin in Food. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 2021, 163, 569–580. [Google Scholar] [CrossRef]
- Petrarca, M.H.; Ccanccapa-Cartagena, A.; Masiá, A.; Godoy, H.T.; Picó, Y. Comparison of green sample preparation techniques in the analysis of pyrethrins and pyrethroids in baby food by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2017, 1497, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.C.G.; Silva, L.M.; e Silva, B.C.; Garrido, S.S.; Boldrin, M.V.; De Souza, D. Cathodic stripping voltammetric determination of β-cyfluthrin, a pyrethroid insecticide, using polished silver solid amalgam electrode. J. Solid State Electrochem. 2020, 24, 1819–1826. [Google Scholar] [CrossRef]
- Fruhmann, P.; Sanchis, A.; Mayerhuber, L.; Vanka, T.; Kleber, C.; Salvador, J.-P.; Marco, M.-P. Immunoassay and amperometric biosensor approaches for the detection of deltamethrin in seawater. Anal. Bioanal. Chem. 2018, 410, 5923–5930. [Google Scholar] [CrossRef]
- Atar, N.; Yola, M.L. Core-Shell Nanoparticles/Two-Dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. J. Electrochem. Soc. 2018, 165, H255–H262. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Li, Y.; Zhang, J.; Qiao, Y.; Wang, Q.; Che, G. Fabrication of pollutant-resistance SERS imprinted sensors based on SiO2@TiO2@Ag composites for selective detection of pyrethroids in water. J. Phys. Chem. Solids 2019, 138, 109254. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Liu, Y.-Q.; Shi, X.-B.; Li, W.-J.; Yang, Y.; Mao, L.-G. Ultrasensitive detection of deltamethrin by immune magnetic nanoparticles separation coupled with surface plasmon resonance sensor. Biosens. Bioelectron. 2014, 59, 328–334. [Google Scholar] [CrossRef]
- Huang, J.J.; Liu, J.; Liu, J.X.; Wang, J.P. A microtitre chemiluminescence sensor for detection of pyrethroids based on dual-dummy-template molecularly imprinted polymer and computational simulation. Luminescence 2019, 35, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.-T.; Shi, X.-Z.; Jiao, H.-F.; Sun, A.-L.; Ding, H.; Zhang, R.-R.; Pan, D.-D.; Li, D.-X.; Chen, J. Selective and sensitive determination of cypermethrin in fish via enzyme-linked immunosorbent assay-like method based on molecularly imprinted artificial antibody-quantum dot optosensing materials. Biosens. Bioelectron. 2016, 75, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, L.; Han, D.; Pan, J.; Qiu, H.; Li, H.; Wei, X.; Dai, J.; Yang, J.; Yao, H.; et al. Optical Detection of λ-Cyhalothrin by Core–Shell Fluorescent Molecularly Imprinted Polymers in Chinese Spirits. J. Agric. Food Chem. 2015, 63, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiao, H.-F.; Shi, X.-Z.; Sun, A.; Wang, X.; Chai, J.; Li, D.-X.; Chen, J. Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin. Biosens. Bioelectron. 2018, 99, 268–273. [Google Scholar] [CrossRef]
- Zhu, X.; Han, L.; Liu, H.; Sun, B. A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots. Food Chem. 2022, 379, 132154. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Song, Y.; Zhu, J.; Wang, D.; Li, W. Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sens. Actuators B Chem. 2018, 283, 230–238. [Google Scholar] [CrossRef]
- Zhao, Y.; Ruan, X.; Song, Y.; Smith, J.N.; Vasylieva, N.; Hammock, B.D.; Lin, Y.; Du, D. Smartphone-Based Dual-Channel Immunochromatographic Test Strip with Polymer Quantum Dot Labels for Simultaneous Detection of Cypermethrin and 3-Phenoxybenzoic Acid. Anal. Chem. 2021, 93, 13658–13666. [Google Scholar] [CrossRef]
- Hashwan, S.S.B.; Bin Khir, M.H.; Al-Douri, Y.; Ahmed, A.Y. Recent Progress in the Development of Biosensors for Chemicals and Pesticides Detection. IEEE Access 2020, 8, 82514–82527. [Google Scholar] [CrossRef]
- Pundir, C.S.; Chauhan, N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem. 2012, 429, 19–31. [Google Scholar] [CrossRef]
- Guilbault, G.G.; Kramer, D.N.; Cannon, P.L., Jr. Electrochemical Determination of Organophosphorous Compounds. Anal. Chem. 1962, 34, 1437–1439. [Google Scholar] [CrossRef]
- Cycoń, M.; Piotrowska-Seget, Z. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review. Front. Microbiol. 2016, 7, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Gao, Y.; Sun, B.; Ran, T.; Zeng, L.; He, J.; He, J.; Wang, W. Pyrethroid Carboxylesterase PytH from Sphingobium faniae JZ-2: Structure and Catalytic Mechanism. Appl. Environ. Microbiol. 2020, 86, e02971-19. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Ramírez, G.; Cortina, M.; Ramírez-Silva, M.T.; Marty, J.-L. Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile. Anal. Bioanal. Chem. 2008, 392, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, X.; Cheng, N.; Luo, Y.; Lin, Y.; Xu, W.; Du, D. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC Trends Anal. Chem. 2020, 132, 116041. [Google Scholar] [CrossRef]
- Jin, M.; Chen, G.; Du, P.; Zhang, C.; Cui, X.; Gee, S.J.; She, Y.; Zheng, L.; Wang, S.; Shao, H.; et al. Developments on Immunoassays for Pyrethroid Chemicals. Curr. Org. Chem. 2018, 21, 2653–2661. [Google Scholar] [CrossRef]
- Cui, N.; Cao, L.; Sui, J.; Lin, H.; Han, X.; Chen, X.; Xie, H.; Sun, X. Quick and convenient construction of lambda-cyhalothrin antigen for the generation of specific antibody. Anal. Biochem. 2020, 597, 113669. [Google Scholar] [CrossRef]
- Blind, M.; Blank, M. Aptamer Selection Technology and Recent Advances. Mol. Ther.-Nucleic Acids 2015, 4, e223. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, Y.; Wang, C.; Liu, B.; Wu, Y. Selection and identification of a DNA aptamer for ultrasensitive and selective detection of λ-cyhalothrin residue in food. Anal. Chim. Acta 2021, 1179, 338837. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, Q.; Zhou, M.; Cui, H. A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Biosens. Bioelectron. 2013, 43, 137–142. [Google Scholar] [CrossRef]
- Hamada, M. In silico approaches to RNA aptamer design. Biochimie 2018, 145, 8–14. [Google Scholar] [CrossRef]
- Kaur, H. Recent developments in cell-SELEX technology for aptamer selection. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2018, 1862, 2323–2329. [Google Scholar] [CrossRef] [PubMed]
- Nezhadali, A.; Feizy, J.; Beheshti, H.R. A Molecularly Imprinted Polymer for the Selective Extraction and Determination of Fenvalerate from Food Samples Using High-Performance Liquid Chromatography. Food Anal. Methods 2014, 8, 1225–1237. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Zhao, M.; Li, H.; Shao, H.; She, Y.; Jin, F.; Wang, J. Advances in the Preparation of Molecularly Imprinted Polymers of Mycotoxins and their Rapid Detection Techniques. Cereal Feed. Ind. 2021, 3, 45–51. [Google Scholar] [CrossRef]
- Naseri, M.; Mohammadniaei, M.; Sun, Y.; Ashley, J. The Use of Aptamers and Molecularly Imprinted Polymers in Biosensors for Environmental Monitoring: A Tale of Two Receptors. Chemosensors 2020, 8, 32. [Google Scholar] [CrossRef]
- Sergeyeva, T.; Yarynka, D.; Piletska, E.; Linnik, R.; Zaporozhets, O.; Brovko, O.; Piletsky, S.; El’Skaya, A. Fluorescent sensor systems based on nanostructured polymeric membranes for selective recognition of Aflatoxin B1. Talanta 2017, 175, 101–107. [Google Scholar] [CrossRef]
- Heravizadeh, O.R.; Khadem, M.; Nabizadeh, R.; Shahtaheri, S.J. Synthesis of molecularly imprinted nanoparticles for selective exposure assessment of permethrin: Optimization by response surface methodology. J. Environ. Health Sci. Eng. 2019, 17, 393–406. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, Z.; Zhang, L.; Hu, X. Effective preparation of magnetic molecularly imprinted polymer nanoparticle for the rapid and selective extraction of cyfluthrin from honeysuckle. J. Biomater. Sci. Polym. Ed. 2020, 31, 954–968. [Google Scholar] [CrossRef]
- Hanginaka, K.N.J. Preparation and evaluation of molecularly imprinted polymers for promazine and chlorpromazine by multi-step swelling and polymerization: The application for the determination of promazine in rat serum ny column-switching LC. Anal. Sci. 2019, 35, 659–664. [Google Scholar]
- Madikizela, L.M.; Tavengwa, N.T.; Tutu, H.; Chimuka, L. Green aspects in molecular imprinting technology: From design to environmental applications. Trends Environ. Anal. Chem. 2018, 17, 14–22. [Google Scholar] [CrossRef]
- Cai, Y.; He, X.; Cui, P.L.; Yuan, W.Z.; Wang, J.P.; Liu, J. Molecularly imprinted microspheres based multiplexed fluorescence method for simultaneous detection of benzimidazoles and pyrethroids in meat samples. Food Chem. 2020, 319, 126539. [Google Scholar] [CrossRef]
- Gast, M.; Sobek, H.; Mizaikoff, B. Advances in imprinting strategies for selective virus recognition a review. TrAC Trends Anal. Chem. 2019, 114, 218–232. [Google Scholar] [CrossRef]
- Esquivel-Blanco, V.; Quintanilla-Villanueva, G.; Villarreal-Chiu, J.; Rodríguez-Delgado, J.; Rodríguez-Delgado, M. The Potential Use of a Thin Film Gold Electrode Modified with Laccases for the Electrochemical Detection of Pyrethroid Metabolite 3-Phenoxybenzaldehyde. Materials 2021, 14, 1992. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.B.; Ribeiro, D.B.; dos Santos Soares, A.M.; Marques, P.R.B.; Badea, M.; Targa, M.; Granato, J.A.; Nunes, G.S. A novel glutathione-S-transferase-based biosensor for pyrethroid insecticides: From inhibition study to detection. Sens. Actuators Rep. 2022, 4, 100093. [Google Scholar] [CrossRef]
- Borah, H.; Gogoi, S.; Kalita, S.; Puzari, P. A broad spectrum amperometric pesticide biosensor based on glutathione S-transferase immobilized on graphene oxide-gelatin matrix. J. Electroanal. Chem. 2018, 828, 116–123. [Google Scholar] [CrossRef]
- Maria, A.C.G.; Varghese, A.; Nidhin, M. Recent Advances in Nanomaterials Based Molecularly Imprinted Electrochemical Sensors. Crit. Rev. Anal. Chem. 2021, 1, 1–10. [Google Scholar] [CrossRef]
- Chansi; Bhardwaj, R.; Rao, R.P.; Mukherjee, I.; Agrawal, P.K.; Basu, T.; Bharadwaj, L.M. Layered construction of nano immuno-hybrid embedded MOF as an electrochemical sensor for rapid quantification of total pesticides load in vegetable extract. J. Electroanal. Chem. 2020, 873, 114386. [Google Scholar] [CrossRef]
- Ferrari, A.G.-M.; Rowley-Neale, S.J.; Banks, C.E. Recent advances in 2D hexagonal boron nitride (2D-hBN) applied as the basis of electrochemical sensing platforms. Anal. Bioanal. Chem. 2020, 413, 663–672. [Google Scholar] [CrossRef]
- Maestre, C.; Toury, B.; Steyer, P.; Garnier, V.; Journet, C. Hexagonal boron nitride: A review on selfstanding crystals synthesis towards 2D nanosheets. J. Phys. Mater. 2021, 4, 044018. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2012, 113, 1391–1428. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Liu, P. Biocompatible Triplex Ag@SiO2@mTiO2 Core-Shell Nanoparticles for Simultaneous Fluorescence-SERS Bimodal Imaging and Drug Delivery. Chem.–A Eur. J. 2012, 18, 5935–5943. [Google Scholar] [CrossRef]
- Kamra, T.; Zhou, T.; Montelius, L.; Schnadt, J.; Ye, L. Implementation of Molecularly Imprinted Polymer Beads for Surface Enhanced Raman Detection. Anal. Chem. 2015, 87, 5056–5061. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Wang, X.; Wang, Z.; Wang, M.; Li, Y.; Wang, Q. Preparation of a high-performance magnetic molecularly imprinted sensor for SERS detection of cyfluthrin in river. J. Raman Spectrosc. 2019, 50, 926–935. [Google Scholar] [CrossRef]
- Wang, D.; Loo, J.F.C.; Chen, J.; Yam, Y.; Chen, S.-C.; He, H.; Kong, S.K.; Ho, H.P. Recent Advances in Surface Plasmon Resonance Imaging Sensors. Sensors 2019, 19, 1266. [Google Scholar] [CrossRef] [Green Version]
- Daniyal, W.M.E.M.M.; Fen, Y.W.; Fauzi, N.I.M.; Hashim, H.S.; Ramdzan, N.S.M.; Omar, N.A.S. Recent Advances in Surface Plasmon Resonance Optical Sensors for Potential Application in Environmental Monitoring. Sens. Mater. 2020, 32, 4191. [Google Scholar] [CrossRef]
- Fang, L.; Liao, X.; Jia, B.; Shi, L.; Kang, L.; Zhou, L.; Kong, W. Recent progress in immunosensors for pesticides. Biosens. Bioelectron. 2020, 164, 112255. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudpour, M.; Dolatabadi, J.E.N.; Torbati, M.; Homayouni-Rad, A. Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions. Biosens. Bioelectron. 2018, 127, 72–84. [Google Scholar] [CrossRef]
- Mohammadzadeh-Asl, S.; Keshtkar, A.; Dolatabadi, J.E.N.; de la Guardia, M. Nanomaterials and phase sensitive based signal enhancment in surface plasmon resonance. Biosens. Bioelectron. 2018, 110, 118–131. [Google Scholar] [CrossRef]
- Thangadurai, T.D.; Manjubaashini, N. Progressions in chemical and biological analytes sensing technology based on nanostructured materials: A comprehensive review. Mater. Sci. Eng. B 2021, 271, 115307. [Google Scholar] [CrossRef]
- Suzuki, Y.; Katagi, T. Novel Fluorescence Detection of Free Radicals Generated in Photolysis of Fenvalerate. J. Agric. Food Chem. 2008, 56, 10811–10816. [Google Scholar] [CrossRef]
- Zang, D.; Yan, M.; Zhao, P.; Ge, L.; Liu, S.; Yu, J. A novel high selectivity chemiluminescence sensor for fenvalerate based on double-sided hollow molecularly imprinted materials. Analyst 2012, 137, 4247–4253. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, J.; Liu, S.; Yan, M.; Zang, D.; Gao, L. One novel chemiluminescence sensor for determination of fenpropathrin based on molecularly imprinted porous hollow microspheres. Sens. Actuators B Chem. 2012, 162, 166–172. [Google Scholar] [CrossRef]
- Al Yahyai, I.; Hassanzadeh, J.; Al-Lawati, H.A. A novel and selective multi-emission chemiluminescence system for the quantification of deltamethrin in food samples. Sens. Actuators B Chem. 2020, 327, 128927. [Google Scholar] [CrossRef]
- Kalyani, N.; Goel, S.; Jaiswal, S. On-site sensing of pesticides using point-of-care biosensors: A review. Environ. Chem. Lett. 2020, 19, 345–354. [Google Scholar] [CrossRef]
- Zhou, J.-W.; Zou, X.-M.; Song, S.-H.; Chen, G.-H. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues. J. Agric. Food Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef] [PubMed]
- Nsibande, S.A.; Forbes, P.B.C. Fluorescence detection of pesticides using quantum dot materials—A review. Anal. Chim. Acta 2016, 945, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Meng, M.; Song, Z.; Gao, L.; Li, H.; Dai, J.; Zhou, Z.; Li, C.; Pan, J.; Yu, P.; et al. Synthesis of molecularly imprinted silica nanospheres embedded mercaptosuccinic acid-coated CdTe quantum dots for selective recognition of λ-cyhalothrin. J. Lumin. 2014, 153, 326–332. [Google Scholar] [CrossRef]
- Wei, X.; Hao, T.; Xu, Y.; Lu, K.; Li, H.; Yan, Y.; Zhou, Z. Facile polymerizable surfactant inspired synthesis of fluorescent molecularly imprinted composite sensor via aqueous CdTe quantum dots for highly selective detection of λ-cyhalothrin. Sens. Actuators B Chem. 2016, 224, 315–324. [Google Scholar] [CrossRef]
- Qiu, H.; Gao, L.; Wang, J.; Pan, J.; Yan, Y.; Zhang, X. A precise and efficient detection of Beta-Cyfluthrin via fluorescent molecularly imprinted polymers with ally fluorescein as functional monomer in agricultural products. Food Chem. 2017, 217, 620–627. [Google Scholar] [CrossRef]
- Yulong, Y.; Xinsheng, P. Recent advances in carbon-based dots for electroanalysis. Analyst 2016, 141, 2619–2628. [Google Scholar] [CrossRef]
- Zhou, Y.; Benetti, D.; Tong, X.; Jin, L.; Wang, Z.M.; Ma, D.; Zhao, H.; Rosei, F. Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy 2017, 44, 378–387. [Google Scholar] [CrossRef]
- Sivasankarapillai, V.S.; Kirthi, A.V.; Akksadha, M.; Indu, S.; Dharshini, U.D.; Pushpamalar, J.; Karthik, L.; Arivarasan, V.K.; Janarthanan, P. Recent advancements in the applications of carbon nanodots: Exploring the rising star of nanotechnology. Nanoscale Adv. 2020, 2, 1760–1773. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Lei, Y. Fluorescent carbon dots and their sensing applications. TrAC Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar] [CrossRef]
- Devi, P.; Rajput, P.; Thakur, A.; Kim, K.-H.; Kumar, P. Recent advances in carbon quantum dot-based sensing of heavy metals in water. TrAC Trends Anal. Chem. 2019, 114, 171–195. [Google Scholar] [CrossRef]
- Li, M.; Chen, T.; Gooding, J.J.; Liu, J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sens. 2019, 4, 1732–1748. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Jiang, Z.; Shangguan, J.; Qing, T.; Zhang, P.; Feng, B. Applications of carbon dots in environmental pollution control: A review. Chem. Eng. J. 2020, 406, 126848. [Google Scholar] [CrossRef]
- Xu, J.; Miao, Y.; Zheng, J.; Wang, H.; Yang, Y.; Liu, X. Carbon dot-based white and yellow electroluminescent light emitting diodes with a record-breaking brightness. Nanoscale 2018, 10, 11211–11221. [Google Scholar] [CrossRef]
- Liu, C.; Fu, Y.; Xia, Y.; Zhu, C.; Hu, L.; Zhang, K.; Wu, H.; Huang, H.; Liu, Y.; Xie, T.; et al. Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light. Nanoscale 2017, 10, 2454–2460. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Nasr-Esfahani, P.; Rezaei, B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sens. Actuators B Chem. 2018, 257, 889–896. [Google Scholar] [CrossRef]
- Shirani, M.P.; Rezaei, B.; Ensafi, A.A. A novel optical sensor based on carbon dots embedded molecularly imprinted silica for selective acetamiprid detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 210, 36–43. [Google Scholar] [CrossRef]
- Jalili, R.; Khataee, A.; Rashidi, M.-R.; Razmjou, A. Detection of penicillin G residues in milk based on dual-emission carbon dots and molecularly imprinted polymers. Food Chem. 2020, 314, 126172. [Google Scholar] [CrossRef]
- Jia, R.; Jin, K.; Zhang, J.; Zheng, X.; Wang, S.; Zhang, J. Colorimetric and fluorescent detection of glutathione over cysteine and homocysteine with red-emitting N-doped carbon dots. Sens. Actuators B Chem. 2020, 321, 128506. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, X.; Han, L.; Liu, H.; Sun, B. A smartphone-integrated optosensing platform based on red-emission carbon dots for real-time detection of pyrethroids. Biosens. Bioelectron. 2021, 191, 113460. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, J.; Li, Z.; Lv, X.; Liang, L.; Yuan, Q. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles. Small 2019, 15, e1804969. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, Z.; Duan, C.; Dou, L.; Wen, K.; Wang, Z.; Yu, X.; Shen, J. Comparison of two fluorescence quantitative immunochromatographic assays for the detection of amantadine in chicken muscle. Food Chem. 2022, 377, 131931. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Li, D.; Huang, Z.; Xing, K.; Chen, Y.; Peng, J.; Lai, W. Ultra-sensitive method based on time-resolved fluorescence immunoassay for detection of sulfamethazine in raw milk. Food Agric. Immunol. 2018, 29, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Gulzar, A.; Yang, P.; Bi, H.; Yang, D.; Gai, S.; He, F.; Lin, J.; Xing, B.; Jin, D. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2018, 381, 104–134. [Google Scholar] [CrossRef]
- Li, X.; Shen, J.; Wang, Q.; Gao, S.; Pei, X.; Jiang, H.; Wen, K. Multi-residue fluorescent microspheres immunochromatographic assay for simultaneous determination of macrolides in raw milk. Anal. Bioanal. Chem. 2015, 407, 9125–9133. [Google Scholar] [CrossRef]
- Xue, Z.; Zeng, S.; Hao, J. Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm. Biomaterials 2018, 171, 153–163. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; Li, P.; Zhang, Q.; Zhang, W. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis. Sensors 2016, 16, 1094. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Li, P.; Zhang, Q.; Zhang, Z.; Zhang, W.; Jiang, J. Time-Resolved Fluorescence Immunochromatographic Assay Developed Using Two Idiotypic Nanobodies for Rapid, Quantitative, and Simultaneous Detection of Aflatoxin and Zearalenone in Maize and Its Products. Anal. Chem. 2017, 89, 11520–11528. [Google Scholar] [CrossRef]
- Chen, B.; Shen, X.; Li, Z.; Wang, J.; Li, X.; Xu, Z.; Shen, Y.; Lei, Y.; Huang, X.; Wang, X.; et al. Antibody Generation and Rapid Immunochromatography Using Time-Resolved Fluorescence Microspheres for Propiconazole: Fungicide Abused as Growth Regulator in Vegetable. Foods 2022, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Majdinasab, M.; Sheikh-Zeinoddin, M.; Soleimanian-Zad, S.; Li, P.; Zhang, Q.; Li, X.; Tang, X.; Li, J. A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control 2015, 47, 126–134. [Google Scholar] [CrossRef]
- Capoferri, D.; Della Pelle, F.; Del Carlo, M.; Compagnone, D. Affinity Sensing Strategies for the Detection of Pesticides in Food. Foods 2018, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Amine, A.; Arduini, F.; Moscone, D.; Palleschi, G. Recent advances in biosensors based on enzyme inhibition. Biosens. Bioelectron. 2015, 76, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Songa, E.; Okonkwo, J.O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta 2016, 155, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Dávila, E.L.; Houbraken, M.; Gil Unday, Z.; Romero, O.R.; Du Laing, G.; Spanoghe, P. ELISA, a feasible technique to monitor organophosphate, carbamate, and pyrethroid residues in local vegetables. Cuban case study. SN Appl. Sci. 2020, 2, 1–12. [Google Scholar] [CrossRef]
- Huo, J.; Li, Z.; Wan, D.; Li, D.; Qi, M.; Barnych, B.; Vasylieva, N.; Zhang, J.; Hammock, B.D. Development of a Highly Sensitive Direct Competitive Fluorescence Enzyme Immunoassay Based on a Nanobody–Alkaline Phosphatase Fusion Protein for Detection of 3-Phenoxybenzoic Acid in Urine. J. Agric. Food Chem. 2018, 66, 11284–11290. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, J.; Wei, G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano 2020, 7, 2195–2213. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, D.; Zhou, X.; Yu, Y.; Liu, J.; Hu, N.; Wang, H.; Li, G.; Wu, Y. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Anal. Chem. 2019, 121, 115668. [Google Scholar] [CrossRef]
- Castellarnau, M.; Ramón-Azcón, J.; Gonzalez-Quinteiro, Y.; López, J.; Grimalt, J.O.; Marco, M.-P.; Nieuwenhuijsen, M.; Picado, A. Assessment of analytical methods to determine pyrethroids content of bednets. Trop. Med. Int. Health 2016, 22, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Kranthi, K.; Davis, M.; Mayee, C.; Russell, D.; Shukla, R.; Satija, U.; Kshirsagar, M.; Shiware, D.; Kranthi, S. Development of a colloidal-gold based lateral-flow immunoassay kit for ‘quality-control’ assessment of pyrethroid and endosulfan formulations in a novel single strip format. Crop Prot. 2009, 28, 428–434. [Google Scholar] [CrossRef]
- Shi, H.; Han, F.; Wang, X.; Ren, X.; Lei, R.; Huang, L.; Zhao, S.; Xu, S. Highly precise FIR thermometer based on the thermally enhanced upconversion luminescence for temperature feedback photothermal therapy. RSC Adv. 2022, 12, 8274–8282. [Google Scholar] [CrossRef] [PubMed]
- Pyo, D. Comparison of Fluorescence Immunochromatographic Assay Strip and Gold Colloidal Immunochromatographic Assay Strip for Detection of Microcystin. Anal. Lett. 2007, 40, 907–919. [Google Scholar] [CrossRef]
- Costa, E.; Climent, E.; Ast, S.; Weller, M.G.; Canning, J.; Rurack, K. Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials. Analyst 2020, 145, 3490–3494. [Google Scholar] [CrossRef]
- Shen, Y.; Yan, F.; Huang, X.; Zhang, X.; Zhang, Y.; Zhang, C.; Jin, J.; Li, H.; Yao, S. A new water-soluble and colorimetric fluorescent probe for highly sensitive detection of organophosphorus pesticides. RSC Adv. 2016, 6, 88096–88103. [Google Scholar] [CrossRef]
- Molaei, M.J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2018, 196, 456–478. [Google Scholar] [CrossRef]
- Liao, T.; Yuan, F.; Shi, C.; He, C.-X.; Li, Z. Lanthanide chelate-encapsulated polystyrene nanoparticles for rapid and quantitative immunochromatographic assay of procalcitonin. RSC Adv. 2016, 6, 103463–103470. [Google Scholar] [CrossRef]
- He, Y.; Hong, S.; Wang, M.; Wang, J.; Abd El-Aty, A.M.; Hacimuftuoglu, A.; Khan, M.; She, Y. Development of fluorescent lateral flow test strips based on an electrospun molecularly imprinted membrane for detection of triazophos residues in tap water. New J. Chem. 2020, 44, 6026–6036. [Google Scholar] [CrossRef]
Pyrethroid | Recognition Element | Reading Device | Linear Range | LOD | Sample | Mertis | Reference |
---|---|---|---|---|---|---|---|
β-cyhalothrin | P-AGSAE | SWCASV | 3.0 × 10−6–1.0 × 10−5 mol/L | 8.1 µg/L | water, tea | high robustness, good stability, sensitivity | Silva et al. [26] |
Deltamethrin | ELISA | amperometric biosensor | - | 4.7μg/L | seawater | without any pretreatment | Fruhmann et al. [27] |
cypermethrin | amine-functionalized Fe@AuNPs/2D-hBN | molecular imprinted sensor | 1.0 × 10−13–1.0 × 10−8 M | 3.0 × 10−14 M | wastewater | stability, repeatability | Atar and Yola [28] |
fenvalerate | SiO2@TiO2@Ag@MIPs | SERS | 1.0–100 nmol/L | 0.2 nmol/L | river water | functionality, selectivity, self-cleaning | Li et al. [29] |
deltamethrin | Fe3O4-MNPs | SPR | 0.01–1 ng/mL | 0.01 ng/mL | soybean | increases the SPR signal, improves sensitivity, low background interference | Liu et al. [30] |
10 pyrethroids | MIP | chemiluminescence sensor | 0.3–6.0 pg/mL | - | chicken samples | short detection time, repeatable | Huang et al. [31] |
cypermethrin | ELISA-like method | MIP-QDs | 0.05–60.0 mg/kg | 1.2 μg/kg | fish | rapid, sensitive, high specificity, sensitivity | Xiao et al. [32] |
λ-cyhalothrin | SiO2@FITC-APTS@MIPs | fluorescence quenching | 0–60 nm/L | 9.17 nM/L | Chinese spirits | good monodispersity, high fluorescence intensity, good selective recognition | Wang et al. [33] |
cyfluthrin | FeSe-MIP-QD | fluorescence quenching | 0.010–0.20 mg/L | 1.0, 1.3 µg/kg, respectively | fish, sediment samples | selectivity, sensitivity | Li et al. [34] |
λ-cyhalothrin | blue and green CDs | ratiometric fluorescence core–shell nanosphere | 1–150 mug/L | 0.048 mug/L | tap water, tea, cucumber, apple | sensitivity and selection range | Zhu et al. [35] |
cypermethrin, fenvalerate | immunochromatographic assay (ICA) | SERS | 10−5–100 ng/mL | 2.3 × 10−4, 2.6 × 10−5 ng/mL | tap water, river water, milk | simple, sensitive, nonexpert people | Li et al. [36] |
cypermethrin, 3-PBA metabolite | dual-channel immunochromatographic test strip (ICTS) | smartphone | 1–100 ng/mL, 0.1–100 ng/mL, respectively | 0.35 ng/mL/0.04 ng/mL | standard sample | low cost, high sensitivity, and simple operation | Zhao et al. [37] |
Sensors | Example | Mertis | Demertis |
---|---|---|---|
enzymes | P450 monooxygenase, GST, phosphotriesterase, carboxyesterase | sensitivity, universality | strict preservation conditions, poor stability and selectivity, inactivated at high-organic solvent concentration |
antigens/antibodies | - | specificity, high specificity | sacrifice animals, long experimental period, difficult-to-construct haptens |
aptamers | single-stranded DNA (ssDNA) or RNA | high affinity, selectivity, stability, environmentally stable, easier to synthesize | time-consuming, unpredictable structures, ineffective folding, non-specificity |
chemical synthesis | MIP | predetermination, recognition, practicability, simple preparation, low cost, good chemical stability | non-specificity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhao, M.; Xiao, M.; Im, M.-H.; Abd El-Aty, A.M.; Shao, H.; She, Y. Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review. Biosensors 2022, 12, 402. https://doi.org/10.3390/bios12060402
Zhang L, Zhao M, Xiao M, Im M-H, Abd El-Aty AM, Shao H, She Y. Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review. Biosensors. 2022; 12(6):402. https://doi.org/10.3390/bios12060402
Chicago/Turabian StyleZhang, Le, Mingqi Zhao, Ming Xiao, Moo-Hyeog Im, A. M. Abd El-Aty, Hua Shao, and Yongxin She. 2022. "Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review" Biosensors 12, no. 6: 402. https://doi.org/10.3390/bios12060402
APA StyleZhang, L., Zhao, M., Xiao, M., Im, M. -H., Abd El-Aty, A. M., Shao, H., & She, Y. (2022). Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review. Biosensors, 12(6), 402. https://doi.org/10.3390/bios12060402