Field-Portable Leukocyte Classification Device Based on Lens-Free Shadow Imaging Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Whole Blood Preparation
2.1.1. Magnetically Activated Cell Sorting of Human Whole Blood
2.1.2. Cell Separation Using a Density Gradient Medium (Ficoll Solution)
2.2. Experimental Setup
2.2.1. No-Stain and Automated, Versatile, Innovative Cell Analysis (NaviCell)
2.2.2. Correlation, Linearity, and Agreement
2.2.3. Shadow Parameters
2.3. Detection Algorithm
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dixon, L.R. The Complete Blood Count: Physiologic Basis and Clinical Usage. J. Perinat. Neonatal Nurs. 1997, 11, 1–18. [Google Scholar] [CrossRef]
- Starr, C.; McMillan, B. Human Biology, 5th ed.; Brooks/Cole: Florence, KY, USA, 2002; ISBN 9780534402105. [Google Scholar]
- Camitta, B.M.; Slye, R.J. Optimizing Use of the Complete Blood Count. Pediatr. Pol. 2012, 87, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Witko-Sarsat, V.; Rieu, P.; Descamps-Latscha, B.; Lesavre, P.; Halbwachs-Mecarelli, L. Neutrophils: Molecules, Functions and Pathophysiological Aspects. Lab. Investig. 2000, 80, 617–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, A.; Littman, D.R. Signal Transduction by Lymphocyte Antigen Receptors. Cell 1994, 76, 263–274. [Google Scholar] [CrossRef]
- Ford, J. Red Blood Cell Morphology. Int. J. Lab. Hematol. 2013, 35, 351–357. [Google Scholar] [CrossRef]
- Ceelie, H.; Dinkelaar, R.B.; van Gelder, W. Examination of Peripheral Blood Films Using Automated Microscopy; Evaluation of Diffmaster Octavia and Cellavision DM96. J. Clin. Pathol. 2007, 60, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Wittwer, C. Flow Cytometry: Principles and Clinical Applications in Hematology. Clin. Chem. 2000, 46, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Suh, D.; Min, B.; Yoo, K. Principles and Clinical Applications of Flow Cytometry. Korean J. Clin. Lab. Sci. 1996, 28, 242–255. [Google Scholar]
- Shapiro, H.M. Practical Flow Cytometry, Fourth; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Menze, L.; Duarte, P.A.; Haddon, L.; Chu, M.; Chen, J. Selective Single-Cell Sorting Using a Multisectorial Electroactive Nanowell Platform. ACS Nano 2021. [Google Scholar] [CrossRef]
- Scott, R.; Sethu, P.; Harnett, C.K. Three-Dimensional Hydrodynamic Focusing in a Microfluidic Coulter Counter. Rev. Sci. Instrum. 2008, 79, 046104. [Google Scholar] [CrossRef] [PubMed]
- Dimov, I.K.; Basabe-Desmonts, L.; Garcia-Cordero, J.L.; Ross, B.M.; Park, Y.; Ricco, A.J.; Lee, L.P. Stand-Alone Self-Powered Integrated Microfluidic Blood Analysis System (SIMBAS). Lab Chip 2011, 11, 845–850. [Google Scholar] [CrossRef]
- Yang, K.; Wu, J.; Zhu, L.; Liu, Y.; Zhang, M.; Lin, F. An All-on-Chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood. J. Vis. Exp. 2017, 124, 55615. [Google Scholar] [CrossRef] [PubMed]
- Paiè, P.; Bragheri, F.; Vazquez, R.M.; Osellame, R. Straightforward 3D Hydrodynamic Focusing in Femtosecond Laser Fabricated Microfluidic Channels. Lab Chip 2014, 14, 1826–1833. [Google Scholar] [CrossRef] [PubMed]
- Lippeveld, M.; Knill, C.; Ladlow, E.; Fuller, A.; Michaelis, L.J.; Saeys, Y.; Filby, A.; Peralta, D. Classification of Human White Blood Cells Using Machine Learning for Stain-Free Imaging Flow Cytometry. Cytom. A 2020, 97, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.R.; Lee, J.H.; Xu, A.; Matthews, K.; Xie, S.; Duffy, S.P.; Ma, H. Monolithic Hydrogel Nanowells-in-Microwells Enabling Simultaneous Single Cell Secretion and Phenotype Analysis. Lab Chip 2020, 20, 4539–4551. [Google Scholar] [CrossRef] [PubMed]
- Ryabchykov, O.; Ramoji, A.; Bocklitz, T.; Foerster, M.; Hagel, S.; Kroegel, C.; Bauer, M.; Neugebauer, U.; Popp, J. Leukocyte Subtypes Classification by Means of Image Processing. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, Gdansk, Poland, 2 October 2016. [Google Scholar]
- Zhang, C.; Wu, S.; Lu, Z.; Shen, Y.; Wang, J.; Huang, P.; Lou, J.; Liu, C.; Xing, L.; Zhang, J.; et al. Hybrid Adversarial-Discriminative Network for Leukocyte Classification in Leukemia. Med. Phys. 2020, 47, 3732–3744. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, J.; Hu, M.; Zhou, M.; Li, Q.; Sun, L.; Qiu, S.; Wang, Y. Leukocyte Classification Based on Spatial and Spectral Features of Microscopic Hyperspectral Images. Opt. Laser Technol. 2019, 112, 530–538. [Google Scholar] [CrossRef]
- Rawat, J.; Bhadauria, H.S.; Singh, A.; Virmani, J. Review of Leukocyte Classification Techniques for Microscopic Blood Images. In Proceedings of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015; pp. 1948–1954. [Google Scholar]
- Ramoser, H.; Laurain, V.; Bischof, H.; Ecker, R. Leukocyte Segmentation and Classification in Blood-Smear Images. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 1–4 September 2005; pp. 3371–3374. [Google Scholar]
- Rawat, J.; Singh, A.; Bhadauria, H.S.; Virmani, J.; Devgun, J.S. Leukocyte Classification Using Adaptive Neuro-Fuzzy Inference System in Microscopic Blood Images. Arab. J. Sci. Eng. 2018, 43, 7041–7058. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y. Human Peripheral Blood Leukocyte Classification Method Based on Convolutional Neural Network and Data Augmentation. Med. Phys. 2020, 47, 142–151. [Google Scholar] [CrossRef]
- Roy, M.; Seo, D.; Oh, S.; Yang, J.-W.; Seo, S. A Review of Recent Progress in Lens-Free Imaging and Sensing. Biosens. Bioelectron. 2017, 88, 130–143. [Google Scholar] [CrossRef]
- Roy, M.; Seo, D.; Oh, C.-H.; Nam, M.-H.; Kim, Y.J.; Seo, S. Low-Cost Telemedicine Device Performing Cell and Particle Size Measurement Based on Lens-Free Shadow Imaging Technology. Biosens. Bioelectron. 2015, 67, 715–723. [Google Scholar] [CrossRef]
- Roy, M.; Jin, G.; Seo, D.; Nam, M.-H.; Seo, S. A Simple and Low-Cost Device Performing Blood Cell Counting Based on Lens-Free Shadow Imaging Technique. Sens. Actuators B Chem. 2014, 201, 321–328. [Google Scholar] [CrossRef]
- Seo, D.; Oh, S.; Lee, M.; Hwang, Y.; Seo, S. A Field-Portable Cell Analyzer without a Microscope and Reagents. Sensors 2017, 18, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.; Isikman, S.O.; Sencan, I.; Mudanyali, O.; Su, T.-W.; Bishara, W.; Erlinger, A.; Ozcan, A. High-Throughput Lens-Free Blood Analysis on a Chip. Anal. Chem. 2010, 82, 4621–4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kwak, Y.H.; Paek, S.-H.; Han, S.; Seo, S. CMOS Image Sensor-Based ELISA Detector Using Lens-Free Shadow Imaging Platform. Sens. Actuators B Chem. 2014, 196, 511–517. [Google Scholar] [CrossRef]
- Kwak, Y.H.; Lee, J.; Lee, J.; Kwak, S.H.; Oh, S.; Paek, S.-H.; Ha, U.-H.; Seo, S. A Simple and Low-Cost Biofilm Quantification Method Using LED and CMOS Image Sensor. J. Microbiol. Methods 2014, 107, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Jin, G.; Pan, J.-H.; Seo, D.; Hwang, Y.; Oh, S.; Lee, M.; Kim, Y.J.; Seo, S. Staining-Free Cell Viability Measurement Technique Using Lens-Free Shadow Imaging Platform. Sens. Actuators B Chem. 2016, 224, 577–583. [Google Scholar] [CrossRef]
- Seo, S.; Su, T.-W.; Tseng, D.K.; Erlinger, A.; Ozcan, A. Lensfree Holographic Imaging for On-Chip Cytometry and Diagnostics. Lab Chip 2009, 9, 777–787. [Google Scholar] [CrossRef]
- Bomford, R. The Comparative Selectivity of Adjuvants for Humoral and Cell-Mediated Immunity. II. Effect on Delayed-Type Hypersensitivity in the Mouse and Guinea Pig, and Cell-Mediated Immunity to Tumour Antigens in the Mouse of Freund’s Incomplete and Complete Adjuvants, Alhydrogel, Corynebacterium Parvum, Bordetella Pertussis, Muramyl Dipeptide and Saponin. Clin. Exp. Immunol. 1980, 39, 435–441. [Google Scholar]
- Kalina, T.; Fišer, K.; Pérez-Andrés, M.; Kuzílková, D.; Cuenca, M.; Bartol, S.J.W.; Blanco, E.; Engel, P.; van Zelm, M.C. CD Maps-Dynamic Profiling of CD1-CD100 Surface Expression on Human Leukocyte and Lymphocyte Subsets. Front. Immunol. 2019, 10, 2434. [Google Scholar] [CrossRef] [Green Version]
Sample | Method | Neutrophil (%) | Lymphocyte (%) | Monocyte (%) | Correl. | Sample | Method | Neutrophil (%) | Lymphocyte (%) | Monocyte (%) | Correl. |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | DxH 800 | 57.70 | 28.20 | 9.80 | 0.973 | 11 | DxH 800 | 47.10 | 37.90 | 12.20 | 0.999 |
NaviCell | 54.01 | 35.31 | 8.9 | NaviCell | 46.21 | 36.22 | 13.70 | ||||
2 | DxH 800 | 64.80 | 24.90 | 7.30 | 0.991 | 12 | DxH 800 | 52.10 | 24.90 | 19.90 | 0.999 |
NaviCell | 57.91 | 28.48 | 6.96 | NaviCell | 56.52 | 23.91 | 19.56 | ||||
3 | DxH 800 | 56.00 | 30.60 | 7.30 | 0.985 | 13 | DxH 800 | 58.20 | 29.30 | 8.70 | 0.994 |
NaviCell | 49.58 | 35.29 | 10.92 | NaviCell | 64.28 | 25.71 | 7.87 | ||||
4 | DxH 800 | 44.60 | 35.30 | 11.40 | 0.911 | 14 | DxH 800 | 41.20 | 46.20 | 9.90 | 0.962 |
NaviCell | 44.29 | 30.71 | 23.57 | NaviCell | 47.62 | 41.67 | 10.71 | ||||
5 | DxH 800 | 65.40 | 24.10 | 7.00 | 1.000 | 15 | DxH 800 | 67.30 | 17.70 | 12.40 | 0.991 |
NaviCell | 65.33 | 23.71 | 7.55 | NaviCell | 69.90 | 21.36 | 6.80 | ||||
6 | DxH 800 | 58.20 | 25.90 | 7.80 | 0.999 | 16 | DxH 800 | 79.20 | 11.00 | 9.00 | 1.000 |
NaviCell | 60.00 | 25.45 | 9.09 | NaviCell | 76.92 | 13.67 | 9.40 | ||||
7 | DxH 800 | 48.80 | 39.20 | 6.00 | 0.940 | 17 | DxH 800 | 62.80 | 27.70 | 8.60 | 0.976 |
NaviCell | 54.8 | 30.46 | 9.30 | NaviCell | 58.46 | 33.84 | 4.61 | ||||
8 | DxH 800 | 47.00 | 41.90 | 7.40 | 0.981 | 18 | DxH 800 | 87.20 | 5.50 | 6.60 | 1.000 |
NaviCell | 45.60 | 34.95 | 11.65 | NaviCell | 89.69 | 4.12 | 6.19 | ||||
9 | DxH 800 | 42.60 | 43.80 | 7.20 | 0.998 | 19 | DxH 800 | 45.30 | 41.30 | 7.60 | 0.978 |
NaviCell | 42.00 | 41.18 | 15.29 | NaviCell | 48.65 | 36.49 | 9.46 | ||||
10 | DxH 800 | 87.10 | 6.50 | 6.10 | 1.000 | 20 | DxH 800 | 57.30 | 29.50 | 10.50 | 0.979 |
NaviCell | 89.25 | 5.38 | 3.22 | NaviCell | 63.04 | 23.91 | 13.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, D.; Han, E.; Kumar, S.; Jeon, E.; Nam, M.-H.; Jun, H.S.; Seo, S. Field-Portable Leukocyte Classification Device Based on Lens-Free Shadow Imaging Technique. Biosensors 2022, 12, 47. https://doi.org/10.3390/bios12020047
Seo D, Han E, Kumar S, Jeon E, Nam M-H, Jun HS, Seo S. Field-Portable Leukocyte Classification Device Based on Lens-Free Shadow Imaging Technique. Biosensors. 2022; 12(2):47. https://doi.org/10.3390/bios12020047
Chicago/Turabian StyleSeo, Dongmin, Euijin Han, Samir Kumar, Eekhyoung Jeon, Myung-Hyun Nam, Hyun Sik Jun, and Sungkyu Seo. 2022. "Field-Portable Leukocyte Classification Device Based on Lens-Free Shadow Imaging Technique" Biosensors 12, no. 2: 47. https://doi.org/10.3390/bios12020047
APA StyleSeo, D., Han, E., Kumar, S., Jeon, E., Nam, M. -H., Jun, H. S., & Seo, S. (2022). Field-Portable Leukocyte Classification Device Based on Lens-Free Shadow Imaging Technique. Biosensors, 12(2), 47. https://doi.org/10.3390/bios12020047