Colorimetric Biosensor Based on Magnetic Enzyme and Gold Nanorods for Visual Detection of Fish Freshness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. DAO Immobilization
2.3. Characterization of DAO Immobilization
2.4. Performance Determination of MGO-DAO
2.4.1. Enzyme Loading for MGO-DAO
2.4.2. Activity of MGO-DAO
2.5. Preparation of AuNRs
2.6. Histamine Detection with MGO-DAO and AuNRs
2.7. Detection of Histamine in Fish Samples
3. Results and Discussion
3.1. Characterization of the DAO Immobilization
3.2. Optimization of the DAO Immobilization
3.3. Reusability of the MGO-DAO
3.4. Principle of the Colorimetric Biosensor for Fish Freshness
3.5. Optimization of the Detection Conditions
3.6. Detection of Histamine with the Colorimetric Biosensor
3.7. Evaluation of Fish Freshness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Colombo, F.M.; Cattaneo, P.; Confalonieri, E.; Bernardi, C. Histamine food poisonings: A systematic review and meta-analysis. Crit. Rev. Food Sci. 2018, 58, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Baixas-Nogueras, S.; Bover-Cid, S.; Veciana-Nogues, M.T.; Marine-Font, A.; Vidal-Carou, M.C. Biogenic amine index for freshness evaluation in iced Mediterranean hake (Merluccius merluccius). J. Food Protect. 2005, 68, 2433–2438. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Wu, C.C.; Sari, M.I.; Hsieh, Y.H. A disposable non-enzymatic histamine sensor based on the nafion-coated copper phosphate electrodes for estimation of fish freshness. Electrochim. Acta 2018, 283, 772–779. [Google Scholar] [CrossRef]
- Food and Drug Administration. Fish and Fishery Products Hazards and Controls Guidance; US Department of Health and Human Services, Food and Drug Administration: Silver Spring, MD, USA, 2011.
- Evangelista, W.P.; Silva, T.M.; Guidi, L.R.; Tette, P.A.; Byrro, R.M.; Santiago-Silva, P.; Fernandes, C.; Gloria, M.B. Quality assurance of histamine analysis in fresh and canned fish. Food Chem. 2016, 211, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Moyano, A.; Salvador, M.; Martinez-Garcia, J.C.; Socoliuc, V.; Vekas, L.; Peddis, D.; Alvarez, M.A.; Fernández, M.; Rivas, M.; Blanco-López, M.C. Magnetic immunochromatographic test for histamine detection in wine. Anal. Bioanal. Chem. 2019, 411, 6615–6624. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, H.; Coelho, L.C.C.; Matias, A.; Saraiva, C.; Jorge, P.A.; de Almeida, J.M. Biosensors for biogenic amines: A review. Biosensors 2021, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, Y.; Ma, X.; Guo, L.; Qiu, B.; Chen, G.; Lin, Z. Multicolor biosensor for fish freshness assessment with the naked eye. Sens. Actuators B Chem. 2007, 252, 201–208. [Google Scholar] [CrossRef]
- Rao, H.; Xin, X.; Wang, H.; Xue, Z. Gold nanorod etching-based multicolorimetric sensors: Strategies and applications. J. Mater. Chem. C 2019, 7, 4610–4621. [Google Scholar] [CrossRef]
- Wolvekamp, M.C.J.; De Bruin, R.W.F. Diamine oxidase: An overview of historical, biochemical and functional aspects. Digest. Dis. 1994, 12, 2–14. [Google Scholar] [CrossRef]
- Xu, X.; Wu, X.; Zhuang, S.; Zhang, Y.; Ding, Y.; Zhou, X. Multicolorimetric sensing of histamine in fishes based on enzymatic etching of gold nanorods. Food Control 2021, 127, 108147. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, J.; Yuan, Z.; Qi, W.; Liu, Y.; He, M. Artificial intelligence techniques to optimize the EDC/NHS-mediated immobilization of cellulase on Eudragit L-100. Int. J. Mol. Sci. 2012, 13, 7952–7962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nery, E.W.; Kubota, L.T. Evaluation of enzyme immobilization methods for paper-based devices—A glucose oxidase study. J. Pharmaceut. Biomed. 2016, 117, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Khaldi, K.; Sam, S.; Lounas, A.; Yaddaden, C.; Gabouze, N.E. Comparative investigation of two methods for Acetylcholinesterase enzyme immobilization on modified porous silicon. Appl. Surf. Sci. 2017, 421, 148–154. [Google Scholar] [CrossRef]
- Liu, D.; Chen, J.; Shi, Y. Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trend Anal. Chem. 2018, 102, 332–342. [Google Scholar] [CrossRef]
- Xie, W.; Huang, M. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energ. Conver. Manag. 2018, 159, 42–53. [Google Scholar] [CrossRef]
- Li, Y.; Jing, T.; Xu, G.; Tian, J.; Dong, M.; Shao, Q.; Wang, B.; Wang, Z.; Zheng, Y.; Yang, C.; et al. 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 2018, 149, 13–22. [Google Scholar] [CrossRef]
- Patel, S.K.; Choi, S.H.; Kang, Y.C.; Lee, J.K. Eco-Friendly Composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl. Mater. Interfaces 2017, 9, 2213–2222. [Google Scholar] [CrossRef]
- Han, J.; Luo, P.; Wang, Y.; Wang, L.; Li, C.; Zhang, W.; Dong, J.; Ni, L. The development of nanobiocatalysis via the immobilization of cellulase on composite magnetic nanomaterial for enhanced loading capacity and catalytic activity. Int. J. Biol. Macromol. 2018, 119, 692–700. [Google Scholar] [CrossRef]
- Brunelle, J.L.; Green, R. Coomassie blue staining. Methods Enzymol. 2014, 541, 161–167. [Google Scholar] [PubMed]
- Aarsen, P.N.; Kemp, A. Rapid spectrophotometric micromethod for determination of histaminase activity. Nature 1964, 204, 1195. [Google Scholar] [CrossRef] [PubMed]
- Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962. [Google Scholar] [CrossRef]
- Altieri, I.; Semeraro, A.; Scalise, F.; Calderari, I.; Stacchini, P. European official control of food: Determination of histamine in fish products by a HPLC-UV-DAD method. Food Chem. 2016, 211, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, F.; Yang, H.; Huang, X.; Liu, H.; Zhang, J.; Guo, S. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010, 26, 6083–6085. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Yang, K.; Zhao, Q.; Wu, Q.; Liang, Z.; Zhang, L.; Peng, X.; Zhang, Y. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion. J. Chromatogr. A 2012, 1254, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, Y.; Wu, C.; Wu, H. Preparation and characterization of magnetic Fe3O4/CRGO nanocomposites for enzyme immobilization. Trans. Nonferrous Metals Soc. China 2012, 22, s162–s168. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S.; Zhou, Z.; Zhang, R.; Shen, H.; Song, J.; Su, P.; Yang, Y. Enhanced reusability and activity: DNA directed immobilization of enzyme on polydopamine modified magnetic nanoparticles. Biochem. Eng. J. 2018, 137, 108–115. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Peng, L.; Chen, N. Lipase immobilization on magnetic microspheres via spacer arms: Effect of steric hindrance on the activity. Biotechnol. Bioproc. E 2014, 19, 838–843. [Google Scholar] [CrossRef]
- Liu, X.; Fang, Y.; Yang, X.; Li, Y.; Wang, C. Electrospun nanofibrous membranes containing epoxy groups and hydrophilic polyethylene oxide chain for highly active and stable covalent immobilization of lipase. Chem. Eng. J. 2018, 336, 456–464. [Google Scholar] [CrossRef]
- Brito, M.J.P.; Veloso, C.M.; Bonomo, R.C.F.; Fontan, R.d.C.I.; Santos, L.S.; Monteiro, K.A. Activated carbons preparation from yellow mombin fruit stones for lipase immobilization. Fuel Process. Technol. 2017, 156, 421–428. [Google Scholar] [CrossRef]
- Bieganski, T.; Kusche, J.; Lorenz, W.; Hesterberg, R.; Stahlknecht, C.; Feussner, K. Distribution and properties of human intestinal diamine oxidase and its relevance for the histamine catabolism. Biochim. Biophys. Acta (BBA) Gen. Subj. 1983, 756, 196–203. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.; Shi, J.; Wang, X.; Zhang, S.; Han, P.; Jiang, Z. In situ synthesized rGO–Fe3O4 nanocomposites as enzyme immobilization support for achieving high activity recovery and easy recycling. Biochem. Eng. J. 2016, 105, 273–280. [Google Scholar] [CrossRef]
- Adeel, M.; Bilal, M.; Rasheed, T.; Sharma, A.; Iqbal, H.M.N. Graphene and graphene oxide: Functionalization and nano-bio-catalytic system for enzyme immobilization and biotechnological perspective. Int. J. Biol. Macromol. 2018, 120, 1430–1440. [Google Scholar] [CrossRef]
- Torre, R.; Costa-Rama, E.; Lopes, P.; Nouws, H.P.A.; Delerue-Matos, C. Amperometric enzyme sensor for the rapid determination of histamine. Anal. Methods 2019, 11, 1264–1269. [Google Scholar] [CrossRef]
- Parate, K.; Pola, C.C.; Rangnekar, S.V.; Mendivelso-Perez, D.L.; Smith, E.A.; Hersam, M.C.; Gomes, C.L.; Claussen, J.C. Aerosol-jet-printed graphene electrochemical histamine sensors for food safety monitoring. 2D Mater. 2020, 7, 034002. [Google Scholar] [CrossRef]
- Ho, L.S.; Fogel, R.; Limson, J.L. Generation and screening of histamine-specific aptamers for application in a novel impedimetric aptamer-based sensor. Talanta 2020, 208, 120474. [Google Scholar]
- Dwidar, M.; Yokobayashi, Y. Development of a histamine aptasensor for food safety monitoring. Sci. Rep. 2019, 9, 16659. [Google Scholar] [CrossRef]
- Usman, H.; Abu Bakar, M.H.; Hamzah, A.S.; Salleh, A.b. A tapered fibre optics biosensor for histamine detection. Sens. Rev. 2016, 36, 40–47. [Google Scholar] [CrossRef]
Biosensing Element | Detection Method | Linear Range | LOD | Ref. |
---|---|---|---|---|
DAO | Colorimetric | 5–160 μM | 1.23 μM | This method |
DAO | Amperometry | 9–900 μM | 8.46 μM | [36] |
Antibody | Amperometry | 56.25 µM–1.8 mM | 30.7 μM | [37] |
Aptamer | Impedance | 1 μM–5 mM | 4.83 mM | [38] |
Aptamer | Fluorescence | 1–100 μM | 1 μM | [39] |
DAO and horseradish peroxidase | Optical | 0~1.5 mM | 86 μM | [40] |
Sample | Spiked/μM | Detected/μM | Recovery/% | RSD/% | HPLC Detected/μM |
---|---|---|---|---|---|
1 | 25 | 26.28 | 96.20 | 5.42 | 27.23 |
2 | 50 | 54.42 | 95.84 | 4.22 | 56.50 |
3 | 100 | 98.95 | 92.70 | 1.57 | 106.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Wu, X.; Zhuang, S.; Zhang, Y.; Ding, Y.; Zhou, X. Colorimetric Biosensor Based on Magnetic Enzyme and Gold Nanorods for Visual Detection of Fish Freshness. Biosensors 2022, 12, 135. https://doi.org/10.3390/bios12020135
Xu X, Wu X, Zhuang S, Zhang Y, Ding Y, Zhou X. Colorimetric Biosensor Based on Magnetic Enzyme and Gold Nanorods for Visual Detection of Fish Freshness. Biosensors. 2022; 12(2):135. https://doi.org/10.3390/bios12020135
Chicago/Turabian StyleXu, Xia, Xiaotian Wu, Shunqian Zhuang, Yucong Zhang, Yuting Ding, and Xuxia Zhou. 2022. "Colorimetric Biosensor Based on Magnetic Enzyme and Gold Nanorods for Visual Detection of Fish Freshness" Biosensors 12, no. 2: 135. https://doi.org/10.3390/bios12020135
APA StyleXu, X., Wu, X., Zhuang, S., Zhang, Y., Ding, Y., & Zhou, X. (2022). Colorimetric Biosensor Based on Magnetic Enzyme and Gold Nanorods for Visual Detection of Fish Freshness. Biosensors, 12(2), 135. https://doi.org/10.3390/bios12020135