High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of a High-Aspect-Ratio (HAR) Microfluidic Channel with a Parallelogram Cross-Section
2.2. Fabrication Process
2.3. Droplet Generation and Analysis
3. Results and Discussion
3.1. High-Aspect-Ratio Microfluidic Channel with a Parallelogram Cross-Section
3.2. Characterization of Droplet Generation with Different Channel Geometries
3.3. Effect of the Carrier Oil on Droplet Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sohrabi, S.; Kassir, N.; Moraveji, M.K. Droplet microfluidics: Fundamentals and its advanced applications. RSC Adv. 2020, 10, 27560–27574. [Google Scholar] [CrossRef]
- Liu, Z.M.; Yang, Y.; Du, Y.; Pang, Y. Advances in droplet-based microfluidic technology and its applications. Chin. J. Anal. Chem. 2017, 45, 282–296. [Google Scholar] [CrossRef]
- Chou, W.L.; Lee, P.Y.; Yang, C.L.; Huang, W.Y.; Lin, Y.S. Recent advances in applications of droplet microfluidics. Micromachines 2015, 6, 1249–1271. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Hsu, S.C.; Han, S.I.; Thapa, H.R.; Guzman, A.R.; Browne, D.R.; Tatli, M.; Devarenne, T.P.; Stern, D.B.; Han, A. High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library. Plant Direct 2017, 1, e00011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.S.; Waqued, S.C.; Nodurft, D.T.; Devarenne, T.P.; Yakovlev, V.V.; Han, A. Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics. Analyst 2017, 142, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Nakajima, M.; Ichikawa, S.; Nakamura, N.; Shiina, T. A comparative study of microbubble generation by mechanical agitation and sonication. Innov. Food Sci. Emerg. Technol. 2008, 9, 489–494. [Google Scholar] [CrossRef]
- Joscelyne, S.M.; Trägårdh, G. Membrane emulsification—A literature review. J. Membr. Sci. 2000, 169, 107–117. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Passive and active droplet generation with microfluidics: A review. Lab Chip. 2017, 17, 34–75. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y. Droplet formation in a T-shaped microfluidic junction. J. Appl. Phys. 2009, 106, 034906. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Lin, F.; Kim, H.S.; Park, J. The effect of oil viscosity on droplet generation rate and droplet size in a T-junction microfluidic droplet generator. Micromachines 2019, 10, 808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yobas, L.; Martens, S.; Ong, W.L.; Ranganathan, N. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 2006, 6, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.C.; Morimoto, Y.; Sawayama, J.; Miura, S.; Takeuchi, S. Centrifuge-based step emulsification device for simple and fast generation of monodisperse picoliter droplets. Sens. Actuators B Chem. 2019, 301, 127164. [Google Scholar] [CrossRef]
- Shi, Z.; Lai, X.; Sun, C.; Zhang, X.; Zhang, L.; Pu, Z.; Wang, R.; Yu, H.; Li, D. Step emulsification in microfluidic droplet generation: Mechanisms and structures. Chem. Commun. 2020, 56, 9056–9066. [Google Scholar] [CrossRef] [PubMed]
- Dangla, R.; Kayi, S.C.; Baroud, C.N. Droplet microfluidics driven by gradients of confinement. Proc. Natl. Acad. Sci. USA 2013, 110, 853–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Yuan, H.; Song, R.; Yu, M.; Chung, H.Y.; Hou, Y.; Shang, Y.; Zhou, H.; Yao, S. High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR. Biomicrofluidics 2018, 12, 014103. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.Y.; Cui, B.; Song, R.; Liu, X.; Xu, X.; Yao, S. Scalable production of monodisperse functional microspheres by multilayer parallelization of high aspect ratio microfluidic channels. Micromachines 2019, 10, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.Y.; Lee, D.K.; Cho, Y.H. Fabrication of microchannel with parallelogram cross-section using Si anisotropic wet etching and self-alignment. J. Korean Soc. Precis. Eng. 2019, 36, 287–291. [Google Scholar] [CrossRef]
- Lee, D.K.; Kwon, J.Y.; Cho, Y.H. Fabrication of microfluidic channels with various cross-sectional shapes using anisotropic etching of Si and self-alignment. Appl. Phys. A 2019, 125, 291. [Google Scholar] [CrossRef]
Sample Flow Rate (µL/h) | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 5 | 10 | 30 | 50 | 100 | 200 | ||
Channel geometry | P–W13.5–H29.5 (parallelogram, AR < 3.5, Dh = 16.7 μm) | 46.2 ± 1.4 | 66.3 ± 2.3 | 72.0 ± 2.9 | 118.5 ± 5.6 | 146.3 ± 24.7 | |||
P–W13.5–H51.0 (parallelogram, AR > 3.5, Dh = 27.7 μm) | 45.3 ± 0.7 | 45.3 ± 0.7 | 45.6 ± 1.3 | 46.3 ± 1.0 | 46.9 ± 0.9 | 46.8 ± 0.9 | 46.9 ± 2.0 | 151.9 ± 60.9 | |
R–W13.5–H51.0 (rectangle, AR > 3.5, Dh = 21.3 μm) | 75.8 ± 1.6 | 77.8 ± 1.6 | 81.2 ± 1.5 | 90.0 ± 4.6 | 90.3 ± 3.2 | 91.4 ± 2.1 | 111.7 ± 5.2 | 149.2 ± 10.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Lee, J.; Park, J.; Kim, J.; Kim, H.S.; Cho, Y. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation. Biosensors 2022, 12, 118. https://doi.org/10.3390/bios12020118
Ji H, Lee J, Park J, Kim J, Kim HS, Cho Y. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation. Biosensors. 2022; 12(2):118. https://doi.org/10.3390/bios12020118
Chicago/Turabian StyleJi, Hyeonyeong, Jaehun Lee, Jaewon Park, Jungwoo Kim, Hyun Soo Kim, and Younghak Cho. 2022. "High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation" Biosensors 12, no. 2: 118. https://doi.org/10.3390/bios12020118
APA StyleJi, H., Lee, J., Park, J., Kim, J., Kim, H. S., & Cho, Y. (2022). High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation. Biosensors, 12(2), 118. https://doi.org/10.3390/bios12020118