Ion Interference Therapy of Tumors Based on Inorganic Nanoparticles
Abstract
:1. Introduction
2. Ion Interference Therapy
2.1. Protons in Tumor Cells
2.2. Sodium and Potassium Ions in Tumor Cells
2.3. Calcicoptosis of Tumor Cells
2.4. Intracellular Chloridion
2.5. Manganese, Copper, and Cobalt That Activate Biocatalysis
3. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef]
- Claessens, A.K.M.; Ibragimova, K.I.E.; Geurts, S.M.E.; Bos, M.; Erdkamp, F.L.G.; Tjan-Heijnen, V.C.G. The role of chemotherapy in treatment of advanced breast cancer: An overview for clinical practice. Crit. Rev. Oncol. Hematol. 2020, 153, 102988. [Google Scholar] [CrossRef]
- Lee, J.C.; Lamanna, N. Is there a role for chemotherapy in the era of targeted therapies? Curr. Hematol. Malig. Rep. 2020, 15, 72–82. [Google Scholar] [CrossRef]
- Pan, T.; Fu, W.; Xin, H.; Geng, S.; Li, Z.; Cui, H.; Zhang, Y.; Chu, P.K.; Zhou, W.; Yu, X.F. Calcium phosphate mineralized black phosphorous with enhanced functionality and anticancer bioactivity. Adv. Funct. Mater. 2020, 30, 2003069. [Google Scholar] [CrossRef]
- Chu, X.; Jiang, X.; Liu, Y.; Zhai, S.; Jiang, Y.; Chen, Y.; Wu, J.; Wang, Y.; Wu, Y.; Tao, X.; et al. Nitric oxide modulating calcium store for Ca 2+ -initiated cancer therapy. Adv. Funct. Mater. 2021, 31, 2008507. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Bu, W. Bioactive nanomaterials for ion-interference therapy. View 2020, 1, e18. [Google Scholar] [CrossRef]
- Wang, C.; Yu, F.; Liu, X.; Chen, S.; Wu, R.; Zhao, R.; Hu, F.; Yuan, H. Cancer-specific therapy by artificial modulation of intracellular calcium concentration. Adv. Healthc. Mater. 2019, 8, e1900501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Song, R.; Liu, Y.; Yi, Z.; Meng, X.; Zhang, J.; Tang, Z.; Yao, Z.; Liu, Y.; Liu, X.; et al. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem 2019, 5, 2171–2182. [Google Scholar] [CrossRef]
- Zhao, Y.-Z.; Lin, M.-T.; Lan, Q.-H.; Zhai, Y.-Y.; Xu, H.-L.; Xiao, J.; Kou, L.; Yao, Q. Silk fibroin-modified disulfiram/zinc oxide nanocomposites for pH triggered release of Zn2+ and synergistic antitumor efficacy. Mol. Pharm. 2020, 17, 3857–3869. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, S.; Song, H.; Yu, T.; Zheng, X.; Chu, Q. CaCO3 nanoparticles incorporated with KAE to enable amplified calcium overload cancer therapy. Biomaterials 2021, 277, 121080. [Google Scholar] [CrossRef]
- Jiang, W.; Yin, L.; Chen, H.; Paschall, A.V.; Zhang, L.; Fu, W.; Zhang, W.; Todd, T.; Yu, K.S.; Zhou, S.; et al. NaCl nanoparticles as a cancer therapeutic. Adv. Mater. 2019, 31, e1904058. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Geng, Z.; Shao, W.; Liu, E.; Zhang, J.; Tang, J.; Wang, P.; Sun, X.; Xiao, L.; Xu, W.; et al. Cancer-derived sialylated IgG promotes tumor immune escape by binding to Siglecs on effector T cells. Cell. Mol. Immunol. 2020, 17, 1148–1162. [Google Scholar] [CrossRef]
- An, J.; Zhang, K.; Wang, B.; Wu, S.; Wang, Y.; Zhang, H.; Zhang, Z.; Liu, J.; Shi, J. Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano 2020, 14, 7639–7650. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.G.; Patel, N.J.; Singh, H. Intracellular chloride channels: Novel biomarkers in diseases. Front. Physiol. 2020, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Song, R.; Li, T.; Ye, J.; Sun, F.; Hou, B.; Saeed, M.; Gao, J.; Wang, Y.; Zhu, Q.; Xu, Z.; et al. Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv. Mater. 2021, 33, e2101155. [Google Scholar] [CrossRef]
- Zuo, S.; Yu, J.; Pan, H.; Lu, L. Novel insights on targeting ferroptosis in cancer therapy. Biomark. Res. 2020, 8, 50. [Google Scholar] [CrossRef]
- Zhang, Z.; Yue, P.; Lu, T.; Wang, Y.; Wei, Y.; Wei, X. Role of lysosomes in physiological activities, diseases, and therapy. J. Hematol. Oncol. 2021, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Machado, E.R.; Annunziata, I.; van de Vlekkert, D.; Grosveld, G.C.; D’Azzo, A. Lysosomes and cancer progression: A malignant liaison. Front. Cell Dev. Biol. 2021, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, S.; Yu, A.; Wang, Y. Nano CaCO3 “Lysosomal bombs” enhance chemotherapy drug efficacy via rebalancing tumor intracellular pH. ACS Biomater. Sci. Eng. 2019, 5, 3398–3408. [Google Scholar] [CrossRef]
- Liu, C.-G.; Han, Y.-H.; Kankala, R.K.; Wang, S.-B.; Chen, A.-Z. Subcellular performance of nanoparticles in cancer therapy. Int. J. Nanomed. 2020, 15, 675–704. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Konstantopoulos, K.; Zhao, R.; Mori, Y.; Sun, S.X. The importance of water and hydraulic pressure in cell dynamics. J. Cell Sci. 2020, 133, jcs240341. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Song, M.; Mohamad, O.; Yu, S.P. Inhibition of Na+/K+-ATPase induces hybrid cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC Cancer 2014, 14, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Grigorov, E.; Kirov, B.; Marinov, M.B.; Galabov, V. Review of microfluidic methods for cellular lysis. Micromachines 2021, 12, 498. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, S.H.; Noh, I.; Oh, E.; Ryu, H.; Ha, J.; Jeong, S.; Yoo, J.; Jeon, T.J.; Yun, C.O.; et al. A helical polypeptide-based potassium ionophore induces endoplasmic reticulum stress-mediated apoptosis by perturbing ion homeostasis. Adv. Sci. 2019, 6, 1801995. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Wang, G.; Shi, W.; Ma, X.; Yang, X.; Yang, H.; Guo, Y.; Yang, L. In situ generation of biocompatible amorphous calcium carbonate onto cell membrane to block membrane transport protein—A new strategy for cancer therapy via mimicking abnormal mineralization. J. Colloid Interface Sci. 2019, 541, 339–347. [Google Scholar] [CrossRef]
- Liu, Y.; Zhen, W.; Wang, Y.; Song, S.; Zhang, H. Na2S2O8 nanoparticles trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 2020, 142, 21751–21757. [Google Scholar] [CrossRef]
- Ding, B.; Sheng, J.; Zheng, P.; Li, C.; Li, D.; Cheng, Z.; Ma, P.; Lin, J. Biodegradable upconversion nanoparticles induce pyroptosis for cancer immunotherapy. Nano Lett. 2021, 21, 8281–8289. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qin, X.; Liang, J.; Ge, P. Induction of pyroptosis: A promising strategy for cancer treatment. Front. Oncol. 2021, 11, 635774. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, J.; Zhang, W.; Foda, M.F.; Zhang, Y.; Ge, L.; Han, H. Intracellular Ca2+ cascade guided by NIR-II photothermal switch for specific tumor therapy. iScience 2020, 23, 101049. [Google Scholar] [CrossRef]
- Duchen, M.R. Mitochondria and calcium: From cell signalling to cell death. J. Physiol. 2000, 529, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Glitsch, M. Mechano- and pH-sensing convergence on Ca(2+)-mobilising proteins—A recipe for cancer? Cell Calcium 2019, 80, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Delierneux, C.; Kouba, S.; Shanmughapriya, S.; Potier-Cartereau, M.; Trebak, M.; Hempel, N. Mitochondrial calcium regulation of redox signaling in cancer. Cells 2020, 9, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhu, C.; Xu, L.; Wang, D.; Liu, W.; Zhang, K.; Zhang, Z.; Shi, J. Nanoenabled intracellular calcium bursting for safe and efficient reversal of drug resistance in tumor cells. Nano Lett. 2020, 20, 8102–8111. [Google Scholar] [CrossRef]
- Guan, Q.; Zhou, L.L.; Lv, F.H.; Li, W.Y.; Li, Y.A.; Dong, Y.B. A glycosylated covalent organic framework equipped with BODIPY and CaCO 3 for synergistic tumor therapy. Angew. Chem. Int. Ed. 2020, 59, 18042–18047. [Google Scholar] [CrossRef]
- Chang, M.; Hou, Z.; Jin, D.; Zhou, J.; Wang, M.; Wang, M.; Shu, M.; Ding, B.; Li, C.; Lin, J. Colorectal tumor microenvironment-activated bio-decomposable and metabolizable Cu2O@CaCO3 nanocomposites for synergistic oncotherapy. Adv. Mater. 2020, 32, e2004647. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Ding, B.; Jiang, Z.; Xu, W.; Li, G.; Ding, J.; Chen, X. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett. 2021, 21, 2088–2093. [Google Scholar] [CrossRef]
- Yu, X.-H.; Hong, X.-Q.; Mao, Q.-C.; Chen, W.-H. Biological effects and activity optimization of small-molecule, drug-like synthetic anion transporters. Eur. J. Med. Chem. 2019, 184, 111782. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.S.; Fuwad, A.; Ryu, H.; Selvaraj, B.; Song, J.-W.; Kim, D.W.; Kim, S.M.; Lee, J.W.; Jeon, T.-J.; Cho, D.-G. Synthetic anion transporters as endoplasmic reticulum (ER) stress inducers. Org. Lett. 2019, 21, 7828–7832. [Google Scholar] [CrossRef]
- Lee, D.U.; Park, J.-Y.; Kwon, S.; Park, J.Y.; Kim, Y.H.; Khang, D.; Hong, J.H. Apoptotic lysosomal proton sponge effect in tumor tissue by cationic gold nanorods. Nanoscale 2019, 11, 19980–19993. [Google Scholar] [CrossRef]
- Jiang, Y.; Tan, Y.; Xiao, K.; Li, X.; Shao, K.; Song, J.; Kong, X.; Shi, J. pH-regulating nanoplatform for the “double channel chase” of tumor cells by the synergistic cascade between chlorine treatment and methionine-depletion starvation therapy. ACS Appl. Mater. Interfaces 2021, 13, 54690–54705. [Google Scholar] [CrossRef]
- Sutrisno, L.; Hu, Y.; Hou, Y.; Cai, K.; Li, M.; Luo, Z. Progress of iron-based nanozymes for antitumor therapy. Front. Chem. 2020, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.-H.; Hu, Y.-R.; Qi, C.; He, T.; Jiang, S.; Jiang, C.; He, J.; Qu, J.; Lin, J.; Huang, P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 2019, 13, 13985–13994. [Google Scholar] [CrossRef]
- Yao, H.; Guo, X.; Zhou, H.; Ren, J.; Li, Y.; Duan, S.; Gong, X.; Du, B. Mild acid-responsive “nanoenzyme capsule” remodeling of the tumor microenvironment to increase tumor penetration. ACS Appl. Mater. Interfaces 2020, 12, 20214–20227. [Google Scholar] [CrossRef] [PubMed]
- Cramer, F.; Kampe, W. Inclusion compounds. XVII.1 catalysis of decarboxylation by cyclodextrins. A model reaction for the mechanism of enzymes. J. Am. Chem. Soc. 1965, 87, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Ploetz, E.; Zimpel, A.; Cauda, V.; Bauer, D.; Lamb, D.C.; Haisch, C.; Zahler, S.; Vollmar, A.M.; Wuttke, S.; Engelke, H. Metal–organic framework nanoparticles induce pyroptosis in cells controlled by the extracellular pH. Adv. Mater. 2020, 32, e1907267. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Wan, Y.; Qi, C.; He, J.; Li, C.; Yang, C.; Xu, H.; Lin, J.; Huang, P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv. Mater. 2021, 33, e2006892. [Google Scholar] [CrossRef]
- Kong, H.; Chu, Q.; Fang, C.; Cao, G.; Han, G.; Li, X. Cu–ferrocene-functionalized CaO2 nanoparticles to enable tumor-specific synergistic therapy with GSH depletion and calcium overload. Adv. Sci. 2021, 8, e2100241. [Google Scholar] [CrossRef]
- Gao, S.; Jin, Y.; Ge, K.; Li, Z.; Liu, H.; Dai, X.; Zhang, Y.; Chen, S.; Liang, X.; Zhang, J. Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Adv. Sci. 2019, 6, 1902137. [Google Scholar] [CrossRef] [Green Version]
Inorganic Nanoparticles | Interfering Ions | Mechanism | Reference |
---|---|---|---|
CaCO3 NPs | H+ | Intracellular pH | [20] |
NaCl NPs | Na+ | Osmotic pressure | [11] |
Na2S2O8 NPs | Na+ | Osmotic pressure | [27] |
K3ZrF7:Yb/Er | K+, [ZrF7]3− | Osmotic pressure | [28] |
SH-CaO2 NPs | Ca2+ | Calcicoptosis | [8] |
CaP NPs | Ca2+ | Calcicoptosis | [34] |
Amorphous calcium carbonate (ACC NPs) | Ca2+ | Calcicoptosis | [7] |
CaCO3@COF-BODIPY-2I@GAG | Ca2+ | Calcicoptosis | [35] |
CaBPs | Ca2+ | Calcicoptosis | [4] |
Cu2O@CaCO3 | Cu+, Ca2+ | Biocatalysis, calcicoptosis | [36] |
CaCO3@PEG | Ca2+ | Calcicoptosis | [37] |
OVA@CaCO3 | Ca2+ | Calcicoptosis | [14] |
ClO2 | Cl− | Organelle stress | [41] |
CaO2/Cu–ferrocene | Ca2+, Cu+ | Calcicoptosis, biocatalysis | [48] |
Cu-CaP NPs | Cu2+ | Biocatalysis | [47] |
Mn-CaP NPs | Mn2+ | Biocatalysis | [43] |
CaO2@ZIF-67 | Co2+ | Biocatalysis | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Y.; Sun, P.; Gao, Y.; Zhang, J.; Wang, L. Ion Interference Therapy of Tumors Based on Inorganic Nanoparticles. Biosensors 2022, 12, 100. https://doi.org/10.3390/bios12020100
Chi Y, Sun P, Gao Y, Zhang J, Wang L. Ion Interference Therapy of Tumors Based on Inorganic Nanoparticles. Biosensors. 2022; 12(2):100. https://doi.org/10.3390/bios12020100
Chicago/Turabian StyleChi, Yongjie, Peng Sun, Yuan Gao, Jing Zhang, and Lianyan Wang. 2022. "Ion Interference Therapy of Tumors Based on Inorganic Nanoparticles" Biosensors 12, no. 2: 100. https://doi.org/10.3390/bios12020100
APA StyleChi, Y., Sun, P., Gao, Y., Zhang, J., & Wang, L. (2022). Ion Interference Therapy of Tumors Based on Inorganic Nanoparticles. Biosensors, 12(2), 100. https://doi.org/10.3390/bios12020100