Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers
Abstract
:1. Introduction
2. Signal Amplification Strategies Using Plasmonic Nanomaterials on Nanobiosensors
3. Sensitive Plasmonic Nanobiosensors for Viral DNA Detection
3.1. FRET
3.2. MEF
Analytical Method | Feature | Target | Required Time | Detection Limit | Ref |
---|---|---|---|---|---|
FRET | One-donor-four-acceptors FRET probe for the HCV DNA detection | HCV DNA | 40 min | 24.51 nM | [48] |
FRET | Lipid oligonucleotide FRET probes incorporated into micellar scaffolds | cDNA | 30 min | 0.625 nM | [49] |
FRET | FAM-ssDNA–CTAB–AuNRs ternary complex | HBV DNA | 50 min | 15 pM | [50] |
FRET | NaYF4:Yb,Er nanoparticles with carboxylic acid groups and report DNA-modified AuNP | HIV DNA | 20 min | 3 nM | [51] |
FRET | DNA-Conjugated CdTe Quantum Dots Nanoprobe | SARS-CoV-2 genome | 30 min | 2.52 nM | [52,53] |
MEF | Anti-neuraminidase (NA) antibody (anti-NA Ab) to thiolated AuNPs and the anti-hemagglutinin (HA) antibody (anti-HA Ab) to alloyed quaternary L-cysteine-capped CdSeTeS QDs | Influenza virus | 3 min | 0.03 pg/mL | [8] |
MEF | Fluorescent CdZnSeS/ZnSeS QDs and AuNPs with target-binding peptide chain | Influenza virus | 3 min | 17.02 pg/mL | [54] |
MEF | DNA-functionalized AuNP pair for CRISPR-Cas12a-based detection | cfDNA (BRCA-1) | 30 min | 100 fM | [5] |
MEF | Isothermal amplification on plasmonic enhanced digitizing biosensor | HBV and HCV DNA | 10 min | 4 ng/mL | [55] |
MEF | AgNPs functioned with recognition probes (Cy3-probe) and hybrid probes | HBV DNA | 15 min | 50 fM | [56] |
3.3. Raman
3.4. Localized SPR (LSPR) and Electrochemical Analysis
Analytical Method | Feature | Target | Required Time | Detection Limit | Ref |
---|---|---|---|---|---|
Raman | Raman spectroscopy combined with the airPLS-PCA-PSOSVM model | HBV DNA | - | - | [58] |
SERS | Raman-sensitive system composed of ssDNA-immobilized Raman probe-functionalized Au nanoparticles (RAuNPs) on the graphene oxide (GO)/triangle Aunanoflower array. | HBV, HPV-16, HPV-18 DNA | 20 min | 1 aM | [59] |
SERS | AuNPs aggregation-based surface-enhanced Raman scattering (CRISPR/Cas-SERS) platform | HPV DNA | 40 min | 6.72 pM | [60] |
SERS | Au−Os−CO−Au Functionalized SERS-Active Substrate | Epstein-Barr Virus DNA | 30 min | 600 copies/mL | [61] |
SERS | Hierarchic-nanocube-assembly based SERS (H-Cube-SERS) bioassay to controllably amplify the electromagnetic field between gold nanocubes | HAV DNA | 30 min | 100 aM | [62] |
LSPR | Plasmonic CRISPR Cas12a-based assay using DNA-functionalized AuNP | Red-Blotch Viral DNA | 15 min | 200 pM | [67] |
LSPR | Plasmonic gold nanoparticles for ratiometric genosensing of Hepatitis C virus using citrate buffer and flash heating in enhancing the sensitivity | HCV DNA | 20 min | - | [68] |
4. Sensitive Plasmonic Nanobiosensors for Viral RNA Detection
4.1. Fluorescence Analysis
Analytical Method | Feature | Target | Required Time | Detection Limit | Ref |
---|---|---|---|---|---|
Magnetofluorescence | Magnetic probes and HRP-terminated reporters generating HRP-catalyzed fluorescence readout | SARS-CoV-2 RNA | 30 min | 1000 copies/μL | [72] |
Real-time plasmonic (fluorescent) RT-PCR | Multiplexed real-time plasmonic RT-PCR, with heating driven by IR LEDs and AuNRs | SARS-CoV-2 RNA | 30 min | 2.2–4.4 copies/μL | [73] |
Plasmonic thermocycling and fluorescence detection | Control the temperature by the photothermal conversion of magneto-plasmonic nanoparticles | SARS-CoV-2 RNA | 17 min | 3.2 copies/μL | [74] |
FRET | One-donor-two-acceptor system consisting of QD as a donor and BHQ-2, and AuNP as acceptors | RSV gRNA | 40 min | - | [75] |
MEF | Ai-Ni magnetoplasmonic nanorod with molecular beacon-fluorescent probe | miR-124 | 30 min | 1 pM | [76] |
MEF | 3D Au plasmonic nanoarray composed of Au nanopillar and spherical AuNPs with RPA | SARS-CoV-2 RNA | 40 min | 10 copies/rxn | [77] |
MEF | TAR RNA-immobilized surface of the Fe3O4@Au@Ag@SiO2 nanoparticles (NPs) | HIV-Ι TAR RNA-binding ligand | 5 min | 36 nM (mitoxantrone) | [78] |
MEF | DNA-templated silver nanoclusters (DNA-AgNCs) with a GCC-loop-structure | Norovirus RNA | 30 min | 18 nM | [79] |
4.2. Raman
4.3. LSPR-Based Analysis
Analytical Method | Feature | Target | Required Time | Detection Limit | Ref |
---|---|---|---|---|---|
Raman | Silver nanoparticles (Ag NPs) as Raman substrates with multivariate data analysis technique, PCA and PLSR | HCV RNA | - | 2.55 log IU/mL | [80] |
SERS | PCR-integrated detection system, silver nanoparticles (Ag NPs) as SERS substrates with multivariate data analysis technique, PCA and PLS-DA | HBV and HCV RNA | - | - | [81] |
SERS | SERS-active silver nanorods (AgNRs) sensing chips and a specially designed smart unlocking-mediated target recycling signal amplification | SARS-CoV-2 RNA | 50 min | 51.38 copies/mL | [82] |
SERS | Gold nanostars functionalized with a Cy3-tagged beacon DNA for in vitro sensing | Hemagglutinin (HA) segment | - | - | [83] |
LSPR | Two-dimensional gold nanoislands (AuNIs) functionalized with complementary DNA receptors | SARS-CoV-2 RNA | 800 s | 0.22 pM | [84] |
LSPR | Gold and silver (Au–Ag) alloy nanoshells integrating LAMP method | SARS-CoV-2 RNA | 75 min | 10 copies/rxn | [85] |
LSPR | Plasmonic AuNPs capped with suitably designed thiol-modified antisense oligonucleotides (ASOs) for colorimetric sensor | SARS-CoV-2 RNA | 10 min | 0.18 ng/μL | [86] |
LSPR | Colorimetric/SERS/fluorescence triple-mode biosensor based on 17 nm-sized AuNPs | SARS-CoV-2 RNA | 40 min | 160 fM | [87] |
5. Outlook and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dance, A. The incredible diversity of viruses. Nature 2021, 595, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Dronina, J.; Samukaite-Bubniene, U.; Ramanavicius, A. Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools. J. Nanobiotechnology 2022, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Basiri, A.; Heidari, A.; Nadi, M.F.; Fallahy, M.T.P.; Nezamabadi, S.S.; Sedighi, M.; Saghazadeh, A.; Rezaei, N. Microfluidic devices for detection of RNA viruses. Rev. Med. Virol. 2021, 31, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ravi, N.; Cortade, D.L.; Ng, E.; Wang, S.X. Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens. Bioelectron. 2020, 165, 112454. [Google Scholar] [CrossRef]
- Choi, J.-H.; Lim, J.; Shin, M.; Paek, S.-H.; Choi, J.-W. CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett. 2020, 21, 693–699. [Google Scholar] [CrossRef]
- Fiorani, A.; Merino, J.P.; Zanut, A.; Criado, A.; Valenti, G.; Prato, M.; Paolucci, F. Advanced carbon nanomaterials for electrochemiluminescent biosensor applications. Curr. Opin. Electrochem. 2019, 16, 66–74. [Google Scholar] [CrossRef]
- Xiong, L.-H.; Cui, R.; Zhang, Z.-L.; Yu, X.; Xie, Z.; Shi, Y.-B.; Pang, D.-W. Uniform fluorescent nanobioprobes for pathogen detection. ACS Nano 2014, 8, 5116–5124. [Google Scholar] [CrossRef] [Green Version]
- Takemura, K.; Adegoke, O.; Takahashi, N.; Kato, T.; Li, T.-C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E.Y. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens. Bioelectron. 2017, 89, 998–1005. [Google Scholar] [CrossRef]
- Luo, S.-C.; Sivashanmugan, K.; Liao, J.-D.; Yao, C.-K.; Peng, H.-C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens. Bioelectron. 2014, 61, 232–240. [Google Scholar] [CrossRef]
- Zengin, A.; Tamer, U.; Caykara, T. SERS detection of hepatitis B virus DNA in a temperature-responsive sandwich-hybridization assay. J. Raman Spectrosc. 2017, 48, 668–672. [Google Scholar] [CrossRef]
- Le, T.T.; Chang, P.; Benton, D.J.; McCauley, J.W.; Iqbal, M.; Cass, A.E. Dual recognition element lateral flow assay toward multiplex strain specific influenza virus detection. Anal. Chem. 2017, 89, 6781–6786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019, 9, 8778–8881. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Miao, W.-S.; Gao, H.-J.; Hui, D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020, 9, 259–273. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, Y.; Ma, B.; Yang, X.; Li, Y.; Li, P.; Zhou, Y.; Shuai, M. Fabrication of highly dispersed Pd nanoparticles supported on reduced graphene oxide for solid phase catalytic hydrogenation of 1, 4-bis (phenylethynyl) benzene. Int. J. Hydrogen Energy 2020, 45, 8385–8395. [Google Scholar] [CrossRef]
- Makvandi, P.; Wang, C.Y.; Zare, E.N.; Borzacchiello, A.; Niu, L.N.; Tay, F.R. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 2020, 30, 1910021. [Google Scholar] [CrossRef]
- Maddali, H.; Miles, C.E.; Kohn, J.; O’Carroll, D.M. Optical biosensors for virus detection: Prospects for SARS-CoV-2/COVID-19. ChemBioChem 2021, 22, 1176–1189. [Google Scholar] [CrossRef]
- Kim, K.-H.; Husakou, A.; Herrmann, J. Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes. Opt. Express 2010, 18, 7488–7496. [Google Scholar] [CrossRef]
- Kolwas, K.; Derkachova, A.; Shopa, M. Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1490–1501. [Google Scholar] [CrossRef]
- Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J.; Smith, D.R.; Schultz, S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003, 3, 1087–1090. [Google Scholar] [CrossRef]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, H.Y.; Choi, H.K.; Lee, J.Y.; Choi, J.W. Application of Gold Nanoparticle to Plasmonic Biosensors. Int. J. Mol. Sci. 2018, 19, 2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belushkin, A.; Yesilkoy, F.; Altug, H. Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray. ACS Nano 2018, 12, 4453–4461. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosens.-Basel 2019, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Ha, T.; Shin, M.; Lee, S.N.; Choi, J.W. Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines 2021, 9, 928. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, J.H.; Son, J.; Choi, J.W. Noble Metal-Assisted Surface Plasmon Resonance Immunosensors. Sensors 2020, 20, 1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Liu, J.; Li, X.; Lin, C.; Wang, X.; Liu, J.; Ling, L.; Wang, J.J.S.; Chemical, A.B. CRISPR/Cas12a-based biosensor for colorimetric detection of serum prostate-specific antigen by taking nonenzymatic and isothermal amplification. Sens. Actuators B Chem. 2022, 354, 131228. [Google Scholar] [CrossRef]
- Minopoli, A.; Della Ventura, B.; Lenyk, B.; Gentile, F.; Tanner, J.A.; Offenhausser, A.; Mayer, D.; Velotta, R. Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nat. Commun. 2020, 11, 6134. [Google Scholar] [CrossRef]
- Gong, S.; Li, J.; Pan, W.; Li, N.; Tang, B. Duplex-Specific Nuclease-Assisted CRISPR-Cas12a Strategy for MicroRNA Detection Using a Personal Glucose Meter. Anal. Chem. 2021, 93, 10719–10726. [Google Scholar] [CrossRef]
- Agrawal, A.; Johns, R.W.; Milliron, D.J. Control of Localized Surface Plasmon Resonances in Metal Oxide Nanocrystals. Annu. Rev. Mater. Res. 2017, 47, 1–31. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Marago, O.M.; Iati, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter. 2017, 29, 203002. [Google Scholar] [CrossRef]
- Liang, A.H.; Liu, Q.Y.; Wen, G.Q.; Jiang, Z.L. The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. Trac.-Trend. Anal. Chem. 2012, 37, 32–47. [Google Scholar] [CrossRef]
- Soni, A.K.; Joshi, R.; Singh, B.P.; Kumar, N.N.; Ningthoujam, R.S. Near-Infrared- and Magnetic-Field-Responsive NaYF4:Er3+/Yb3+ @SiO2@AuNP@Fe3O4 Nanocomposites for Hyperthermia Applications Induced by Fluorescence Resonance Energy Transfer and Surface Plasmon Absorption. Acs. Appl. Nano Mater. 2019, 2, 7350–7361. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Ezzati Nazhad Dolatabadi, J.; Torbati, M.; Pirpour Tazehkand, A.; Homayouni-Rad, A.; de la Guardia, M. Nanomaterials and new biorecognition molecules based surface plasmon resonance biosensors for mycotoxin detection. Biosens. Bioelectron. 2019, 143, 111603. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Kook, Y.M.; Lee, K.; Koh, W.G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Sultana, J.; Ahmmed Aoni, R.; Habib, M.S.; Dinovitser, A.; Ng, B.W.; Abbott, D. Localized surface plasmon resonance biosensor: An improved technique for SERS response intensification. Opt. Lett. 2019, 44, 1134–1137. [Google Scholar] [CrossRef]
- Lee, K.L.; Hung, C.Y.; Pan, M.Y.; Wu, T.Y.; Yang, S.Y.; Wei, P.K.J.A.M.I. Dual Sensing Arrays for Surface Plasmon Resonance (SPR) and Surface-Enhanced Raman Scattering (SERS) Based on Nanowire/Nanorod Hybrid Nanostructures. Adv. Mater. Interfaces 2018, 5, 1801064. [Google Scholar] [CrossRef]
- Wei, W.; Yao, Y.; Zhao, Q.; Xu, Z.; Wang, Q.; Zhang, Z.; Gao, Y.J.N. Oxygen defect-induced localized surface plasmon resonance at the WO3−x quantum dot/silver nanowire interface: SERS and photocatalysis. Nanoscale 2019, 11, 5535–5547. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Geng, Y.; Xu, S.; Xu, W.; Yu, J.; Deng, W.; Yu, B.; Wang, L. Long-Range Surface Plasmon Resonance Configuration for Enhancing SERS with an Adjustable Refractive Index Sample Buffer to Maintain the Symmetry Condition. ACS Omega 2020, 5, 32951–32958. [Google Scholar] [CrossRef]
- Bachmann, M.F.; Zinkernagel, R.M. The influence of virus structure on antibody responses and virus serotype formation. Immunol. Today 1996, 17, 553–558. [Google Scholar] [CrossRef]
- Speir, J.A.; Johnson, J.E. Nucleic acid packaging in viruses. Curr. Opin. Struct. Biol. 2012, 22, 65–71. [Google Scholar] [CrossRef]
- Silva, S.; Pardee, K.; Pena, L. Loop-Mediated Isothermal Amplification (LAMP) for the Diagnosis of Zika Virus: A Review. Viruses 2019, 12, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watzinger, F.; Ebner, K.; Lion, T. Detection and monitoring of virus infections by real-time PCR. Mol. Asp. Med. 2006, 27, 254–298. [Google Scholar] [CrossRef] [PubMed]
- Faye, O.; Faye, O.; Dupressoir, A.; Weidmann, M.; Ndiaye, M.; Alpha Sall, A. One-step RT-PCR for detection of Zika virus. J. Clin. Virol. 2008, 43, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Calvert, A.E.; Biggerstaff, B.J.; Tanner, N.A.; Lauterbach, M.; Lanciotti, R.S. Rapid colorimetric detection of Zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP). PLoS ONE 2017, 12, e0185340. [Google Scholar] [CrossRef] [Green Version]
- Kricka, L.J.; Fortina, P. Analytical Ancestry: “Firsts” in Fluorescent Labeling of Nucleosides, Nucleotides, and Nucleic Acids. Clin. Chem. 2009, 55, 670–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.Y.; Xing, B.L.; Song, J.Z.; Zhang, F.; Nie, C.Y.; Jiao, L.; Liu, L.B.; Lv, F.T.; Wang, S. Associated Analysis of DNA Methylation for Cancer Detection Using CCP-Based FRET Technique. Anal. Chem. 2014, 86, 346–350. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K. FRET Nanoflares for Intracellular mRNA Detection: Avoiding False Positive Signals and Minimizing Effects of System Fluctuations. J. Am. Chem. Soc. 2015, 137, 8340–8343. [Google Scholar] [CrossRef]
- Zeng, P.; Hou, P.; Jing, C.J.; Huang, C.Z. Highly sensitive detection of hepatitis C virus DNA by using a one-donor-four-acceptors FRET probe. Talanta 2018, 185, 118–122. [Google Scholar] [CrossRef]
- Vafaei, S.; Allabush, F.; Tabaei, S.R.; Male, L.; Dafforn, T.R.; Tucker, J.H.; Mendes, P.M.J.A.n. Förster Resonance Energy Transfer Nanoplatform Based on Recognition-Induced Fusion/Fission of DNA Mixed Micelles for Nucleic Acid Sensing. ACS Nano 2021, 15, 8517–8524. [Google Scholar] [CrossRef]
- Lu, X.; Dong, X.; Zhang, K.; Han, X.; Fang, X.; Zhang, Y. A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer. Analyst 2013, 138, 642–650. [Google Scholar] [CrossRef]
- Liu, Z.; Shang, C.; Ma, H.; You, M. An upconversion nanoparticle-based photostable FRET system for long-chain DNA sequence detection. Nanotechnology 2020, 31, 235501. [Google Scholar] [CrossRef] [PubMed]
- Bardajee, G.R.; Zamani, M.; Mahmoodian, H.; Elmizadeh, H.; Yari, H.; Jouyandeh, L.; Shirkavand, R.; Sharifi, M. Capability of novel fluorescence DNA-conjugated CdTe/ZnS quantum dots nanoprobe for COVID-19 sensing. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 269, 120702. [Google Scholar] [CrossRef] [PubMed]
- Bardajee, G.R.; Zamani, M.; Sharifi, M. Efficient and Versatile Application of Fluorescence DNA-Conjugated CdTe Quantum Dots Nanoprobe for Detection of a Specific Target DNA of SARS Cov-2 Virus. Langmuir 2021, 37, 10223–10232. [Google Scholar] [CrossRef]
- Nasrin, F.; Chowdhury, A.D.; Takemura, K.; Kozaki, I.; Honda, H.; Adegoke, O.; Park, E.Y. Fluorometric virus detection platform using quantum dots-gold nanocomposites optimizing the linker length variation. Anal. Chim. Acta 2020, 1109, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Chang, C.C.; Chuang, T.L.; Sung, K.B.; Lin, C.W. Rapid Detection of Virus Nucleic Acid via Isothermal Amplification on Plasmonic Enhanced Digitizing Biosensor. Biosensors 2022, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Li, H.; Xu, D. Enzyme-free fluorescence microarray for determination of hepatitis B virus DNA based on silver nanoparticle aggregates-assisted signal amplification. Anal. Chim. Acta 2019, 1077, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Lyon, L.A.; Keating, C.D.; Fox, A.P.; Baker, B.E.; He, L.; Nicewarner, S.R.; Mulvaney, S.P.; Natan, M.J. Raman spectroscopy. Anal. Chem. 1998, 70, 341R–361R. [Google Scholar] [CrossRef]
- Tong, D.; Chen, C.; Zhang, J.; Lv, G.; Zheng, X.; Zhang, Z.; Lv, X. Application of Raman spectroscopy in the detection of hepatitis B virus infection. Photodiagnosis Photodyn. Ther. 2019, 28, 248–252. [Google Scholar] [CrossRef]
- Choi, J.H.; Shin, M.; Yang, L.T.; Conley, B.; Yoon, J.; Lee, S.N.; Lee, K.B.; Choi, J.W. Clustered Regularly Interspaced Short Palindromic Repeats-Mediated Amplification-Free Detection of Viral DNAs Using Surface-Enhanced Raman Spectroscopy-Active Nanoarray. Acs Nano 2021, 15, 13475–13485. [Google Scholar] [CrossRef]
- Su, A.L.; Liu, Y.; Cao, X.M.; Xu, W.Q.; Liang, C.Y.; Xu, S.P. A universal CRISPR/Cas12a-mediated AuNPs aggregation-based surface-enhanced Raman scattering (CRISPR/Cas-SERS) platform for virus gene detection. Sens. Actuat. B-Chem. 2022, 369, 132295. [Google Scholar] [CrossRef]
- Lin, D.; Gong, T.; Hong, Z.Y.; Qiu, S.; Pan, J.; Tseng, C.Y.; Feng, S.; Chen, R.; Kong, K.V. Metal Carbonyls for the Biointerference-Free Ratiometric Surface-Enhanced Raman Spectroscopy-Based Assay for Cell-Free Circulating DNA of Epstein-Barr Virus in Blood. Anal. Chem. 2018, 90, 7139–7147. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Ko, S.M.; Lee, C.; Son, J.; Kim, J.; Kim, J.M.; Nam, J.M. Hierarchic Interfacial Nanocube Assembly for Sensitive, Selective, and Quantitative DNA Detection with Surface-Enhanced Raman Scattering. Anal. Chem. 2019, 91, 10467–10476. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Ho, W.K.H.; Zhang, Q.; Li, C.; Huang, Y.; Yan, J.; Yang, H.; Hao, J.; Wong, S.H.D.; Yang, M. Magnetic-Responsive Surface-Enhanced Raman Scattering Platform with Tunable Hot Spot for Ultrasensitive Virus Nucleic Acid Detection. ACS Appl. Mater. Interfaces. 2022, 14, 4714–4724. [Google Scholar] [CrossRef] [PubMed]
- Fuku, K.; Hayashi, R.; Takakura, S.; Kamegawa, T.; Mori, K.; Yamashita, H.J.A.C. The synthesis of size-and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew. Chem. 2013, 125, 7594–7598. [Google Scholar] [CrossRef]
- You, Y.; Lim, S.; Gunasekaran, S. Streptavidin-Coated Au Nanoparticles Coupled with Biotinylated Antibody-Based Bifunctional Linkers as Plasmon-Enhanced Immunobiosensors. Acs Appl. Nano Mater. 2020, 3, 1900–1909. [Google Scholar] [CrossRef]
- Chien, Y.H.; Su, C.H.; Hu, C.C.; Yeh, K.H.; Lin, W.C. Localized Surface Plasmon Resonance-Based Colorimetric Assay Featuring Thiol-Capped Au Nanoparticles Combined with a Mobile Application for On-Site Parathion Organophosphate Pesticide Detection. Langmuir 2022, 38, 838–848. [Google Scholar] [CrossRef]
- Li, Y.Y.; Mansour, H.; Wang, T.; Poojari, S.; Li, F. Naked-Eye Detection of Grapevine Red-Blotch Viral Infection Using a Plasmonic CRISPR Cas12a Assay. Anal. Chem. 2019, 91, 11510–11513. [Google Scholar] [CrossRef] [Green Version]
- Prakash, H.S.; Maroju, P.A.; Boppudi, N.S.S.; Balapure, A.; Ganesan, R.; Dutta, J.R. Influence of citrate buffer and flash heating in enhancing the sensitivity of ratiometric genosensing of Hepatitis C virus using plasmonic gold nanoparticles. Micro Nano Syst. Lett. 2021, 9, 8. [Google Scholar] [CrossRef]
- Shariati, M.; Ghorbani, M.; Sasanpour, P.; Karimizefreh, A. An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment. Anal. Chim. Acta 2019, 1048, 31–41. [Google Scholar] [CrossRef]
- Faria, H.A.M.; Zucolotto, V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens. Bioelectron. 2019, 131, 149–155. [Google Scholar] [CrossRef]
- Ilkhani, H.; Farhad, S. A novel electrochemical DNA biosensor for Ebola virus detection. Anal. Biochem. 2018, 557, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Zayani, R.; Rezig, D.; Fares, W.; Marrakchi, M.; Essafi, M.; Raouafi, N. Multiplexed Magnetofluorescent Bioplatform for the Sensitive Detection of SARS-CoV-2 Viral RNA without Nucleic Acid Amplification. Anal. Chem. 2021, 93, 11225–11232. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, N.R.; Bolene, M.A.E.; Jaspan, M.; Ayers, A.G.; Zarrandikoetxea, S.; Freudman, J.; Shah, N.; Tolwani, A.M.; Hu, Y.H.; Chern, T.L.; et al. Multiplexed reverse-transcriptase quantitative polymerase chain reaction using plasmonic nanoparticles for point-of-care COVID-19 diagnosis. Nat. Nanotechnol. 2022, 17, 984–992. [Google Scholar] [CrossRef]
- Cheong, J.; Yu, H.; Lee, C.Y.; Lee, J.U.; Choi, H.J.; Lee, J.H.; Lee, H.; Cheon, J. Fast detection of SARS-CoV-2 RNA via the integration of plasmonic thermocycling and fluorescence detection in a portable device. Nat. Biomed. Eng. 2020, 4, 1159–1167. [Google Scholar] [CrossRef]
- Zheng, L.L.; Shuai, X.J.; Liu, Y.; Li, C.M.; Zhen, S.J.; Liu, J.J.; Li, Y.F.; Huang, C.Z. One-donor-two-acceptors coupled energy transfer nanoprobe for recording of viral gene replication in living cells. Chem. Eng. J. 2022, 434, 134658. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, J.H.; Chueng, S.D.; Pongkulapa, T.; Yang, L.; Cho, H.Y.; Choi, J.W.; Lee, K.B. Nondestructive Characterization of Stem Cell Neurogenesis by a Magneto-Plasmonic Nanomaterial-Based Exosomal miRNA Detection. ACS Nano 2019, 13, 8793–8803. [Google Scholar] [CrossRef]
- Woo, A.; Jung, H.S.; Kim, D.H.; Park, S.G.; Lee, M.Y. Rapid and sensitive multiplex molecular diagnosis of respiratory pathogens using plasmonic isothermal RPA array chip. Biosens. Bioelectron. 2021, 182, 113167. [Google Scholar] [CrossRef]
- Li, J.; Fan, Y.Y.; Wen, J.; Zhang, J.; Zhang, Z.Q. Metal-Enhanced Aggregation-Induced Emission Strategy for the HIV-I RNA-Binding Ligand Assay. Anal. Chem. 2022, 94, 4695–4702. [Google Scholar] [CrossRef]
- Shen, F.; Cheng, Y.; Xie, Y.; Yu, H.; Yao, W.; Li, H.W.; Guo, Y.; Qian, H. DNA-silver nanocluster probe for norovirus RNA detection based on changes in secondary structure of nucleic acids. Anal. Biochem. 2019, 583, 113365. [Google Scholar] [CrossRef]
- Nasir, S.; Majeed, M.I.; Nawaz, H.; Rashid, N.; Ali, S.; Farooq, S.; Kashif, M.; Rafiq, S.; Bano, S.; Ashraf, M.N.; et al. Surface enhanced Raman spectroscopy of RNA samples extracted from blood of hepatitis C patients for quantification of viral loads. Photodiagnosis Photodyn. Ther. 2021, 33, 102152. [Google Scholar] [CrossRef]
- Batool, F.; Nawaz, H.; Majeed, M.I.; Rashid, N.; Bashir, S.; Bano, S.; Tahir, F.; Haq, A.U.; Saleem, M.; Nawaz, M.Z.; et al. Surface-enhanced Raman spectral analysis for comparison of PCR products of hepatitis B and hepatitis C. Photodiagnosis Photodyn. Ther. 2021, 35, 102440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Miao, X.; Song, C.; Chen, N.; Xiong, J.; Gan, H.; Ni, J.; Zhu, Y.; Cheng, K.; Wang, L. Non-enzymatic signal amplification-powered point-of-care SERS sensor for rapid and ultra-sensitive assay of SARS-CoV-2 RNA. Biosens. Bioelectron. 2022, 212, 114379. [Google Scholar] [CrossRef] [PubMed]
- Dardir, K.; Wang, H.; Martin, B.E.; Atzampou, M.; Brooke, C.B.; Fabris, L. SERS Nanoprobe for Intracellular Monitoring of Viral Mutations. J. Phys. Chem. C 2020, 124, 3211–3217. [Google Scholar] [CrossRef]
- Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano 2020, 14, 5268–5277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.; Nowak, C.; Liu, Y.; Li, Y.; Zhang, T.; Bleris, L.; Qin, Z. Plasmonic LAMP: Improving the Detection Specificity and Sensitivity for SARS-CoV-2 by Plasmonic Sensing of Isothermally Amplified Nucleic Acids. Small 2022, 18, e2107832. [Google Scholar] [CrossRef] [PubMed]
- Moitra, P.; Alafeef, M.; Dighe, K.; Frieman, M.B.; Pan, D. Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 2020, 14, 7617–7627. [Google Scholar] [CrossRef]
- Gao, Y.; Han, Y.; Wang, C.; Qiang, L.; Gao, J.; Wang, Y.; Liu, H.; Han, L.; Zhang, Y.J.A.C.A. Rapid and sensitive triple-mode detection of causative SARS-CoV-2 virus specific genes through interaction between genes and nanoparticles. Anal. Chim. Acta 2021, 1154, 338330. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.H.; Choi, M.Y.; Choi, J.-H. Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. Biosensors 2022, 12, 1121. https://doi.org/10.3390/bios12121121
Park DH, Choi MY, Choi J-H. Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. Biosensors. 2022; 12(12):1121. https://doi.org/10.3390/bios12121121
Chicago/Turabian StylePark, Dong Hyeok, Min Yu Choi, and Jin-Ha Choi. 2022. "Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers" Biosensors 12, no. 12: 1121. https://doi.org/10.3390/bios12121121
APA StylePark, D. H., Choi, M. Y., & Choi, J.-H. (2022). Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. Biosensors, 12(12), 1121. https://doi.org/10.3390/bios12121121