Application of VCSEL in Bio-Sensing Atomic Magnetometers
Abstract
:1. Introduction
2. The Fundamentals of VCSEL and Atomic Magnetometer
2.1. VCSEL Fundamentals
2.2. Atomic Magnetometer
3. Mode Control of VCSEL for the Chip-Scale Atomic Magnetometer
3.1. Transverse Optical Guiding
3.2. Mode-Selective Losses or Gain
4. Polarization Control of VCSEL for Chip-Scale Atomic Device
4.1. Anisotropic Loss
4.2. Anisotropic Gain
4.3. Surface Grating
4.4. Current Commercial VCSELs for Atomic Magnetometers
5. Application of VCSEL in a Chip-Scale Atomic Magnetometer
5.1. CPT Atomic Magnetometer
5.2. M-x Atomic Magnetometer and Bell–Bloom Atomic Magnetometer
5.3. Dual-Beam SERF Atomic Magnetometer
6. Atomic Magnetometer in the Medical Field
6.1. MCG Measurements with Chip-Scale Atomic Magnetometer
6.2. MEG Measurements with a Chip-Scale Atomic Magnetometer
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fenici, R.; Brisinda, D.; Meloni, A.M. Clinical application of magnetocardiography. Expert Rev. Mol. Diagn. 2005, 5, 291–313. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Begus, S.; Xia, H.; Lee, S.K.; Jazbinsek, V.; Trontelj, Z.; Romalis, M.V. Multi-channel atomic magnetometer for magnetoencephalography: A configuration study. Neuroimage 2014, 89, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, F.L. EEG and MEG: Relevance to neuroscience. Neuron 2013, 80, 1112–1128. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D. Magnetoencephalography: Detection of the brain’s electrical activity with a superconducting magnetometer. Science 1972, 175, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Abbott, D.F.; Jackson, G.D. Wearable OPM-MEG: A changing landscape for epilepsy. Epilepsia 2022, 63, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Romani, G.L.; Williamson, S.J.; Kaufman, L. Biomagnetic instrumentation. Rev. Sci. Instrum. 1982, 53, 1815–1845. [Google Scholar] [CrossRef]
- Alem, O.; Benison, A.M.; Barth, D.S.; Kitching, J.; Knappe, S. Magnetoencephalography of Epilepsy with a Microfabricated Atomic Magnetrode. J. Neurosci. 2014, 34, 14324–14327. [Google Scholar] [CrossRef] [Green Version]
- Alem, O.; Mhaskar, R.; Jiménez-Martínez, R.; Sheng, D.; LeBlanc, J.; Trahms, L.; Sander, T.; Kitching, J.; Knappe, S. Magnetic Field Imaging with Microfabricated Optically-Pumped Magnetometers. Opt. Express 2017, 25, 7849. [Google Scholar] [CrossRef] [Green Version]
- Korth, H.; Strohbehn, K.; Tejada, F.; Andreou, A.G.; Kitching, J.; Knappe, S.; Lehtonen, S.J.; London, S.M.; Kafel, M. Miniature Atomic Scalar Magnetometer for Space Based on the Rubidium Isotope Rb-87. J. Geophys.-Res.-Sp. Phys. 2016, 121, 7870–7880. [Google Scholar] [CrossRef]
- Soda, H.; Iga, K.-I.; Kitahara, C.; Suematsu, Y. GaInAsP/InP Surface Emitting Injection Lasers. Jpn. J. Appl. Phys. 1979, 18, 2329–2330. [Google Scholar] [CrossRef]
- Van der Ziel, J.P.; Ilegems, M. Multilayer GaAs-Al_03Ga_07As Dielectric Quarter Wave Stacks Grown by Molecular Beam Epitaxy. Appl. Opt. 1975, 14, 2627. [Google Scholar] [CrossRef]
- Ogura, M.; Hata, T.; Kawai, N.J.; Yao, T. GaAs/Al x Ga 1- x As Multilayer Reflector for Surface Emitting Laser Diode. Jpn. J. Appl. Phys. 1983, 22, L112–L114. [Google Scholar] [CrossRef]
- Ogura, M.; Hata, T.; Yao, T. Distributed Feed Back Surface Emitting Laser Diode with Multilayered Heterostructure. Jpn. J. Appl. Phys. 1984, 23, L512–L514. [Google Scholar] [CrossRef]
- Ogura, M. Surface Emitting Laser Diode with AlxGa1-xAs/GaAs Multilayered Heterostructure. J. Vac. Sci. Technol. B. 1985, 3, 784. [Google Scholar] [CrossRef]
- Gourley, P.L.; Drummond, T.J. Visible, Room-temperature, Surface-emitting Laser Using an Epitaxial Fabry–Perot Resonator with AlGaAs/AlAs Quarter-wave High Reflectors and AlGaAs/GaAs Multiple Quantum Wells. Appl. Phys. Lett. 1987, 50, 1225–1227. [Google Scholar] [CrossRef]
- Jewell, J.L.; Lee, Y.H.; Walker, S.; Scherer, A.; Harbison, J.P.; Florez, L.T.; McCall, S.L. Low-Threshold Electrically Pumped Vertical-Cavity Surface-Emitting Microlasers. Electron. Lett. 1989, 25, 1123–1124. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jewell, J.L.; Scherer, A.; McCall†, S.L.; Harbison, J.P.; Florez, L.T. Room-Temperature Continuous-Wave Vertical-Cavity Single-Quantum-Well Microlaser Diodes. Electron. Lett. 1989, 25, 1377–1378. [Google Scholar] [CrossRef] [Green Version]
- Dallesasse, J.M.; Holonyak, N.; Sugg, A.R.; Richard, T.A.; El-Zein, N. Hydrolyzation Oxidation of Al x Ga 1- x As-AlAs-GaAs Quantum Well Heterostructures and Superlattices. Appl. Phys. Lett. 1990, 57, 2844–2846. [Google Scholar] [CrossRef]
- Geels, R.; Corzine, S.; Scott, J.; Young, D.; Coldren, L. Low Threshold Planarized Vertical-Cavity Surface-Emitting Lasers. IEEE Photon. Technol. Lett. 1990, 2, 234–236. [Google Scholar] [CrossRef]
- Lee, Y.H.; Tell, B.; Brown-Goebeler, K.; Jewell, J.L.; Hove, J.V. Top-Surface-Emitting GaAs Four-Quantum-Well Lasers Emitting at 0.85 Mm. Electron. Lett. 1990, 26, 710–711. [Google Scholar] [CrossRef]
- Huffaker, D.L.; Deppe, D.G.; Kumar, K.; Rogers, T.J. Native-oxide Defined Ring Contact for Low Threshold Vertical-cavity Lasers. Appl. Phys. Lett. 1994, 65, 97–99. [Google Scholar] [CrossRef]
- Choquette, K.; Geib, K.; Ashby, C.; Twesten, R.; Blum, O.; Hou, H.; Follstaedt, D.; Hammons, B.; Mathes, D.; Hull, R. Advances in Selective Wet Oxidation of AlGaAs Alloys. IEEE J. Select. Topics Quantum Electron. 1997, 3, 916–926. [Google Scholar] [CrossRef]
- Dallesasse, J.M.; Holonyak, N. Oxidation of Al-bearing III-V Materials: A Review of Key Progress. J. Appl. Phys. 2013, 113, 051101. [Google Scholar] [CrossRef]
- Unold, H.J.; Mahmoud, S.W.; Jager, R.; Grabherr, M.; Michalzik, R.; Ebeling, K.J. Large-area single-mode VCSELs and the self-aligned surface relief. IEEE J. Sel. Top. Quantum Electron. 2001, 7, 386–392. [Google Scholar] [CrossRef]
- Haglund, A.; Gustavsson, J.S.; Vukusic, J.; Modh, P.; Larsson, A. Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief. IEEE Photonics Technol. Lett. 2004, 16, 368–370. [Google Scholar] [CrossRef]
- Debernardi, P.; Kroner, A.; Rinaldi, F.; Michalzik, R. Surface relief versus standard VCSELs: A comparison between experimental and hot-cavity model results. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 828–837. [Google Scholar] [CrossRef]
- Hofmann, W.; Chase, C.; Müller, M.; Rao, Y.; Grasse, C.; Böhm, G.; Amann, M.C.; Chang-Hasnain, C.J. Long-wavelength high contrast grating vertical-cavity surface-emitting laser. IEEE Photonics J. 2010, 2, 415–422. [Google Scholar] [CrossRef]
- Inoue, S.; Kashino, J.; Matsutani, A.; Ohtsuki, H.; Miyashita, T.; Koyama, F. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Jpn. J. Appl. Phys. 2014, 53, 090306. [Google Scholar] [CrossRef]
- Rao, Y.; Yang, W.; Chase, C.; Huang, M.C.; Worland, D.P.; Khaleghi, S.; Chitgarha, M.R.; Ziyadi, M.; Willner, A.E.; Chang-Hasnain, C.J. Long-wavelength VCSEL using high-contrast grating. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1701311. [Google Scholar] [CrossRef]
- Kitching, J. Chip-Scale Atomic Devices. Appl. Phys. Rev. 2018, 5, 031302. [Google Scholar] [CrossRef]
- Groeger, S.; Bison, G.; Schenker, J.L.; Wynands, R.; Weis, A. A High-Sensitivity Laser-Pumped Mx Magnetometer. Eur. Phys. J. D 2006, 38, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Budker, D.; Kimball, D.F.J. Optical Magnetometry; Cambridge University Press: New York, NY, USA, 2013; pp. 60–82. ISBN 978-1-107-01035-2. [Google Scholar]
- Serkland, D.K.; Geib, K.M.; Peake, G.M.; Lutwak, R.; Rashed, A.; Varghese, M.; Tepolt, G.; Prouty, M. VCSELs for atomic sensors. In Proceedings of the Integrated Optoelectronic Devices 2007, San Jose, CA, USA, 23–25 January 2007; Volume 6484. [Google Scholar] [CrossRef]
- Unold, H.; Riedl, M.; Mahmoud, S.; Jäger, R.; Ebeling, K.J. Long monolithic cavity VCSELs for high singlemode output power. Electron. Lett. 2001, 37, 1. [Google Scholar] [CrossRef]
- Grabherr, M.; Jager, R.; Michalzik, R.; Weigl, B.; Reiner, G.; Ebeling, K. Efficient single-mode oxide-confined GaAs VCSEL’s emitting in the 850-nm wavelength regime. IEEE Photonics Technol. Lett. 1997, 9, 1304–1306. [Google Scholar] [CrossRef]
- Jung, C.; Jäger, R.; Grabherr, M.; Schnitzer, P.; Michalzik, R.; Weigl, B.; Müller, S.; Ebeling, K.J. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes. Electron. Lett. 1997, 33, 1790–1791. [Google Scholar] [CrossRef]
- Unold, H.; Mahmoud, S.; Jager, R.; Kicherer, M.; Riedl, M.; Ebeling, K. Improving single-mode VCSEL performance by introducing a long monolithic cavity. IEEE Photonics Technol. Lett. 2000, 12, 939–941. [Google Scholar] [CrossRef]
- Young, E.; Choquette, K.; Chuang, S.; Geib, K.; Fischer, A.; Allerman, A. Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation. IEEE Photonics Technol. Lett. 2001, 13, 927–929. [Google Scholar] [CrossRef]
- Lai, F.I.; Hsueh, T.H.; Chang, Y.H.; Kuo, H.C.; Wang, S.; Laih, L.H.; Song, C.; Yang, H. 10 Gb/s single-mode vertical-cavity surface emitting laser with large aperture and oxygen implantation. Semicond. Sci. Technol. 2004, 19, L86. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Liaw, S.; Yang, Y. Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion. IEEE Photonics Technol. Lett. 2001, 13, 266–268. [Google Scholar] [CrossRef]
- Shi, J.W.; Chen, C.C.; Wu, Y.S.; Guol, S.H.; Kuo, C.; Yang, Y.J. High-power and high-speed Zn-diffusion single fundamental mode vertical-cavity surface-emitting lasers at 850-nm wavelength. IEEE Photonics Technol. Lett. 2008, 20, 1121–1123. [Google Scholar] [CrossRef]
- Shi, J.W.; Chi, K.L.; Chang, J.H.; Wei, Z.R.; Jiang, J.W.; Yang, Y.J. Single-mode vertical-cavity surface-emitting laser array with high power and narrow far-field divergence angle. IEEE Photonics J. 2013, 5, 1502508. [Google Scholar] [CrossRef]
- Nakamura, T.; Nakayama, H.; Omori, S.; Sakamoto, A.; Kondo, T.; Mukoyama, N.; Ueki, N.; Kuwata, Y.; Murakami, A.; Otoma, H. Single-mode oxide-confined VCSEL for printers and sensors. In Proceedings of the 2006 1st Electronic Systemintegration Technology Conference, Dresden, Germany, 5–7 September 2006; Volume 1, pp. 80–85. [Google Scholar] [CrossRef]
- Unold, H.; Grabherr, M.; Eberhard, F.; Mederer, F.; Jäger, R.; Riedl, M.; Ebeling, K.J. Increased-area oxidised single-fundamental mode VCSEL with self-aligned shallow etched surface relief. Electron. Lett. 1999, 35, 1340–1341. [Google Scholar] [CrossRef]
- Kesler, B.; O’Brien, T.; Su, G.L.; Dallesasse, J.M. Facilitating Single-Transverse-Mode Lasing in VCSELs via Patterned Dielectric Anti-Phase Filters. IEEE Photonics Technol. Lett. 2016, 28, 1497–1500. [Google Scholar] [CrossRef]
- Xiang, L.; Zhang, X.; Zhang, J.W.; Ning, Y.Q.; Hofmann, W.; Wang, L.J. Stable single-mode operation of 894.6 nm VCSEL at high temperatures for Cs atomic sensing. Chin. Phys. B 2017, 26. [Google Scholar] [CrossRef]
- Khan, Z.; Yen, J.L.; Cheng, C.L.; Chi, K.L.; Shi, J.W. Enhancing the static and dynamic performance of high-speed VCSELs by Zn-diffused shallow surface relief apertures. IEEE J. Quantum Electron. 2018, 54, 2400706. [Google Scholar] [CrossRef]
- Song, D.S.; Kim, S.H.; Park, H.G.; Kim, C.K.; Lee, Y.H. Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 2002, 80, 3901–3903. [Google Scholar] [CrossRef] [Green Version]
- Danner, A.; Kim, T.; Choquette, K. Single fundamental mode photonic crystal vertical cavity laser with improved output power. Electron. Lett. 2005, 41, 1. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.P.; Kasten, A.M.; Sulkin, J.D.; Choquette, K.D. Planar photonic crystal vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4900107. [Google Scholar] [CrossRef]
- Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S. Watt-class high-power, high-beam-quality photonic crystal lasers. Nat. Photonics 2014, 8, 406–411. [Google Scholar] [CrossRef]
- Hsu, M.Y.; Lin, G.; Pan, C.H. Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers. Opt. Express 2017, 25, 32697–32704. [Google Scholar] [CrossRef]
- Lu, H.Y.; Tian, S.C.; Tong, C.Z.; Wang, L.J.; Rong, J.M.; Liu, C.Y.; Wang, H.; Shu, S.L.; Wang, L.J. Extracting more light for vertical emission: High power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band. Light Sci. Appl. 2019, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.R.; Hong, K.B.; Huang, K.C.; Yen, H.T.; Lu, T.C. Improvement of output efficiency of p-face up photonic-crystal surface-emitting lasers. Opt. Express 2021, 29, 11293–11300. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.C.; Zhou, Y.; Chang-Hasnain, C.J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photonics 2007, 1, 119–122. [Google Scholar] [CrossRef]
- Huang, M.C.; Zhou, Y.; Chang-Hasnain, C.J. Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers. Appl. Phys. Lett. 2008, 92, 171108. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, C.; Zheng, W.; Bimberg, D.; Liu, A. Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings. Photonics Res. 2022, 10, 1170–1176. [Google Scholar] [CrossRef]
- Li, K.; Rao, Y.; Chase, C.; Yang, W.; Chang-Hasnain, C.J. Monolithic high-contrast metastructure for beam-shaping VCSELs. Optica 2018, 5, 10–13. [Google Scholar] [CrossRef]
- Long, C.M.; Choquette, K.D. Optical characterization of a vertical cavity surface emitting laser for a coherent population trapping frequency reference. J. Appl. Phys. 2008, 103, 033101. [Google Scholar] [CrossRef] [Green Version]
- Al-Samaneh, A.; Sanayeh, M.B.; Renz, S.; Wahl, D.; Michalzik, R. Polarization Control and Dynamic Properties of VCSELs for MEMS Atomic Clock Applications. IEEE Photonics Technol. Lett. 2011, 23, 1049–1051. [Google Scholar] [CrossRef]
- Al-Samaneh, A.; Bou Sanayeh, M.; Miah, M.; Schwarz, W.; Wahl, D.; Kern, A.; Michalzik, R. Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks. Appl. Phys. Lett. 2012, 101, 171104. [Google Scholar] [CrossRef]
- Miah, M.J.; Al-Samaneh, A.; Kern, A.; Wahl, D.; Debernardi, P.; Michalzik, R. Fabrication and characterization of low-threshold polarization-stable VCSELs for Cs-based miniaturized atomic clocks. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1701410. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, Y.; Zhang, X.; Zhang, J.; Liu, Z.; Ning, Y.; Wang, L. Large-Aperture Single-Mode 795 Nm Vcsel for Chip-Scale Nuclear Magnetic Resonance Gyroscope with an Output Power of 4.1 Mw at 80 Degrees C. Opt. Express 2022, 30, 8991–8999. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Kawakami, T.; Saito, H.; Kosaka, H.; Kajita, M.; Kurihara, K.; Sugimoto, Y.; Kasahara, K. Polarization-controlled single-mode VCSEL. IEEE J. Quantum Electron. 1998, 34, 1009–1015. [Google Scholar] [CrossRef]
- Choquette, K.D.; Leibenguth, R. Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries. IEEE Photonics Technol. Lett. 1994, 6, 40–42. [Google Scholar] [CrossRef]
- Chua, C.; Thornton, R.; Treat, D.; Donaldson, R. Anisotropic apertures for polarization-stable laterally oxidized vertical-cavity lasers. Appl. Phys. Lett. 1998, 73, 1631–1633. [Google Scholar] [CrossRef]
- Chu, H.Y.; Yoo, B.S.; Park, M.S.; Park, H.H. Polarization characteristics of index-guided surface-emitting lasers with tilted pillar structure. IEEE Photonics Technol. Lett. 1997, 9, 1066–1068. [Google Scholar] [CrossRef]
- Di Sopra, F.M.; Brunner, M.; Hovel, R. Polarization control in strained T-bar VCSELs. IEEE Photonics Technol. Lett. 2002, 14, 1034–1036. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Chang, Y.H.; Zhao, Y.C.; Khan, Z.; Ahmad, Z.; Lee, C.H.; Chang, J.S.; Liu, C.Y.; Shi, J.W. Low-Noise, Single-Polarized, and High-Speed Vertical-Cavity Surface-Emitting Lasers for Very Short Reach Data Communication. J. Light. Technol. 2022, 40, 3845–3854. [Google Scholar] [CrossRef]
- Song, D.S.; Lee, Y.J.; Choi, H.W.; Lee, Y.H. Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers. Appl. Phys. Lett. 2003, 82, 3182–3184. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Xu, C.; Kan, Q.; Xun, M.; Xu, K.; Chen, H. Polarization stable low threshold current single fundamental mode VCSELs. Opt. Mater. Express 2015, 5, 1998–2005. [Google Scholar] [CrossRef]
- Long, C.M.; Mickovic, Z.; Dwir, B.; Caliman, A.; Iakovlev, V.; Mereuta, A.; Sirbu, A.; Kapon, E. Polarization mode control of long-wavelength VCSELs by intracavity patterning. Opt. Express 2016, 24, 9715–9722. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhang, J.W.; Zhang, X.; Ning, Y.Q.; Zhu, H.B.; Hofmann, W.; Zhang, J.; Zeng, Y.G.; Huang, Y.W.; Xiang, L.; et al. Polarization-controlled and single-transverse-mode vertical-cavity surface-emitting lasers with eye-shaped oxide aperture. Jpn. J. Appl. Phys. 2018, 57. [Google Scholar] [CrossRef]
- Saito, H.; Nishi, K.; Sugou, S.; Sugimoto, Y. Controlling polarization of quantum-dot surface-emitting lasers by using structurally anisotropic self-assembled quantum dots. Appl. Phys. Lett. 1997, 71, 590–592. [Google Scholar] [CrossRef]
- Mizutani, A.; Hatori, N.; Nishiyama, N.; Koyama, F.; Iga, K. A low-threshold polarization-controlled vertical-cavity surface emitting laser grown on GaAs (311)B substrate. IEEE Photonics Technol. Lett. 1998, 10, 633–635. [Google Scholar] [CrossRef]
- Nishiyama, N.; Mizutani, A.; Hatori, N.; Arai, M.; Koyama, F.; Iga, K. Lasing characteristics of InGaAs-GaAs polarization controlled vertical-cavity surface-emitting laser grown on GaAs (311) B substrate. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 530–536. [Google Scholar] [CrossRef]
- Nishiyama, N.; Arai, M.; Shinada, S.; Azuchi, M.; Matsutani, A.; Miyamoto, T.; Koyama, F.; Iga, K. 1.12 mu m polarization controlled highly strained GaInAs vertical-cavity surface-emitting lasers on GaAs(311)B by metal organic chemical vapor deposition. Jpn. J. Appl. Phys. Part 2-Lett. 2001, 40, L437–L439. [Google Scholar] [CrossRef]
- Okuno, Y.L.; Geske, J.; Gan, K.G.; Chiu, Y.J.; DenBaars, S.P.; Bowers, J.E. 1.3 mu m wavelength vertical cavity surface emitting laser fabricated by orientation-mismatched wafer bonding: A prospect for polarization control. Appl. Phys. Lett. 2003, 82, 2377–2379. [Google Scholar] [CrossRef]
- Okuno, Y.L.; Gan, K.G.; Chou, H.F.; Chiu, Y.J.; Wang, C.S.; Wu, S.; Geske, J.; Bjorlin, E.S.; Bowers, J.E. Stable polarization operation of 1.3-mu m wavelength vertical-cavity surface-emitting laser (VCSEL) fabricated by orientation-mismatched wafer bonding. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 1006–1014. [Google Scholar] [CrossRef]
- Verschaffelt, G.; Vleuten, W.V.D.; Creusen, M.; Smalbrugge, E.; Roer, T.G.V.D.; Karouta, F.; Strijbos, R.C.; Danckaert, J.; Veretennicoff, I.; Ryvkin, B.; et al. Polarization stabilization in vertical-cavity surface-emitting lasers through asymmetric current injection. IEEE Photonics Technol. Lett. 2000, 12, 945–947. [Google Scholar] [CrossRef]
- Ser, J.H.; Ju, Y.G.; Shin, J.H.; Lee, Y.H. Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings. Appl. Phys. Lett. 1995, 66, 2769–2771. [Google Scholar] [CrossRef]
- Michalzik, R.; Ostermann, J.M.; Debernardi, P.; Jalics, C.; Kroner, A.; Feneberg, M.; Riedl, M. Polarization-controlled monolithic oxide-confined VCSELs. In Proceedings of the Micro-Optics, VCSELs, and Photonic Interconnects, Strasbourg, France, 27–29 April 2004; Volume 5453, pp. 182–196. [Google Scholar] [CrossRef]
- Ostermann, J.M.; Debernardi, P.; Jalics, C.; Michalzik, R. Polarization-stable oxide-confined VCSELs with enhanced single-mode output power via monolithicaily integrated inverted grating reliefs. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 982–989. [Google Scholar] [CrossRef]
- Ostermann, J.M.; Debernardi, P.; Jalics, C.; Michalzik, R. Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes. IEEE Photonics Technol. Lett. 2005, 17, 1593–1595. [Google Scholar] [CrossRef]
- Ostermann, J.M.; Debernardi, P.; Kroner, A.; Michalzik, R. Polarization-controlled surface grating VCSELs under externally induced anisotropic strain. IEEE Photonics Technol. Lett. 2007, 19, 1301–1303. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhang, X.; Huang, Y.W.; Zhang, J.W.; Hofmann, W.; Ning, Y.Q.; Wang, L.J. OPSR enhancement of high-temperature operating shallow-surface grating VCSELs. Appl. Opt. 2018, 57, 4486–4490. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, X.; Zhou, Y.; Huang, Y.; Ning, Y.; Zhu, H.; Zhang, J.; Zeng, Y.; Wang, L. Asymmetric oxide apertures of vertical-cavity surface-emitting lasers fabricated by unsymmetrical wet oxidation and its polarization control. Opt. Laser Technol. 2021, 139, 106948. [Google Scholar] [CrossRef]
- Kominis, I.K.; Kornack, T.W.; Allred, J.C.; Romalis, M.V. A Subfemtotesla Multichannel Atomic Magnetometer. Nature 2003, 422, 596–599. [Google Scholar] [CrossRef]
- Lee, S.K.; Sauer, K.L.; Seltzer, S.J.; Alem, O.; Romalis, M.V. Subfemtotesla Radio-Frequency Atomic Magnetometer for Detection of Nuclear Quadrupole Resonance. Appl. Phys. Lett. 2006, 89, 214106. [Google Scholar] [CrossRef] [Green Version]
- Schwindt, P.D.D.; Knappe, S.; Shah, V.; Hollberg, L.; Kitching, J.; Liew, L.A.; Moreland, J. Chip-Scale Atomic Magnetometer. Appl. Phys. Lett. 2004, 85, 6409–6411. [Google Scholar] [CrossRef]
- Rosenbluh, M.; Shah, V.; Knappe, S.; Kitching, J. Differentially Detected Coherent Population Trapping Resonances Excited by Orthogonally Polarized Laser Fields. Opt. Express 2006, 14, 6588. [Google Scholar] [CrossRef]
- Lammegger, R. Coherent Population Trapping - Ein Quanteninterferenzeffekt als Basis optischer Magnetometer. Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2006. [Google Scholar]
- Pollinger, A.; Lammegger, R.; Magnes, W.; Ellmeier, M.; Baumjohann, W.; Windholz, L. Control Loops for a Coupled Dark State Magnetometer. In Proceedings of the 2010 IEEE SENSORS, Waikoloa, HI, USA, 1–4 November 2010; pp. 779–784. [Google Scholar] [CrossRef]
- Bingjun, C.; Bin, Z.; Werner, M.; Roland, L.; Andreas, P.; Michaela, E.; Christian, H.; Irmgard, J. Performance of the Engineering Model of the CSES High Precision Magnetometer. In Proceedings of the 2015 IEEE SENSORS, Busan, Republic of Korea, 1–4 November 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Cheng, B.; Zhou, B.; Magnes, W.; Lammegger, R.; Pollinger, A. High Precision Magnetometer for Geomagnetic Exploration Onboard of the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 2018, 61, 659–668. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, M.; Liang, A.; Yin, Y.; Ma, X.; Gao, Y.; Ning, X. A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array. Sci. Rep. 2021, 11, 5564. [Google Scholar] [CrossRef]
- Liu, G.; Gu, S. Experimental Study of the CPT Magnetometer Worked on Atomic Energy Level Modulation. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 035004. [Google Scholar] [CrossRef]
- Levi, F.; Godone, A.; Vanier, J.; Micalizio, S.; Modugno, G. Line-shape of dark line and maser emission profile in CPT. Eur. Phys. J. At. Mol. Opt. Plasma Phys. 2000, 12, 53–59. [Google Scholar] [CrossRef]
- Jau, Y.Y.; Miron, E.; Post, A.B.; Kuzma, N.N.; Happer, W. Push-Pull Optical Pumping of Pure Superposition States. Phys. Rev. Lett. 2004, 93, 160802. [Google Scholar] [CrossRef] [PubMed]
- Kargapoltsev, S.V.; Kitching, J.; Hollberg, L.; Taichenachev, A.V.; Velichansky, V.L.; Yudin, V.I. High-Contrast Dark Resonance in σ+- σ− Optical Field. Laser Phys. Lett. 2004, 1, 495–499. [Google Scholar] [CrossRef] [Green Version]
- Yun, P.; Tan, B.; Deng, W.; Yang, J.; Gu, S. Quasi-bichromatic laser for a lin ⊥ lin coherent population trapping clock produced by vertical-cavity surface-emitting lasers. Rev. Sci. Instruments 2012, 83, 093111. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.Q.; Yang, G.Q.; Xu, Y.F.; Lin, Q.; Liu, Z.H.; Chen, Z.X. Simultaneously Improving the Sensitivity and Absolute Accuracy of CPT Magnetometer. Opt. Express 2014, 22, 6837. [Google Scholar] [CrossRef]
- Andryushkov, V.; Radnatarov, D.; Kobtsev, S. Vector Magnetometer Based on the Effect of Coherent Population Trapping. Appl. Opt. 2022, 61, 3604–3608. [Google Scholar] [CrossRef]
- Schwindt, P.D.D.; Lindseth, B.; Knappe, S.; Shah, V.; Kitching, J.; Liew, L.A. Chip-Scale Atomic Magnetometer with Improved Sensitivity by Use of the M-X Technique. Appl. Phys. Lett. 2007, 90. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Martinez, R.; Griffith, W.C.; Wang, Y.J.; Knappe, S.; Kitching, J.; Smith, K.; Prouty, M.D. Sensitivity Comparison of Mx and Frequency-Modulated Bell–Bloom Cs Magnetometers in a Microfabricated Cell. IEEE Trans. Instrum. Meas. 2010, 59, 372–378. [Google Scholar] [CrossRef]
- Ranjbaran, M.; Tehranchi, M.; Hamidi, S.; Khalkhali, S. Effects of Square-Wave Magnetic Fields on Synchronization of Nonlinear Spin Precession for Sensitivity Improvement of M-X Magnetometers. J. Magn. Magn. Mater. 2017, 441, 718–723. [Google Scholar] [CrossRef]
- Levy, C.; Kornack, T.; Mercier, P. Bell-Bloom Magnetometer Linearization by Intensity Modulation Cancellation. IEEE Trans. Instrum. Meas. 2020, 69, 883–892. [Google Scholar] [CrossRef]
- Hunter, D.; Piccolomo, S.; Pritchard, J.D.; Brockie, N.L.; Dyer, T.E.; Riis, E. Free-Induction-Decay Magnetometer Based on a Microfabricated Cs Vapor Cell. Phys. Rev. Appl. 2018, 10, 014002. [Google Scholar] [CrossRef] [Green Version]
- Deans, C.; Marmugi, L.; Renzoni, F. Sub-Picotesla Widely Tunable Atomic Magnetometer Operating at Room-Temperature in Unshielded Environments. Rev. Sci. Instrum. 2018, 89. [Google Scholar] [CrossRef]
- Marmugi, L.; Deans, C.; Renzoni, F. Electromagnetic Induction Imaging with Atomic Magnetometers: Unlocking the Low-Conductivity Regime. Appl. Phys. Lett. 2019, 115, 083503. [Google Scholar] [CrossRef]
- Deans, C.; Cohen, Y.; Yao, H.; Maddox, B.; Vigilante, A.; Renzoni, F. Electromagnetic Induction Imaging with a Scanning Radio Frequency Atomic Magnetometer. Appl. Phys. Lett. 2021, 119. [Google Scholar] [CrossRef]
- Shah, V.; Knappe, S.; Schwindt, P.D.D.; Kitching, J. Subpicotesla Atomic Magnetometry with a Microfabricated Vapour Cell. Nat. Photonics 2007, 1, 649–652. [Google Scholar] [CrossRef]
- Preusser, J.; Knappe, S.; Kitching, J.; Gerginov, V. A Microfabricated Photonic Magnetometer. In Proceedings of the 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, Besancon, France, 20–24 April 2009; pp. 1180–1182. [Google Scholar] [CrossRef] [Green Version]
- Mhaskar, R.; Knappe, S.; Kitching, J. A Low-Power, High-Sensitivity Micromachined Optical Magnetometer. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef] [Green Version]
- Sebbag, Y.; Naiman, A.; Talker, E.; Barash, Y.; Levy, U. Chip-Scale Integration of Nanophotonic-Atomic Magnetic Sensors. ACS Photonics 2021, 8, 142–146. [Google Scholar] [CrossRef]
- Sebbag, Y.; Talker, E.; Naiman, A.; Barash, Y.; Levy, U. Demonstration of an Integrated Nanophotonic Chip-Scale Alkali Vapor Magnetometer Using Inverse Design. Light Sci. Appl. 2021, 10. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, H.; Tan, G.; Lin, Q. An Integrated High-Sensitivity VCSEL-Based Spin-Exchange Relaxation-Free Magnetometer with Optical Rotation Detection. IEEE Sens. J. 2022, 22, 7700–7708. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, T.; Zhou, W.; Tang, J.; Zhou, B.; Jin, G.; Han, B.; Zou, S. Evaluation of Optical Parameters for a Microminiature Rb Vapor Cell in a Dual-Beam SERF Magnetometer. Opt. Express 2022, 30, 23587–23599. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, L.; Zhang, N.; Yu, M.; Ma, Y.; Han, X.; Zhao, M.; Lin, Q.; Yang, P.; Jiang, Z. Single Beam Cs-Ne SERF Atomic Magnetometer with the Laser Power Differential Method. Opt. Express 2022, 30, 16541–16552. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lu, J.; Liang, Z.; Liu, L.; Wang, W.; Zhou, P.; Ye, M. Integrated Polarization-Splitting Grating Coupler for Chip-Scale Atomic Magnetometer. Biosensors 2022, 12, 529. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Lu, J.; Li, B.; Yan, Y.; Zhang, S.; Yin, K.; Ye, M.; Han, B. Triaxial Vector Operation in Near-Zero Field of Atomic Magnetometer with Femtotesla Sensitivity. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Bison, G.; Wynands, R.; Weis, A. Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor. Opt. Express 2003, 11, 904–909. [Google Scholar] [CrossRef]
- Wakai, R.T. The atomic magnetometer: A new era in biomagnetism. AIP Conf. Proc. 2014, 1626, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Kamada, K.; Ito, Y.; Kobayashi, T. Human MCG measurements with a high-sensitivity potassium atomic magnetometer. Physiol. Meas. 2012, 33, 1063–1071. [Google Scholar] [CrossRef]
- Shah, V.K.; Wakai, R.T. A compact, high performance atomic magnetometer for biomedical applications. Phys. Med. Biol. 2013, 58, 8153–8161. [Google Scholar] [CrossRef] [Green Version]
- Alem, O.; Sander, T.H.; Mhaskar, R.; LeBlanc, J.; Eswaran, H.; Steinhoff, U.; Okada, Y.; Kitching, J.; Trahms, L.; Knappe, S. Fetal Magnetocardiography Measurements with an Array of Microfabricated Optically Pumped Magnetometers. Phys. Med. Biol. 2015, 60, 4797–4811. [Google Scholar] [CrossRef]
- Yang, Y.; Hulot, G.; Vigneron, P.; Shen, X.; Zhima, Z.; Zhou, B.; Magnes, W.; Olsen, N.; Toffner-Clausen, L.; Huang, J.; et al. The CSES Global Geomagnetic Field Model (CGGM): An IGRF-type Global Geomagnetic Field Model Based on Data from the China Seismo-Electromagnetic Satellite. Earth Planets Space 2021, 73. [Google Scholar] [CrossRef]
- Sander, T.H.; Preusser, J.; Mhaskar, R.; Kitching, J.; Trahms, L.; Knappe, S. Magnetoencephalography with a Chip-Scale Atomic Magnetometer. Biomed. Opt. Express 2012, 3, 981–990. [Google Scholar] [CrossRef]
- Johnson, C.N.; Schwindt, P.D.D.; Weisend, M. Multi-Sensor Magnetoencephalography with Atomic Magnetometers. Phys. Med. Biol. 2013, 58, 6065–6077. [Google Scholar] [CrossRef] [Green Version]
- Boto, E.; Meyer, S.S.; Shah, V.; Alem, O.; Knappe, S.; Kruger, P.; Fromhold, T.M.; Lim, M.; Glover, P.M.; Morris, P.G.; et al. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage 2017, 149, 404–414. [Google Scholar] [CrossRef]
- Sheng, D.; Perry, A.; Krzyzewski, S.; Geller, S.; Kitching, J.; Knappe, S. A Microfabricated Optically-Pumped Magnetic Gradiometer. Appl. Phys. Lett. 2017, 110. [Google Scholar] [CrossRef] [Green Version]
- Nardelli, N.; Perry, A.; Krzyzewski, S.; Knappe, S. A Conformal Array of Microfabricated Optically-Pumped First-Order Gradiometers for Magnetoencephalography. EPJ Quantum Technol. 2020, 7. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; Zhang, J.; Wang, Z.; Shang, J. Magnetocardiography Measurements by Microfabricated Atomic Magnetometer with a 3-D Spherical Alkali Vapor Cell. IEEE Trans. Instrum. Meas. 2021, 70, 4007907. [Google Scholar] [CrossRef]
- Xia, H.; Baranga, A.B.A.; Hoffman, D.; Romalis, M.V. Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 2006, 89. [Google Scholar] [CrossRef]
- Bison, G.; Castagna, N.; Hofer, A.; Knowles, P.; Schenker, J.L.; Kasprzak, M.; Saudan, H.; Weis, A. A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 2009, 95. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.; Schwindt, P.D.D.; Weisend, M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer. Appl. Phys. Lett. 2010, 97. [Google Scholar] [CrossRef]
- Wyllie, R.; Kauer, M.; Smetana, G.S.; Wakai, R.T.; Walker, T.G. Magnetocardiography with a modular spin–exchange relaxation-free atomic magnetometer array. Phys. Med. Biol. 2012, 57. [Google Scholar] [CrossRef] [Green Version]
- Colombo, A.P.; Carter, T.R.; Borna, A.; Jau, Y.Y.; Johnson, C.N.; Dagel, A.L.; Schwindt, P.D.D. Four-channel optically pumped atomic magnetometer for magnetoencephalography. Opt. Express 2016, 24, 15403–15416. [Google Scholar] [CrossRef] [Green Version]
- Borna, A.; Carter, T.R.; Goldberg, J.D.; Colombo, A.P.; Jau, Y.Y.; Berry, C.; Mckay, J.; Stephen, J.; Weisend, M.; Schwindt, P.D.D. A 20-channel magnetoencephalography system based on optically pumped magnetometers. Phys. Med. Biol. 2017, 62, 8909–8923. [Google Scholar] [CrossRef] [PubMed]
- Boto, E.; Holmes, N.; Leggett, J.; Roberts, G.; Shah, V.; Meyer, S.S.; Munoz, L.D.; Mullinger, K.J.; Tierney, T.M.; Bestmann, S.; et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018, 555, 657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labyt, E.; Corsi, M.C.; Fourcault, W.; Laloy, A.P.; Bertrand, F.; Lenouvel, F.; Cauffet, G.; Le Prado, M.; Berger, F.; Morales, S. Magnetoencephalography with Optically Pumped He-4 Magnetometers at Ambient Temperature. IEEE Trans. Med. Imaging. 2019, 38, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutter, J.U.; Lewis, O.; Robinson, C.; McMahon, A.; Boyce, R.; Bragg, R.; Macrae, A.; Orton, J.; Shah, V.; Ingleby, S.J.; et al. Recording the Heart Beat of Cattle Using a Gradiometer System of Optically Pumped Magnetometers. Comput. Electron. Agric. 2020, 177. [Google Scholar] [CrossRef]
- Hill, R.M.; Boto, E.; Rea, M.; Holmes, N.; Leggett, J.; Coles, L.A.; Papastavrou, M.; Everton, S.K.; Hunt, B.A.E.; Sims, D.; et al. Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 2020, 219. [Google Scholar] [CrossRef]
- Clancy, R.J.; Gerginov, V.; Alem, O.; Becker, S.; Knappe, S. A study of scalar optically-pumped magnetometers for use in magnetoencephalography without shielding. Phys. Med. Biol. 2021, 66, 175030. [Google Scholar] [CrossRef]
- Tierney, T.M.; Alexander, N.; Mellor, S.; Holmes, N.; Seymour, R.; O’Neill, G.C.; Maguire, E.A.; Barnes, G.R. Modelling Optically Pumped Magnetometer Interference in MEG as a Spatially Homogeneous Magnetic Field. Neuroimage 2021, 244. [Google Scholar] [CrossRef]
- Seymour, R.A.; Alexander, N.; Mellor, S.; O’Neill, G.C.; Tierney, T.M.; Barnes, G.R.; Maguire, E.A. Interference Suppression Techniques for OPM-based MEG: Opportunities and Challenges. Neuroimage 2022, 247. [Google Scholar] [CrossRef]
- Mellor, S.; Tierney, T.M.; OaNeill, G.C.; Alexander, N.; Seymour, R.A.; Holmes, N.; Lopez, J.D.; Hill, R.M.; Boto, E.; Rea, M.; et al. Magnetic Field Mapping and Correction for Moving OP-MEG. IEEE. Trans. Biomed. Eng. 2022, 69, 528–536. [Google Scholar] [CrossRef]
- Borna, A.; Iivanainen, J.; Carter, T.R.; McKay, J.; Taulu, S.; Stephen, J.; Schwindt, P.D.D. Cross-Axis projection error in optically pumped magnetometers and its implication for magnetoencephalography systems. Neuroimage 2022, 247. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Wang, Y.; Zhou, B.; Han, B.; Zhai, Y.; Liu, G. Enhancement of bandwidth in spin–exchange relaxation-free (SERF) magnetometers with amplitude-modulated light. Appl. Phys. Lett. 2022, 120, 084001. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Ni, P.N.; Wang, Q.H.; Kan, Q.; Briere, G.; Chen, P.P.; Zhao, Z.Z.; Delga, A.; Ren, H.R.; Chen, H.D.; et al. Metasurface integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol 2020, 15, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Zhou, B.; Lu, J.; Liu, Y.; Hu, J.; Zhou, P.; Wang, W.; Liu, L.; Hu, G.; Ye, M. Metasurface Enabled On-Chip Double-Beam Scheme for SERF Atomic Magnetometer. Opt. Commun. 2022, 525, 128850. [Google Scholar] [CrossRef]
Year | Wavelength (nm) | Oxide Aperture (m) | Output Power (mW) | Method | Ref |
---|---|---|---|---|---|
1997 | 850 | 3 | 2.8 | Small oxide aperture | [35] |
2000 | 940 | 7 | 5 | Extended cavity | [37] |
2001 | 980 | 9.2 | 5.4 | Extended cavity | [34] |
2004 | 850 | 8 | 3.8 | Ion implantation | [39] |
2006 | 850 | 4 | 4.7 | Metal aperture | [43] |
2007 | 850 | 10 × 10 | 1 | High-contrast subwavelength grating | [55] |
2008 | 794.7 | \ | 0.8 | \ | [59] |
2008 | 850 | 10 | 2.3 | High-contrast subwavelength grating | [56] |
2010 | 1310 | 11 | 0.4 | High-contrast subwavelength grating | [27] |
2011 | 894.6 | 3 | 0.8 | Inverted grating relief | [60] |
2012 | 894.6 | 5 | 1.5 | Inverted grating relief | [61] |
2013 | 894.6 | 4 | 0.8 | Inverted grating relief | [62] |
2016 | 850 | 3.75 | 3 | Dielectric anti-phase filter | [45] |
2017 | 894.6 | 7 | 0.45 | Surface relief | [46] |
2019 | 1300 | \ | 13.3 | Photonic crystal | [53] |
2022 | 795 | 6 | 4.1 | Increase the distance between active layer and aperture | [63] |
2022 | 940 | 4 × 8 | 0.8 | High-contrast subwavelength grating | [57] |
Year | Wavelength | Oxide Aperture | SMSR | OPSR | Method | Ref. |
---|---|---|---|---|---|---|
2011 | 894.6 nm | 3–5 | 50 dB | 21 dB | Inverted grating | [60] |
2012 | 894.6 nm | 5 | 20 dB | 20 dB | Inverted grating | [61] |
2013 | 894.6 nm | 3–4 | 42 dB | 21 dB | Inverted grating | [62] |
2015 | 843 nm | 10 | 30 dB | 20 dB | elliptical photonic crystal | [71] |
2018 | 894 nm | 3–5 | \ | 30dB | Surface grating | [86] |
2018 | 894 nm | 25 dB | 22 dB | eye-type oxide aperture | [73] | |
2021 | 894.6 nm | 30 dB | 25 dB | anisotropic oxidation apertures | [87] | |
2022 | 850 nm | \ | 15 dB | Anisotropic loss | [69] |
Wavelength | Spectral Linewidth | Output Power | Operation Temperature | Threshold Current | Divergence Angle | SMSR | Package | Manufacture |
---|---|---|---|---|---|---|---|---|
795 nm | 100 MHz | 0.5 mW | Min: −20 C Max: 110 C | 0.75 mA | Min: 15 Max: 25 | 20 dB | TO46 | Vixar Massachusetts, USA |
895 nm | 50 MHz | 0.5 mW | Min: −20 C Max: 110 C | 0.5 mA | Min: 16 Max: 26 | 20 dB | TO46 | Vixar Massachusetts, USA |
795 nm | 60 MHz | 0.4 mW | Min: −10 C Max: 55 C | 0.8 mA | Min: 10 Max: 25 | 20 dB | TO46,TO5 | Ace photonics Jilin Province, China |
795 nm | \ | 0.4 mW | Min: −20 C Max: 110 C | 0.5 mA | Min: 18 Max: 23 | \ | TO46 | Throlabs New Jersey, USA |
895 nm | \ | 0.3 mW | Min: −20 C Max: 110 C | 0.5 mA | Min: 16 Max: 26 | \ | TO46 | Throlabs New Jersey, USA |
780 nm | 100 MHz | 0.25 mW | Min: −20 C Max: 80 C | 0.5 mA | Min: 10 Max: 20 | 30 dB | TO46 | ULM Photonics Ulm, Germany |
795 nm | 100 MHz | 0.25 mW | Min: −20 C Max: 80 C | 0.5 mA | Min: 10 Max: 25 | 30 dB | TO46 | ULM Photonics Ulm, Germany |
850 nm | \ | 2.5 mW | Min: −40 C Max:85 C | 2 mA | Min: 10 Max: 20 | 10 dB | TO46 | PHILIPS Amsterdam, The Netherlands |
Year | MEG or MCG | Number of Channels | 3d B Bandwidths | Light Source | Size of Vapor Cell | Magnetometer Sensitivity | Ref |
---|---|---|---|---|---|---|---|
2006 | MEG | 6 | \ | DFB+Fiber | [134] | ||
2009 | MCG | 19 | \ | DFB+Fiber | \ | [135] | |
2010 | MEG | 4 | 20 Hz | DFB+Fiber | [136] | ||
2012 | MEG | 1 | 50 Hz | DFB+Fiber | [137] | ||
2012 | MCG | 4 | \ | DFB+Fiber | [137] | ||
2013 | MEG | 8 | \ | DFB+Fiber | [129] | ||
2013 | MEG and MCG | 1 | 100 Hz | DFB+Fiber | [125] | ||
2014 | MEG | 4 | 250 Hz | DFB+Fiber | [7] | ||
2014 | MEG | 256 | ≈190 Hz | DFB | [2] | ||
2016 | MEG | 4 | 90 Hz | DFB+Fiber | [138] | ||
2017 | MEG | 20 | 78∼95 Hz | DFB+Fiber | [139] | ||
2017 | MEG | 13 | 100 Hz | VCSEL | [130] | ||
2018 | MEG | 13 | 100 Hz | VCSEL | [140] | ||
2019 | MEG | 2 | 300 Hz | \ | [141] | ||
2020 | MCG | 1 | 200 Hz | VCSEL | [142] | ||
2020 | MEG | 49 | 100 Hz | VCSEL | [143] | ||
2021 | MEG | \ | 100 Hz | \ | [144] | ||
2021 | MEG | 62 | 100 Hz | VCSEL | [145] | ||
2022 | MEG | 86 | 100 Hz | VCSEL | [146,147] | ||
2022 | MEG | 16 | 90 Hz | DFB+Fiber | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Quan, W.; Wei, K.; Liang, Z.; Hu, J.; Liu, L.; Hu, G.; Wang, A.; Ye, M. Application of VCSEL in Bio-Sensing Atomic Magnetometers. Biosensors 2022, 12, 1098. https://doi.org/10.3390/bios12121098
Zhou P, Quan W, Wei K, Liang Z, Hu J, Liu L, Hu G, Wang A, Ye M. Application of VCSEL in Bio-Sensing Atomic Magnetometers. Biosensors. 2022; 12(12):1098. https://doi.org/10.3390/bios12121098
Chicago/Turabian StyleZhou, Peng, Wei Quan, Kai Wei, Zihua Liang, Jinsheng Hu, Lu Liu, Gen Hu, Ankang Wang, and Mao Ye. 2022. "Application of VCSEL in Bio-Sensing Atomic Magnetometers" Biosensors 12, no. 12: 1098. https://doi.org/10.3390/bios12121098
APA StyleZhou, P., Quan, W., Wei, K., Liang, Z., Hu, J., Liu, L., Hu, G., Wang, A., & Ye, M. (2022). Application of VCSEL in Bio-Sensing Atomic Magnetometers. Biosensors, 12(12), 1098. https://doi.org/10.3390/bios12121098