Optimization of Sensors Data Transmission Paths for Pest Monitoring Based on Intelligent Algorithms
Abstract
:1. Introduction
2. Methods
2.1. Genetic Algorithm
2.2. Particle Swarm Optimization
2.3. Simulated Annealing
3. Result
3.1. Genetic Algorithm
3.2. Particle Swarm Optimization
3.3. Simulated Annealing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shrestha, S. Effects of climate change in agricultural insect pest. Acta Sci. Agric. 2019, 3, 74–80. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menéndez, R. How are insects responding to global warming? Tijdschr. Entomol. 2007, 150, 355. [Google Scholar]
- Yamamura, K.; Kiritani, K. A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Appl. Entomol. Zool. 1998, 33, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Sexton, S.E.; Lei, Z.; Zilberman, D. The economics of pesticides and pest control. Environ. Res. Econ. 2007, 1, 271–326. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.C.F.; de-Almeida-Leandro, M.E.D.; Valero, C.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic detection and monitoring of insect pests—A review. Agriculture 2020, 10, 161. [Google Scholar] [CrossRef]
- Yue, J.; Lei, T.; Li, C.; Zhu, J. The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests. Intell. Autom. Soft Comput. 2012, 18, 1043–1052. [Google Scholar] [CrossRef]
- Preti, M.; Verheggen, F.; Angeli, S. Insect pest monitoring with camera-equipped traps: Strengths and limitations. J. Pest. Sci. 2021, 94, 203–217. [Google Scholar] [CrossRef]
- Gassoumi, H.; Prasad, N.R.; Ellington, J.J. Neural network-based approach for insect classification in cotton ecosystems. In International Conference on Intelligent Technologies; InTech: Bangkok, Thailand, 2000. [Google Scholar]
- Liu, Y.X. Study on Automatic Collection Device of Main Pests in Cruciferous Vegetables. Master’s Thesis, Zhejiang Agriculture and Forestry University, Zhejiang, China, 2020. [Google Scholar]
- Coleman, C.M.; Rothwell, E.J.; Ross, J.E. Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas. IEEE Trans. Antennas Propag. 2004, 52, 1007–1014. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools. Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Haldurai, L.; Madhubala, T.; Rajalakshmi, R. A study on genetic algorithm and its applications. Int. J. comput. Sci. Eng. 2016, 4, 139. [Google Scholar]
- Zhang, Q. Study on Ocean Data Transmission Path Optimization and Acquisition Method in Narrowband Network. Master’s Thesis, Jimei University, Fujian, China, 2020. [Google Scholar]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Ma, T.; Yang, Q.; Li, Z.L. Orthodontic path planning based on improved polyparticle swarm optimization. J. Graph. 2021, 42, 615–622. [Google Scholar]
- Rutenbar, R.A. Simulated annealing algorithms: An overview. IEEE Circuits Devices Mag. 1989, 5, 19–26. [Google Scholar] [CrossRef]
- Dowsland, K.A.; Thompson, J. Simulated annealing. Handb. Nat. Comput. 2012, 1623–1655. [Google Scholar]
- Liu, J.X.; Han, C.J.; Cai, G.Q. Optimization design of heat harvesting section of energy tunnel based on simulated annealing method. J. Shenzhen Univ. 2022, 39, 3–12. [Google Scholar] [CrossRef]
- Kwon, S.W.; Kim, J.Y.; Cho, H.S.M.Y.; Kim, K.J. Development of wireless vibration sensor using MEMS for tunnel construction and maintenance. Tunn. Undergr. Space Technol. 2006, 21, 318. [Google Scholar] [CrossRef]
- Huang, Q.; Tang, B.; Deng, L. Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring. Measurement 2015, 66, 35–44. [Google Scholar] [CrossRef]
- Feng, H.Q.; Yao, Q. Automatic identification and monitoring technology of agricultural pests. Plant Prot. 2018, 44, 127–133. [Google Scholar]
- Zhu, Y.Q.; Tian, E.L. Target recognition method for data transmission path in wireless sensor networks. J. Shenyang Univ. Technol. 2021, 43, 307–310. [Google Scholar]
- Nazari-Heris, M.; Mohammadi-Ivatloo, B. Application of heuristic algorithms to optimal PMU placement in electric power systems: An updated review. Renew. Sust. Energ. Rev. 2015, 50, 214–228. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, S.; Shen, S.; Jiang, C. Task scheduling optimization in cloud computing based on heuristic algorithm. J. Netw. 2012, 7, 547. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ji, G. A comprehensive survey on particle swarm optimization algorithm and its applications. Probl. Eng. 2015, 2015, 931256. [Google Scholar] [CrossRef] [Green Version]
- Premalatha, K.; Natarajan, A.M. Hybrid PSO and GA for global maximization. Int. J. Open Problems Compt. 2009, 2, 597–608. [Google Scholar]
- Da, Y.; Xiurun, G. An improved PSO-based ANN with simulated annealing technique. Neurocomputing 2005, 63, 527–533. [Google Scholar] [CrossRef]
- Wen, X.L. Shortest path optimization algorithm based on hybrid algorithm. J. Tianjin Univ. Technol. 2009, 25, 37–40. [Google Scholar]
- Rustia, D.J.A.; Lin, C.E.; Chung, J.Y.; Zhuang, Y.J.; Hsu, J.C.; Lin, T.T. Application of an image and environmental sensor network for automated greenhouse insect pest monitoring. J. Asia Pac. Entomol. 2020, 23, 17–28. [Google Scholar] [CrossRef]
- Anastasi, G.; Conti, M.; Di, F.M.; Passarella, A. Energy conservation in wireless sensor networks: A survey. Ad Hoc Netw. 2009, 7, 537–568. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, W.; Chen, Y. An improved routing algorithm based on ant colony optimization in wireless sensor networks. IEEE Commun. Lett. 2017, 21, 1317–1320. [Google Scholar] [CrossRef]
- Yang, Y.Q. An efficient data transmission optimization algorithm in wireless sensor networks. South. Farm Mach. 2021, 52, 112–114. [Google Scholar]
- Agnihotri, A.; Gupta, I.K. A hybrid PSO-GA algorithm for routing in wireless sensor network. In Proceedings of the 2018 4th International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 15–17 March 2018; pp. 1–6. [Google Scholar]
Types of Algorithms | Elapsed Time (s) |
---|---|
Genetic Algorithm | 262.738048 |
Particle Swarm Optimization | 4.868012 |
Simulated Annealing | 17.842523 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Y.; Wang, A.; Peng, S.; Jia, J.; Zong, L.; Yang, X.; Li, J.; Zheng, R.; Yang, S.; Liao, J.; et al. Optimization of Sensors Data Transmission Paths for Pest Monitoring Based on Intelligent Algorithms. Biosensors 2022, 12, 948. https://doi.org/10.3390/bios12110948
Lian Y, Wang A, Peng S, Jia J, Zong L, Yang X, Li J, Zheng R, Yang S, Liao J, et al. Optimization of Sensors Data Transmission Paths for Pest Monitoring Based on Intelligent Algorithms. Biosensors. 2022; 12(11):948. https://doi.org/10.3390/bios12110948
Chicago/Turabian StyleLian, Yuyang, Aqiang Wang, Sihua Peng, Jingjing Jia, Liang Zong, Xiaofeng Yang, Jinlei Li, Rongjiao Zheng, Shuyan Yang, Jianjun Liao, and et al. 2022. "Optimization of Sensors Data Transmission Paths for Pest Monitoring Based on Intelligent Algorithms" Biosensors 12, no. 11: 948. https://doi.org/10.3390/bios12110948
APA StyleLian, Y., Wang, A., Peng, S., Jia, J., Zong, L., Yang, X., Li, J., Zheng, R., Yang, S., Liao, J., & Zhou, S. (2022). Optimization of Sensors Data Transmission Paths for Pest Monitoring Based on Intelligent Algorithms. Biosensors, 12(11), 948. https://doi.org/10.3390/bios12110948