What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications
Abstract
:1. Introduction
2. Electrochemical (Bio)Sensor Transduction Approaches
2.1. Amperometric Lactate Biosensors
2.2. Potentiometric and Conductometric Lactate Biosensors
2.3. Enzyme Immobilisation Influence and Viable Approaches
2.4. Non-Enzymatic Sensors
3. Implementation of Lactate Biosensors on Biomedicine: Real-Time Health Care
Biosensor | Electrode | Immobilisation Process | LRR (μM) | Sensi. (µA/mM) | LOD (µM) | Tr (s) | Lifetime (Days) | Samp. | App. | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Lactate Oxidase Biosensors | ||||||||||
MWCNT/TTF/LOx/Chit | Carbon ink | Crosslinking | 1000–20,000 | 0.644 | - | - | 152 | Sweat | Physical exercise intensity monitoring | [80] |
PB/LOx/Chit/AuNWs | AuNWs | - | 0–30,000 | 0.69 | 137 | 10 | 6 | Sweat | Physical exercise intensity monitoring | [104] |
LOx/BSA/PEGDE/β-cysteamine/AuNNs/Au | Au | Crosslinking | 1000–25,000 | 0.65 | 54 | - | 28 | Sweat | - | [105] |
LOx/PtNPs/GO/Au/SFNFs | Au | Entrapment | 400–6000 | - | - | - | - | Sweat | Physical exercise intensity monitoring | [82] |
ETH 500-PVC- DOS/LOx/PB/SPE | Carbon ink | - | 1000–25,000 | 0.0094 | 110 | 50 | - | Sweat | Physical exercise intensity monitoring | [75] |
LOx/PANHS/GO/Pd/Polyamide | Pd | Crosslinking | 1000–100,000 | - | 1000 | - | - | Sweat | - | [89] |
Nafion-LOx/PPy/MWCNT/PA6 | Pt | - | 0.001–1000 | - | - | 0.8 | - | Sweat | Physical exercise intensity monitoring | [90] |
PDDA/LOx/ZnO/MWCNT/PG | PG | Adsorption | 200–2000 | 7.3 | 6 | 6 | 120 | Serum | - | [106] |
LOx/sol-gel/MWCNTs/GCE | GCE | Sol–gel | 200–2000 | 6.031 | 0.3 | 5 | 28 | Serum | - | [107] |
PB-PPD-LOx-mouthguard | Prussian blue graphite ink | Electropolymeric entrapment | 100–1000 | 0.00055 | 50 | - | - | Saliva | Health and physical exercise monitoring | [84] |
Pt/o-PD/PEG/BSA/Chit-LOX-Pt-Ceria-AO | Pt | Adsorption | 0.0001–15,500 | - | 0.0001 | 6 | 21 | Rat tissues | Monitoring in vitro and in vivo tissues during hypoxia conditions | [108] |
LOx/cMWCNT/CuNPs/PANI/PGE | PGE | Covalent | 1–2500 | - | 0.25 | 5 | 140 | Plasma | Lactate acidosis diagnosis | [96] |
Nafion/LOx-GO-Ch/PB/SPE | Graphite | - | 1000–50,000 | 0.072 | 0.02 | - | - | Buffer solution | - | [109] |
Au/MoO3/LOx/Nafion | Au | - | 500–8000 | 0.87 | 150 | 10 | 16 | - | - | [110] |
HRP-PEGDGE-Os/Chit-LOx/polyphenol | Graphite paste | Crosslinking | 100–1000 | 0.763 | 13 | - | 91 | Saliva | - | [111] |
MWCNT/FcMe/Chit/HRP/BSA/LOx/SPBGE | SPCE | Entrapment | 30.4–243.9 | 3.42 | 22.6 | - | 150 | Embryonic cell culture | Growth evaluation of embryo | [19] |
Lactate Dehydrogenase Biosensors | ||||||||||
LDH/RGO-AuNPs/SPCE | SPCE | Entrapment | 10–5000 | 77 | 0.13 | 8 | 25 | Serum | Cancer biomarker detection | [112] |
LDHNPs/Au | Au | Covalent binding | 0.01–55,000 | 10.83 | 0.01 | 2.5 | 210 | Serum | Cardiogenic shock diagnosis | [94] |
LDH/GrONPs/PGE | PGE | Covalent binding | 5000–50,000 | - | 0.1 | 5 | 60 | Serum | Lactate acidosis diagnosis | [97] |
AuNP-cysteamine-LDH/Nafion/MWE | W | - | 500–7000 | 2.45 | 411 | - | 18 | Serum | Lactate acidosis diagnosis | [91] |
LDH-NAD+/Fe3O4NPs/MWCNTs/GCE | GCE | Covalent binding | 50–500 | 7.67 | 5 | - | 14 | Serum | - | [92] |
LDH/MWCNTs/Chit/Au | Au | Covalent binding | 0–120 | - | 15 | 8 | 10 | Blood | Lactate acidosis diagnosis | [98] |
LDH/MWCT-MB | CPE | Crosslinking | 100–10,000 | 0.42 | 7.5 | - | - | Blood | Physical exercise intensity monitoring | [113] |
LDH/MG/SWNT/GCE | GCE | Crosslinking | 200–10,000 | 0.0256 | 160 | - | 8 | Rat cardiomyocyte cell culture | Monitoring of cardiomyocytes during hypoxia | [114] |
LDH-NAD+/pTTABA/DPC | DPC | Covalent binding | 0.5–4000 | 0.02 | 0.112 | - | 60 | Extracellular matrix of cancer cells | Cancer diagnosis and antitumour activity evaluation | [95] |
LDH-GPT/SPCE | SPCE | - | 100–1000 | 0.033 | 5 | 300 | - | Cell cultures, sweat | Growth evaluation of cells, physical exercise intensity monitoring | [115] |
NADH/LDH/Nano-CeO2/GCE | GCE | Electrostatic interactions | 200–2000 | 571.19 | 50 | 4 | - | Buffer solution | - | [93] |
Other Enzyme and Non-enzyme Sensors | ||||||||||
FC b2/nAu-Au | Au | - | 300–2000 | 5.33 | - | - | 91 | Sweat, saliva | - | [116] |
MIPs-AgNWs | Carbon | - | 1–100,000 | 0.0045 | 0.22 | - | 212 | Sweat | Physical exercise intensity monitoring | [60] |
Cu2(NDC)2/PDHP | PDHP | - | 50–22,250 | 114 | 25 | 5 | - | Sweat | - | [117] |
NH2-GP-Cu3(btc)2 | GP | - | 0.05–22.6 | - | 5 | - | - | Sweat | - | [57] |
SPCE-NiCo (layered double hydroxide) | SPCE | - | 2–26 | 4.70 | 400 | - | 28 | Sweat | Physical exercise intensity monitoring | [58] |
Commercial Biosensors (Lactate Oxidase-Based) | ||||||||||
StatStrip® Lactate | - | - | 300–20,000 | - | - | 13 | 91 | Blood (0.6 µL) | Medical monitoring | [118] |
StatStrip Xpress® Lactate | - | - | 300–20,000 | - | - | 13 | 91 | Blood (0.6 µL) | Medical monitoring | [118] |
Lactate Plus Version 2 | - | - | 300–25,000 | - | - | 13 | - | Blood (0.6 µL) | Physical performance monitoring | [119] |
LactatEDGE | - | - | 700–22,000 | - | - | 45 | 91 | Blood (0.3 µL) | Physical performance monitoring | [120] |
Lactate Pro 2 (LT-1730) | - | - | 500–25,000 | - | - | 15 | - | Blood (0.3 µL) | Physical performance monitoring | [121] |
Lactate Scout 4 | - | - | 500–25,000 | - | - | 10 | Blood (0.2 µL) | Physical performance monitoring | [122] | |
Biosen C-Line (glucose and lactate) | - | - | 500–40,000 | - | - | 20–45 | 50 | Blood, plasma or serum (20 µL) | Medical monitoring | [123] |
4. Rise of Lactate Biosensors on the Food Industries: Proficient Quality Control
Biosensor | Electrode | Immobilisation Process | LRR (μM) | Sens. (µA/mM) | LOD (µM) | Tr (s) | Lifetime (Days) | Samp. | App. | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
LOx/3,4DHS–AuNP/SPCE | SPCE | - | 2.6–800 | 5.1 | 2.6 | - | 30 | White wine, yoghurt, beer | Quality evaluation | [135] |
laponite/Chit/LOx/GCE | GCE | - | 10–700 | 11.41 | 3.8 | 4 | 30 | White wine, beer, fermented milk | - | [134] |
LOx-PVC-NH2-Quinhydrone- Graphite | Graphite | - | 50–10,000 | - | 20 | 10 | - | Buttermilk, pickle Juice | - | [136] |
LOx-Pt&Pd-Nafion-carbon | Carbon | - | 50–800 | - | 0.1 | 5 | 28 | Wine | Quality evaluation | [124] |
LOx–Cu-MOF/Chit/Pt/SPCE | SPCE | Crosslinking | 0.75–1000 | 14.65 | 0.75 | - | 50 | Red wine, white wine | Control of malolactic fermentation | [133] |
PtNPs/GCNF–PEI–GA–LOx–Gly–SPCE | SPCE | Covalent | 10–2000 | 0.025 | 6.9 | - | 547 | Wine, ciders | Analysis of lactic acid | [135] |
LODP/HRP-AuIDE | AuIDE | - | 0.05–210 | - | 0.05 | - | 35 | Yogurt | - | [133] |
GOx-LOx-BSA-GA-Au | Au | Covalent | 5–1000 | 0.75 | - | 10 | 85 | Red wine, white wine | Quality evaluation | [134] |
N-eicosane-MWCN-LOx-HRP-GPE | GPE | - | 5–244 | 3.47 | 0.96 | 65 | 456 | Beverages, wines, sauces | - | [136] |
DLDH/DP-TTF-Au | Au | Entrapment | 11–42 | 4.095 | 0.34 | - | 9 | Beer | Simultaneous determination of lactate enantiomers | [125] |
GA-LDH/AuNPs-ERGO-PAH/SPE | SPE | Crosslinking | 500–3000 | - | 1 | - | 49 | Yoghurt, wine | Quality evaluation | [41] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, G.A.; Arevalo, J.A.; Osmond, A.D.; Leija, R.G.; Curl, C.C.; Tovar, A.P. Lactate in contemporary biology: A phoenix risen. J. Physiol. 2021, 10, 1229–1251. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.; Barsan, M.M.; Korpan, Y.; Brett, C.M.A. L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase. Electrochim. Acta 2017, 231, 209–215. [Google Scholar] [CrossRef]
- Lamas-Ardisana, P.J.; Loaiza, O.A.; Añorga, L.; Jubete, E.; Borghei, M.; Ruiz, V.; Ochoteco, E.; Cabañero, G.; Grande, H.J. Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films. Biosens. Bioelectron. 2014, 56, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Tsafrakidou, P.; Sameli, N.; Bosnea, L.; Chorianopoulos, N.; Samelis, J. Assessment of the spoilage microbiota in minced free-range chicken meat during storage at 4 C in retail modified atmosphere packages. Food Microbiol. 2021, 99, 103822. [Google Scholar] [CrossRef] [PubMed]
- Rassaei, L.; Olthuis, W.; Tsujimura, S.; Sudhölter, E.J.R.; Van Den Berg, A. Lactate biosensors: Current status and outlook. Anal. Bioanal. Chem. 2014, 406, 123–137. [Google Scholar] [CrossRef]
- Amin, S.; Tahira, A.; Solangi, A.; Mazzaro, R.; Ibupoto, Z.H.; Vomiero, A. A sensitive enzyme-free lactic acid sensor based on NiO nanoparticles for practical applications. Anal. Methods 2019, 11, 3578–3583. [Google Scholar] [CrossRef]
- Fuernau, G. Lactate and other biomarkers as treatment target in cardiogenic shock. Curr. Opin. Crit. Care 2019, 25, 403–409. [Google Scholar] [CrossRef]
- Seheult, J.; Fitzpatrick, G.; Boran, G. Lactic acidosis: An update. Clin. Chem. Lab. Med. 2017, 55, 322–333. [Google Scholar] [CrossRef]
- Levitt, D.G.; Levitt, J.E.; Levitt, M.D. Quantitative Assessment of Blood Lactate in Shock: Measure of Hypoxia or Beneficial Energy Source. BioMed Res. Int. 2020, 2020, 2608318. [Google Scholar] [CrossRef]
- Ebner, M.; Pagel, C.F.; Sentler, C.; Harjola, V.; Lerchbaumer, M.H.; Stangl, K.; Pieske, B.; Hasenfu, G.; Konstantinides, S.V.; Lankeit, M. Venous lactate improves the prediction of in-hospital adverse outcomes in normotensive pulmonary embolism. Eur. J. Intern. Med. 2021, 86, 25–31. [Google Scholar] [CrossRef]
- Sauer, C.M.; Gómez, J.; Botella, M.R.; Ziehr, D.R.; Oldham, W.M.; Gavidia, G.; Rodríguez, A.; Elbers, P.; Girbes, A.; Bodi, M.; et al. Understanding critically ill sepsis patients with normal serum lactate levels: Results from U.S. and European ICU cohorts. Sci. Rep. 2021, 11, 20076. [Google Scholar] [CrossRef] [PubMed]
- Nasu, T.; Ueda, K.; Kawashima, S.; Okishio, Y.; Kunitatsu, K. Prediction of early acute kidney injury after trauma using prehospital systolic blood pressure and lactate levels: A prospective validation study. Injury 2022, 53, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Takayama, W.; Murata, K.; Otomo, Y. The impact of lactate clearance on outcomes according to infection sites in patients with sepsis: A retrospective observational study. Sci. Rep. 2021, 11, 22394. [Google Scholar] [CrossRef]
- García-Cañaveras, J.C.; Lahoz, A. Tumor Microenvironment-Derived Metabolites: A Guide to Find New Metabolic Therapeutic Targets and Biomarkers. Cancers 2021, 13, 3230. [Google Scholar] [CrossRef]
- Powell, C.L.; Davidson, A.R.; Brown, A.M. Universal Glia to Neurone Lactate Transfer in the Nervous System: Physiological Functions and Pathological Consequences. Biosensors 2020, 10, 183. [Google Scholar] [CrossRef] [PubMed]
- Naylor, E.; Aillon, D.V.; Barrett, B.S.; Wilson, G.S.; Johnson, D.A.; Johnson, D.A.; Harmon, H.P.; Gabbert, S.; Petillo, P.A. Lactate as a biomarker for sleep. Sleep 2012, 35, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Rathee, K.; Dhull, V.; Dhull, R.; Singh, S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem. Biophys. Rep. 2016, 5, 35–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemzadeh, S.; Omidi, Y.; Rafii-Tabar, H.; Cummins, G.; Kremer, J.; Bernassau, A.; Brown, A.; Bridle, H.L.; Schulze, H.; Bachmann, T.T.; et al. Sensors for fetal hypoxia and metabolic acidosis: A review. Sensors 2018, 186, 2648. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Ibáñez, N.; García-Cruz, L.; Montiel, V.; Foster, C.W.; Banks, C.E.; Iniesta, J. Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens. Bioelectron. 2016, 77, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Barker, S.B.; Summerson, W.H. the Colorimetric Determination of Lactic Acid in Biological Material. J. Biol. Chem. 1941, 138, 535–554. [Google Scholar] [CrossRef]
- Alhusban, A.A.; Albustanji, S.; Hamadneh, L.A.; Shallan, A.I. High performance liquid chromatography–tandem mass spectrometry method for correlating the metabolic changes of lactate, pyruvate and L-Glutamine with induced tamoxifen resistant MCF-7 cell line potential molecular changes. Molecules 2021, 26, 4824. [Google Scholar] [CrossRef] [PubMed]
- Briones, M.; Busó-Rogero, C.; Catalán-Gómez, S.; García-Mendiola, T.; Pariente, F.; Redondo-Cubero, A.; Lorenzo, M.E. ZnO nanowire-based fluorometric enzymatic assays for lactate and cholesterol. Microchim. Acta 2020, 187, 180. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Guardigli, M.; Calabria, D.; Calabretta, M.; Cevenini, L.; Michelini, E. A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst 2014, 139, 6494–6501. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.H.; Mason, A.; Al-Shamma’a, A.I.; Field, M.; Shackcloth, M.; Browning, P. Non invasive microwave sensor for the detection of lactic acid in cerebrospinal fluid (CSF). J. Phys. Conf. Ser. 2011, 307, 012017. [Google Scholar] [CrossRef]
- Sartain, F.K.; Yang, X.; Lowe, C.R. Holographic lactate sensor. Anal. Chem. 2006, 78, 5664–5670. [Google Scholar] [CrossRef]
- Hvinden, I.C.; Berg, H.E.; Sachse, D.; Skaga, E.; Skottvoll, F.S.; Lundanes, E.; Sandberg, C.J.; Vik-mo, E.O.; Rise, F.; Wilson, S.R. Nuclear Magnetic Resonance Spectroscopy to Identify Metabolite Biomarkers of Nonresponsiveness to Targeted Therapy in Glioblastoma Tumor Stem Cells. J. Proteome Res. 2020, 18, 2012–2020. [Google Scholar] [CrossRef]
- Gajovic, N.; Binyamin, G.; Warsinke, A.; Scheller, F.W.; Heller, A. Operation of a miniature redox hydrogel-based pyruvate sensor in undiluted deoxygenated calf serum. Anal. Chem. 2000, 72, 2963–2968. [Google Scholar] [CrossRef]
- Borshchevskaya, L.N.; Gordeeva, T.L.; Kalinina, A.N.; Sineokii, S.P. Spectrophotometric determination of lactic acid. J. Anal. Chem. 2016, 71, 755–758. [Google Scholar] [CrossRef]
- Pinheiro, K.M.P.; Duarte, L.M.; Duarte-Junior, G.F.; Coltro, W.K.T. Chip-based separation of organic and inorganic anions and multivariate analysis of wines according to grape varieties. Talanta 2021, 231, 122381. [Google Scholar] [CrossRef]
- Teipel, J.C.; Hausler, T.; Sommerfeld, K.; Scharinger, A.; Walch, S.G.; Lachenmeier, D.W.; Kuballa, T. Application of 1H nuclear magnetic resonance spectroscopy as spirit drinks screener for quality and authenticity control. Foods 2020, 9, 1355. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Gutiérrez-Sánchez, C.; García-Mendiola, T.; Lorenzo, E. Electrochemiluminescence Biosensors Using Screen-Printed Electrodes. Biosensors 2020, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Milagres, M.P.; Brandão, S.C.C.; Magalhães, M.A.; Minim, V.P.R.; Minim, L.A. Development and validation of the high performance liquid chromatography-ion exclusion method for detection of lactic acid in milk. Food Chem. 2012, 135, 1078–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hird, S.J.; Lau, B.P.Y.; Schuhmacher, R.; Krska, R. Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. TrAC Trends Anal. Chem. 2014, 59, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Kucherenko, I.S.; Topolnikova, Y.V.; Soldatkin, O.O. Advances in the biosensors for lactate and pyruvate detection for medical applications: A review. TrAC Trends Anal. Chem. 2019, 110, 160–172. [Google Scholar] [CrossRef]
- Zaryanov, N.V.; Nikitina, V.N.; Karpova, E.V.; Karyakina, E.E.; Karyakin, A.A. Nonenzymatic sensor for lactate detection in human sweat. Anal. Chem. 2017, 89, 11198–11202. [Google Scholar] [CrossRef]
- Md Shakhih, M.F.; Rosslan, A.S.; Noor, A.M.; Ramanathan, S.; Lazim, A.M.; Wahab, A.A. Enzymatic and non-enzymatic electrochemical sensor for lactate detection in human biofluids. J. Electrochem. Soc. 2021, 168, 067502. [Google Scholar] [CrossRef]
- Rattu, G.; Khansili, N.; Maurya, V.K.; Krishna, P.M. Lactate detection sensors for food, clinical and biological applications: A review. Environ. Chem. Lett. 2021, 19, 1135–1152. [Google Scholar] [CrossRef]
- Lee, M.; Kim, S.; Jang, M.; Park, H.S.; Lee, J.Y. One-Pot electrochemical fabrication of high performance amperometric enzymatic biosensors using polypyrrole and polydopamine. J. Ind. Eng. Chem. 2021, 97, 316–325. [Google Scholar] [CrossRef]
- Booth, M.A.; Gowers, S.A.N.; Hersey, M.; Samper, I.C.; Park, S.; Anikeeva, P.; Hashemi, P.; Stevens, M.M.; Boutelle, M.G. Fiber-Based Electrochemical Biosensors for Monitoring pH and Transient Neurometabolic Lactate. Anal. Chem. 2021, 93, 6646–6655. [Google Scholar] [CrossRef]
- Vinoth, R.; Nakagawa, T.; Mathiyarasu, J.; Mohan, A.M.V. Fully printed wearable microfluidic devices for high-throughput sweat sampling and multiplexed electrochemical analysis. ACS Sens. 2021, 6, 1174–1186. [Google Scholar] [CrossRef]
- Istrate, O.M.; Rotariu, L.; Bala, C. Amperometric L-Lactate biosensor based upon a gold nanoparticles/reduced graphene oxide/polyallylamine hydrochloride modified screen-printed graphite electrode. Chemosensors 2021, 9, 74. [Google Scholar] [CrossRef]
- Hiraka, K.; Kojima, K.; Tsugawa, W.; Asano, R.; Ikebukuro, K.; Sode, K. Rational engineering of Aerococcus viridans L-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor. Biosens. Bioelectron. 2020, 151, 111974. [Google Scholar] [CrossRef] [PubMed]
- Kucherenko, I.S.; Soldatkin, O.O.; Topolnikova, Y.V.; Dzyadevych, S.V.; Soldatkin, A.P. Novel multiplexed biosensor system for the determination of lactate and pyruvate in blood serum. Electroanalysis 2019, 31, 1625–1631. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, M.; Kamo, N.; Shinbo, T. Potentiometric enzyme electrode for lactate. Anal. Chem. 1979, 51, 100–104. [Google Scholar] [CrossRef]
- Ibupoto, Z.H.; Shah, S.M.U.A.; Khun, K.; Willander, M. Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors 2012, 12, 2456–2466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupu, A.; Valsesia, A.; Bretagnol, F.; Colpo, P.; Rossi, F. Development of a potentiometric biosensor based on nanostructured surface for lactate determination. Sens. Actuators B Chem. 2007, 127, 606–612. [Google Scholar] [CrossRef]
- Schuck, A.; Kim, H.E.; Moreira, J.K.; Lora, P.S.; Kim, Y.S. A graphene-based enzymatic biosensor using a common-gate field-effect transistor for l-lactic acid detection in blood plasma samples. Sensors 2021, 21, 1852. [Google Scholar] [CrossRef] [PubMed]
- Minamiki, T.; Tokito, S.; Minami, T. Fabrication of a flexible biosensor based on an organic field-effect transistor for lactate detection. Anal. Sci. 2019, 35, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Yang, W.S.; Kim, H.J.; Lee, H.N.; Park, T.J.; Seo, S.J.; Park, Y.M. Highly sensitive non-enzymatic lactate biosensor driven by porous nanostructured nickel oxide. Ceram. Int. 2019, 45, 23370–23376. [Google Scholar] [CrossRef]
- Chang, A.S.; Memon, N.N.; Amin, S.; Chang, F.; Aftab, U.; Abro, M.I.; Dad Chandio, A.; Shah, A.A.; Ibupoto, M.H.; Ansari, M.A.; et al. Facile non-enzymatic lactic acid sensor based on cobalt oxide nanostructures. Electroanalysis 2019, 31, 1296–1303. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.M.; Hussain, M.M.; Hussain, M.M.; Asiri, A.M.; Asiri, A.M.; Rahman, M.M.; Rahman, M.M.; Hussain, M.M. A non-enzymatic electrochemical approach for l-lactic acid sensor development based on CuO·MWCNT nanocomposites modified with a Nafion matrix. New J. Chem. 2020, 44, 9775–9787. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lim, H.; Lee, H.N.; Park, Y.M.; Park, J.S.; Kim, H.J. Selective nonenzymatic amperometric detection of lactic acid in human sweat utilizing a multi-aalled carbon nanotube (MWCNT)-polypyrrole core-shell nanowire. Biosensors 2020, 10, 111. [Google Scholar] [CrossRef] [PubMed]
- Sedenho, G.C.; Lee, P.T.; Toh, H.S.; Salter, C.; Johnston, C.; Stradiotto, N.R.; Compton, R.G. Nanoelectrocatalytic oxidation of lactic acid using nickel nanoparticles. J. Phys. Chem. C 2015, 119, 6896–6905. [Google Scholar] [CrossRef]
- 5Wu, Y.T.; Tsao, P.K.; Chen, K.J.; Lin, Y.C.; Aulia, S.; Chang, L.Y.; Ho, K.C.; Chang, C.Y.; Mizuguchi, H.; Yeh, M.H. Designing bimetallic Ni-based layered double hydroxides for enzyme-free electrochemical lactate biosensors. Sens. Actuators B Chem. 2021, 346, 130505. [Google Scholar] [CrossRef]
- Arivazhagan, M.; Maduraiveeran, G. Ultra-fine nickel sulfide nanoclusters @ nickel sulfide microsphere as enzyme-free electrode materials for sensitive detection of lactic acid. J. Electroanal. Chem. 2020, 874, 114465. [Google Scholar] [CrossRef]
- Wang, Z.; Gui, M.; Asif, M.; Yu, Y.; Dong, S.; Wang, H.; Wang, W.; Wang, F.; Xiao, F.; Liu, H. A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. Nanoscale 2018, 10, 6629–6638. [Google Scholar] [CrossRef]
- Wang, Y.X.; Tsao, P.K.; Rinawati, M.; Chen, K.J.; Chen, K.Y.; Chang, C.Y.; Yeh, M.H. Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for Enzyme-free electrochemical lactate monitoring in human sweat. Chem. Eng. J. 2022, 427, 131687. [Google Scholar] [CrossRef]
- Pereira, T.C.; Stradiotto, N.R. Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles. Microchim. Acta 2019, 186, 764. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, D.; Xu, C.; Ge, Y.; Liu, X.; Wei, Q.; Huang, L.; Ren, X.; Wang, C.; Wang, Y. Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat. Sens. Actuators B Chem. 2020, 320, 128325. [Google Scholar] [CrossRef]
- Heo, S.G.; Yang, W.S.; Kim, S.; Park, Y.M.; Park, K.T.; Oh, S.J.; Seo, S.J. Synthesis, characterization and non-enzymatic lactate sensing performance investigation of mesoporous copper oxide (CuO) using inverse micelle method. Appl. Surf. Sci. 2021, 555, 149638. [Google Scholar] [CrossRef]
- Nikolaus, N.; Strehlitz, B. Amperometric lactate biosensors and their application in (sports) medicine, for life quality and wellbeing. Microchim. Acta 2008, 160, 15–55. [Google Scholar] [CrossRef]
- Burmeister, J.J.; Palmer, M.; Gerhardt, G.A. L-lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens. Bioelectron. 2005, 20, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, S.; Omidi, Y.; Rafii-Tabar, H. Amperometric lactate nanobiosensor based on reduced graphene oxide, carbon nanotube and gold nanoparticle nanocomposite. Microchim. Acta 2019, 186, 680. [Google Scholar] [CrossRef]
- Halliwell, C.M.; Simon, E.; Toh, C.S.; Bartlett, P.N.; Cass, A.E.G. Immobilisation of lactate dehydrogenase on poly(aniline)-poly(acrylate) and poly(aniline)-poly-(vinyl sulphonate) films for use in a lactate biosensor. Anal. Chim. Acta 2002, 453, 191–200. [Google Scholar] [CrossRef]
- Pereira, A.C.; Kisner, A.; Tarley, C.R.T.; Kubota, L.T. Development of a carbon paste electrode for lactate detection based on Meldola’s Blue adsorbed on silica gel modified with niobium oxide and lactate oxidase. Electroanalysis 2011, 23, 1470–1477. [Google Scholar] [CrossRef]
- Payne, M.E.; Zamarayeva, A.; Pister, V.I.; Yamamoto, N.A.D. Printed, flexible lactate sensors: Design considerations before performing on-body measurements. Sci. Rep. 2019, 9, 13720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Liu, K.; Yu, P.; Xiang, L.; Li, X.; Mao, L. A facile electrochemical method for simultaneous and on-line measurements of glucose and lactate in brain microdialysate with prussian blue as the electrocatalyst for reduction of hydrogen peroxide. Anal. Chem. 2007, 79, 9577–9583. [Google Scholar] [CrossRef]
- Wang, L.; Tricard, S.; Yue, P.; Zhao, J.; Fang, J.; Shen, W. Polypyrrole and graphene quantum dots @Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of L-cysteine. Biosens. Bioelectron. 2016, 77, 1112–1118. [Google Scholar] [CrossRef]
- Karyakin, A.A. Advances of Prussian blue and its analogues in (bio) sensors. Curr. Opin. Electrochem. 2017, 5, 92–98. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. Modern potentiometry. Angew. Chem. Int. Ed. 2007, 46, 5660–5668. [Google Scholar] [CrossRef] [PubMed]
- Shkotova, L.V.; Goriushkina, T.B.; Tran-Minh, C.; Chovelon, J.M.; Soldatkin, A.P.; Dzyadevych, S.V. Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater. Sci. Eng. C 2008, 28, 943–948. [Google Scholar] [CrossRef] [Green Version]
- Parra, A.; Casero, E.; Vázquez, L.; Pariente, F.; Lorenzo, E. Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal. Chim. Acta 2006, 555, 308–315. [Google Scholar] [CrossRef]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme immobilization: An update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Cuartero, M.; Crespo, G.A.; Xuan, X.; Clara, P. Lactate biosensing for reliable on-body sweat analysis. ACS Sens. 2021, 6, 2763–2771. [Google Scholar] [CrossRef]
- Adil, K.; Belmabkhout, Y.; Pillai, R.S.; Cadiau, A.; Bhatt, P.M.; Assen, A.H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137. [Google Scholar] [CrossRef]
- Lamaoui, A.; Palacios-Santander, J.M.; Amine, A.; Cubillana-Aguilera, L. Molecularly imprinted polymers based on polydopamine: Assessment of non-specific adsorption. Microchem. J. 2021, 164, 106043. [Google Scholar] [CrossRef]
- Bleiberg, B.; Steinberg, J.J.; Katz, S.D.; Wexler, J.; LeJemtel, T. Determination of plasma lactic acid concentration and specific activity using high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1991, 568, 301–308. [Google Scholar] [CrossRef]
- Jia, W.; Bandodkar, A.J.; Valdés-Ramírez, G.; Windmiller, J.R.; Yang, Z.; Ramírez, J.; Chan, G.; Wang, J. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 2013, 85, 6553–6560. [Google Scholar] [CrossRef]
- Yeo, W.H.; Kim, Y.S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S.H.; Kang, Z.; et al. Multifunctional epidermal electronics printed directly onto the skin. Adv. Mater. 2013, 25, 2773–2778. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Ramírez, G.; Bandodkar, A.J.; Jia, W.; Martinez, A.G.; Julian, R.; Mercier, P.; Wang, J. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 2014, 139, 1632–1636. [Google Scholar] [CrossRef]
- Chen, C.H.; Lee, P.W.; Tsao, Y.H.; Lin, Z.H. Utilization of self-powered electrochemical systems: Metallic nanoparticle synthesis and lactate detection. Nano Energy 2017, 42, 241–248. [Google Scholar] [CrossRef]
- Jeerapan, I.; Sempionatto, J.R.; Pavinatto, A.; You, J.M.; Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 2016, 4, 18342–18353. [Google Scholar] [CrossRef]
- Thomas, N.; Lähdesmäki, I.; Parviz, B.A. A contact lens with an integrated lactate sensor. Sens. Actuators B Chem. 2012, 162, 128–134. [Google Scholar] [CrossRef]
- Green, J.M.; Pritchett, R.C.; Crews, T.R.; McLester, J.R.; Tucker, D.C. Sweat lactate response between males with high and low aerobic fitness. Eur. J. Appl. Physiol. 2004, 91, 1–6. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Lin, Z.; Meng, Z.; Shi, C.; Xu, Z.; Yang, L.; Liu, X.Y. Coupling of silk fibroin nanofibrils enzymatic membrane with ultra-thin PtNPs/graphene film to acquire long and stable on-skin sweat glucose and lactate sensing. Small Methods 2021, 5, 2000926. [Google Scholar] [CrossRef]
- Santos, R.V.T.; Almeida, A.L.R.; Caperuto, E.C.; Martins, E.; Costa Rosa, L.F.B.P. Effects of a 30-km race upon salivary lactate correlation with blood lactate. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 145, 114–117. [Google Scholar] [CrossRef]
- Sakharov, D.A.; Shkurnikov, M.U.; Vagin, M.Y.; Yashina, E.I.; Karyakin, A.A.; Tonevitsky, A.G. Relationship between lactate concentrations in active muscle sweat and whole blood. Bull. Exp. Biol. Med. 2010, 150, 83–85. [Google Scholar] [CrossRef]
- Lin, K.C.; Muthukumar, S.; Prasad, S. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat. Talanta 2020, 214, 120810. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Qing, X.; Wang, Y.; Zhong, W.; Wang, W.; Chen, Y.; Liu, Q.; Li, M.; Wang, D. Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing. Anal. Bioanal. Chem. 2020, 412, 7515–7524. [Google Scholar] [CrossRef] [PubMed]
- Shankara Narayanan, J.; Slaughter, G. Lactic acid biosensor based on lactate dehydrogenase immobilized on Au nanoparticle modified microwire electrode. IEEE Sens. J. 2020, 20, 4034–4040. [Google Scholar] [CrossRef]
- Teymourian, H.; Salimi, A.; Hallaj, R. Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: Fabrication of integrated dehydrogenase-based lactate biosensor. Biosens. Bioelectron. 2012, 33, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles. J. Colloid Interface Sci. 2013, 410, 158–164. [Google Scholar] [CrossRef]
- Narwal, V.; Sharma, M.; Rani, S.; Pundir, C.S. An ultrasensitive amperometric determination of lactate by lactate dehydrogenase nanoparticles immobilized onto Au electrode. Int. J. Biol. Macromol. 2018, 115, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Hussain, K.K.; Gurudatt, N.G.; Akthar, M.H.; Seo, K.D.; Park, D.S.; Shim, Y.B. Nano-biosensor for the in vitro lactate detection using bi-functionalized conducting polymer/N, S-doped carbon; the effect of αCHC inhibitor on lactate level in cancer cell lines. Biosens. Bioelectron. 2020, 155, 112094. [Google Scholar] [CrossRef] [PubMed]
- Dagar, K.; Pundir, C.S. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode. Enzyme Microb. Technol. 2017, 96, 177–186. [Google Scholar] [CrossRef]
- Batra, B.; Narwal, V.; Pundir, C.S. An amperometric lactate biosensor based on lactate dehydrogenase immobilized onto graphene oxide nanoparticles-modified pencil graphite electrode. Eng. Life Sci. 2016, 16, 786–794. [Google Scholar] [CrossRef]
- Rathee, K.; Dhull, R.; Singh, S.; Dhull, V. Fabrication of biosensor for determination of L-lactate using elite nanomaterials based LDH-CMWCNT-MB/Chitosan/SWCNT-Au electrode. Anal. Bioanal. Electrochem. 2018, 10, 1031–1052. [Google Scholar]
- Wang, R.; Zhai, Q.; An, T.; Gong, S.; Cheng, W. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 2021, 222, 121484. [Google Scholar] [CrossRef]
- Yu, M.; Li, Y.T.; Hu, Y.; Tang, L.; Yang, F.; Lv, W.L.; Zhang, Z.Y.; Zhang, G.J. Gold nanostructure-programmed flexible electrochemical biosensor for detection of glucose and lactate in sweat. J. Electroanal. Chem. 2021, 882, 115029. [Google Scholar] [CrossRef]
- Wang, Y.T.; Bao, Y.J.; Lou, L.; Li, J.J.; Du, W.J.; Zhu, Z.Q.; Peng, H.; Zhu, J.Z. A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. Proc. IEEE Sens. 2010, 2010, 33–37. [Google Scholar] [CrossRef]
- Huang, J.; Song, Z.; Li, J.; Yang, Y.; Shi, H.; Wu, B.; Anzai, J.; Osa, T.; Chen, Q. A highly-sensitive l-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode. Mater. Sci. Eng. C 2007, 27, 29–34. [Google Scholar] [CrossRef]
- Sardesai, N.P.; Ganesana, M.; Karimi, A.; Leiter, J.C.; Andreescu, S. Platinum-doped ceria based biosensor for in vitro and in vivo monitoring of lactate during hypoxia. Anal. Chem. 2015, 87, 2996–3003. [Google Scholar] [CrossRef] [PubMed]
- Poletti, F.; Zanfrognini, B.; Favaretto, L.; Quintano, V.; Sun, J.; Treossi, E.; Melucci, M.; Palermo, V.; Zanardi, C. Continuous capillary-flow sensing of glucose and lactate in sweat with an electrochemical sensor based on functionalized graphene oxide. Sens. Actuators B Chem. 2021, 344, 130253. [Google Scholar] [CrossRef]
- Shakir, I.; Shahid, M.; Yang, H.W.; Cherevko, S.; Chung, C.H.; Kang, D.J. α-MoO 3 nanowire-based amperometric biosensor for L-lactate detection. J. Solid State Electrochem. 2012, 16, 2197–2201. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Fu, C. Os-complex-based amperometric bienzyme biosensor for continuous determination of lactate in saliva. Anal. Methods 2015, 7, 6158–6164. [Google Scholar] [CrossRef]
- Azzouzi, S.; Rotariu, L.; Benito, A.M.; Maser, W.K.; Ben Ali, M.; Bala, C. A novel amperometric biosensor based on gold nanoparticles anchored on reduced graphene oxide for sensitive detection of l-lactate tumor biomarker. Biosens. Bioelectron. 2015, 69, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.C.; Aguiar, M.R.; Kisner, A.; Macedo, D.V.; Kubota, L.T. Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola Blue coimmobilized on multi-wall carbon-nanotube. Sens. Actuators B Chem. 2007, 124, 269–276. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Chen, Z.; Lin, Y.; Yu, P.; Mao, L. Continuous electrochemical monitoring of extracellular lactate production from neonatal rat cardiomyocytes following myocardial hypoxia. Anal. Chem. 2012, 84, 5285–5291. [Google Scholar] [CrossRef]
- Rosati, G.; Gherardi, G.; Grigoletto, D.; Marcolin, G.; Cancellara, P.; Mammucari, C.; Scaramuzza, M.; De Toni, A.; Reggiani, C.; Rizzuto, R.; et al. Lactate dehydrogenase and glutamate pyruvate transaminase biosensing strategies for lactate detection on screen-printed sensors. Catalysis efficiency and interference analysis in complex matrices: From cell cultures to sport medicine. Sens. Bio-Sens. Res. 2018, 21, 54–64. [Google Scholar] [CrossRef]
- Smutok, O.; Karkovska, M.; Serkiz, R.; Vus, B.; Čenas, N.; Gonchar, M. A novel mediatorless biosensor based on flavocytochrome b2 immobilized onto gold nanoclusters for non-invasive L-lactate analysis of human liquids. Sens. Actuators B Chem. 2017, 250, 469–475. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, T.; Yu, Y.; Asif, M.; Xu, N.; Xiao, F.; Liu, H. Coffee ring–inspired approach toward oriented self-assembly of biomimetic Murray MOFs as sweat biosensor. Small 2018, 14, 1802670. [Google Scholar] [CrossRef] [PubMed]
- StatStrip®® Lactate and StatStrip Xpress®® Lactate Systems. Available online: https://novabiomedical.com/statstrip-lactate/index.php (accessed on 13 January 2022).
- Lactate Plus: Blood Lactate Measuring Meter-Version 2. Available online: https://novabiomedical.com/lactateplusmeterstore/lactate-plus-meter-4/lactate-plus-meter-10.html (accessed on 13 August 2022).
- Portable Lactate Acid Analyzer LactatEDGE. Available online: https://lactatedge.com (accessed on 13 August 2022).
- Simplified Blood Lactate Test Meter Lactate Pro2 LT-1730. Available online: https://www.arkray.co.jp/english/products/others/blood_lactate/lt-1730.html (accessed on 13 August 2022).
- Lactate Scout 4 Lactate Analyzer for Athletes. Available online: https://www.ekfdiagnostics.com/lactate-scout.html (accessed on 13 August 2022).
- Biosen C-Line Glucose and Lactate Analyzer. Available online: https://www.ekfdiagnostics.com/biosen-analyzer.html (accessed on 13 August 2022).
- Shkotova, L.; Bohush, A.; Voloshina, I.; Smutok, O.; Dzyadevych, S. Amperometric biosensor modified with platinum and palladium nanoparticles for detection of lactate concentrations in wine. SN Appl. Sci. 2019, 1, 306. [Google Scholar] [CrossRef] [Green Version]
- Vargas, E.; Ruiz, M.A.; Campuzano, S.; De Rivera, G.G.; López-Colino, F.; Reviejo, A.J.; Pingarrón, J.M. Implementation of a new integrated d-lactic acid biosensor in a semiautomatic FIA system for the simultaneous determination of lactic acid enantiomers. Application to the analysis of beer samples. Talanta 2016, 152, 147–154. [Google Scholar] [CrossRef]
- Alvarez-Crespo, S.L.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Amperometric glutamate biosensor based on poly(o-phenylenediamine) film electrogenerated onto modified carbon paste electrodes. Biosens. Bioelectron. 1997, 12, 739–747. [Google Scholar] [CrossRef]
- Skladal, P.; Mascini, M.; Salvadori, C.; Zannoni, G. Detection of bacterial contamination in sterile UHT milk using an l-lactate biosensor. Enzyme Microb. Technol. 1993, 15, 508–512. [Google Scholar] [CrossRef]
- Przybyt, M.; Iciek, J.; Papiewska, A.; Biernasiak, J. Application of biosensors in early detection of contamination with lactic acid bacteria during apple juice and concentrate production. J. Food Eng. 2010, 99, 485–490. [Google Scholar] [CrossRef]
- Sionek, B.; Przybylski, W.; Tambor, K. Biosensors in evaluation of quality of meat and meat products—A review. Ann. Anim. Sci. 2020, 20, 1151–1168. [Google Scholar] [CrossRef]
- Przybylski, W.; Sionek, B.; Jaworska, D.; Santé-Lhoutellier, V. The application of biosensors for drip loss analysis and glycolytic potential evaluation. Meat Sci. 2016, 117, 7–11. [Google Scholar] [CrossRef]
- Shu, H.C.; Hkanson, H.; Mattiasson, B. d-Lactic acid in pork as a freshness indicator monitored by immobilized d-lactate dehydrogenase using sequential injection analysis. Anal. Chim. Acta 1993, 283, 727–737. [Google Scholar] [CrossRef]
- Smit, N.J.; Howatson, G.; Greenfield, R. Blood lactate levels as a biomarker for angling-induced stress in tigerfish Hydrocynus vittatus from the Okavango Delta, Botswana. Afr. J. Aquat. Sci. 2009, 34, 255–259. [Google Scholar] [CrossRef]
- Cunha-Silva, H.; Arcos-Martinez, M.J. Dual range lactate oxidase-based screen printed amperometric biosensor for analysis of lactate in diversified samples. Talanta 2018, 188, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Shkotova, L.V.; Piechniakova, N.Y.; Kukla, O.L.; Dzyadevych, S.V. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine. Food Chem. 2016, 197, 972–978. [Google Scholar] [CrossRef]
- Bravo, I.; Revenga-Parra, M.; Pariente, F.; Lorenzo, E. Reagent-less and robust biosensor for direct determination of lactate in food samples. Sensors 2017, 17, 144. [Google Scholar] [CrossRef] [Green Version]
- Uygun, H.D.E.; Tinkilic, N.; Attar, A.; Isildak, I. Development of potentiometric lactate biosensor based on composite pH sensor. J. New Mater. Electrochem. Syst. 2016, 19, 151–156. [Google Scholar] [CrossRef]
- Nguyen-Boisse, T.T.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Highly sensitive conductometric biosensors for total lactate, D- and L-lactate determination in dairy products. Sens. Actuators B Chem. 2013, 179, 232–239. [Google Scholar] [CrossRef]
- Zanini, V.P.; López De Mishima, B.; Solís, V. An amperometric biosensor based on lactate oxidase immobilized in laponite-chitosan hydrogel on a glassy carbon electrode. Application to the analysis of l-lactate in food samples. Sens. Actuators B Chem. 2011, 155, 75–80. [Google Scholar] [CrossRef]
- Loaiza, O.A.; Lamas-Ardisana, P.J.; Añorga, L.; Jubete, E.; Ruiz, V.; Borghei, M.; Cabañero, G.; Grande, H.J. Graphitized carbon nanofiber-Pt nanoparticle hybrids as sensitive tool for preparation of screen printing biosensors. Detection of lactate in wines and ciders. Bioelectrochemistry 2015, 101, 58–65. [Google Scholar] [CrossRef]
- Monošík, R.; Streďanský, M.; Greif, G.; Šturdík, E. A rapid method for determination of l-lactic acid in real samples by amperometric biosensor utilizing nanocomposite. Food Control 2012, 23, 238–244. [Google Scholar] [CrossRef]
Enzymatic Sensors | ||||||
---|---|---|---|---|---|---|
Sensor Architecture | Trans. | LOD (µM) | Sensitivity | LRR (mM) | Sample Applied | Ref |
PtE-PDA/PPy/LOx | Amp. | - | 37.53 µA mM−1 cm−2 | 0–0.5 | PBS | [38] |
PtµE-poly-m-phenylene diamine/poly(ethylene glycol) diglycidyl ether)-LOx | Amp. | 19 ± 7 | 2.63 ± 0.66 nA mM−1 | 0–1.0 | Cerebrospinal fluid in mouse brain | [39] |
CE-fSWCNTs/Chit-PBNPs/Chit LOx | Amp. | 200 | - | 1–25 | Human sweat | [40] |
SPE-ERGO-PAH-AuNPs/LDH-GA | Amp. | 1 | 1.08 µA mM−1·cm−2 | 0–3 | Wine | [41] |
SPCE-PEGDGE/AvLOx | Amp. | 25 | 13 µA mM−1 cm−2 | 0–1 | PBS | [42] |
PtE-poly(phenylenedi- amine)/LOx/glycerol/PVA-SbQ | Amp. | 5 | 204 nA mM−1 | 0.005–1 | Blood serum | [43] |
Au-PB-Chit/CNTs-LOx-Chit/CNts | Amp. | - | 220 nA mM−1 | 0–30 | Sweat | [44] |
PVC/FC-LDH | Pot. | - | 52 mV decade −1 | - | Tris buffer | [45] |
AuE-LOx/GA/ZnO nanorod | Pot. | 0.1 | 41.33 ± 1.58 mV decade−1 | 0.0001–1 | PBS | [46] |
Si3N4-PAA/NHS-EDC/LOx | Pot. | 0.0002 | 49.7 mV decade−1 | 0–0.00005 | PBS | [47] |
Ti-Au/Nafion/Chit/LDH/GA | GFET | - | - | 0–7.5 | Human plasma | [48] |
Au-Os redox polymer/LOx | OFETs | - | - | 0–10 | PBS | [49] |
Non-enzymatic sensors | ||||||
GCE-Nafion/NiO | Amp. | 27 | 62.35 μA mM−1 cm−2 | 0.01–7.75 | NaOH | [50] |
GCE-Nafion/Co3O4 | Volt. | 6 | - | 0.5–3.0 | NaOH | [51] |
Amp. | 10 | |||||
GCE-CuO/MWCNTs/Nafion | Volt. | 0.088 | 633.0 pA mM−1 cm−2 | 0.0001–10 | Serum samples | [52] |
Ti-PTFE/PPy-MWCNTs | Amp. | 51 | 2.9 µAmM−1 cm−2 | 1–15 | Sweat | [53] |
BDD-NiNPs | Amp. | 0.72 ± 0.09 | (24.70 ± 0.36) μA L C−1 mol−1 | 6–120 | NaOH | [54] |
SPCE-NiCo layered double hydroxide | Amp. | 533 | 30.59 ± 0.34 μA mM−1 cm−2 | 5–25 | NaOH | [55] |
NiF-NiS-NC@NiS-MS | Amp. | 0.5 | 0.39 μA μM−1 | 0.0005–0.085 | Urine | [56] |
NH2-GP-Cu3(btc)2 | Amp. | 5 | 0.029 mA mM−1 cm−2 | 0.05–22.6 | Sweat | [57] |
SPCE-NiCo (layered double hydroxide) | Amp. | 400 | 83.98 μA mM−1 cm−2 | 2–26 | Sweat | [58] |
GCE-rGO-AuNPs-MIP | Amp. | 9 × 10−5 | 1.9 × 105 μA L mol−1 | 1 × 10−7–1 10−6 | Sugarcane vinasse | [59] |
CE-AgNWs-MIP | Amp. | 0.22 | 4.5 × 10−6 A M−1 | 0.001–100 | Sweat | [60] |
GCE-Nafion/CuO | Amp. | - | 80.33 μA mM−1 | 0.01–27.76 | - | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Guzmán, J.J.; Sierra-Padilla, A.; Palacios-Santander, J.M.; Fernández-Alba, J.J.; Macías, C.G.; Cubillana-Aguilera, L. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. Biosensors 2022, 12, 919. https://doi.org/10.3390/bios12110919
García-Guzmán JJ, Sierra-Padilla A, Palacios-Santander JM, Fernández-Alba JJ, Macías CG, Cubillana-Aguilera L. What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. Biosensors. 2022; 12(11):919. https://doi.org/10.3390/bios12110919
Chicago/Turabian StyleGarcía-Guzmán, Juan José, Alfonso Sierra-Padilla, José María Palacios-Santander, Juan Jesús Fernández-Alba, Carmen González Macías, and Laura Cubillana-Aguilera. 2022. "What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications" Biosensors 12, no. 11: 919. https://doi.org/10.3390/bios12110919
APA StyleGarcía-Guzmán, J. J., Sierra-Padilla, A., Palacios-Santander, J. M., Fernández-Alba, J. J., Macías, C. G., & Cubillana-Aguilera, L. (2022). What Is Left for Real-Life Lactate Monitoring? Current Advances in Electrochemical Lactate (Bio)Sensors for Agrifood and Biomedical Applications. Biosensors, 12(11), 919. https://doi.org/10.3390/bios12110919