The Characterization of Binding between Aptamer and Bisphenol A and Developing Electrochemical Aptasensors for Bisphenol A with Rationally Engineered Aptamers
Abstract
:1. Introduction
2. Materials and methods
2.1. Chemicals and Materials
2.2. Isothermal Titration Calorimetry Measurement
2.3. Preparation of Aptamer Modified Electrode
2.4. BPA Detection by Electrochemical Aptasensor
3. Results and Discussions
3.1. Characterization of Aptamer–BPA Binding with ITC
3.2. Identification of Crucial Bases on Aptamers for BPA Binding
3.3. Aptamer-Based Electrochemical Switch Sensor for BPA Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abraham, A.; Chakraborty, P. A review on sources and health impacts of bisphenol A. Rev. Environ. Health 2020, 35, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, E.J.; Simoneau, C. Release of bisphenol A from polycarbonate-A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 386–402. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Kondo, F.; Katayama, Y. Human exposure to bisphenol A. Toxicology 2006, 226, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Rezg, R.; El-Fazaa, S.; Gharbi, N.; Mornagui, B. Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives. Environ. Int. 2014, 64, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Sirohi, R.; Balakumaran, P.A.; Reshmy, R.; Madhavan, A.; Sindhu, R.; Binod, P.; Kumar, Y.; Kumar, D.; Sim, S.J. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. J. Hazard. Mater. 2022, 423, 127097. [Google Scholar] [PubMed]
- Tao, J.; Sun, L.X.J.; Le, X.C. Study of the effects of bisphenol A using human fetal lung fibroblasts. J. Environ. Sci. 2016, 48, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, H.H.; Wu, J.X.; Yuan, L.; Wang, Y.Q.; Du, X.D.; Wang, R.; Marwa, P.W.; Petlulu, P.; Chen, X.H.; et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 2019, 176, 108575. [Google Scholar] [CrossRef]
- Sun, F.X.; Kang, L.C.; Xiang, X.L.; Li, H.M.; Luo, X.L.; Luo, R.F.; Lu, C.X.; Peng, X.Y. Recent advances and progress in the detection of bisphenol A. Anal. Bioanal. Chem. 2016, 408, 6913–6927. [Google Scholar] [CrossRef]
- Marchesini, G.R.; Meulenberg, E.; Haasnoot, W.; Irth, H. Biosensor immunoassays for the detection of bisphenol A. Anal. Chim. Acta. 2005, 528, 37–45. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Rastogi, N.K.; Thakur, M.S. Sensors and biosensors for analysis of bisphenol-A. Trac-Trends Anal. Chem. 2013, 52, 248–260. [Google Scholar] [CrossRef]
- Ballesteros-Gomez, A.; Rubio, S.; Perez-Bendito, D. Analytical methods for the determination of bisphenol A in food. J. Chromatogr. A 2009, 1216, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Moradi, O. Electrochemical sensors based on carbon nanostructures for the analysis of bisphenol A-A review. Food Chem. Toxicol. 2022, 165, 113074. [Google Scholar] [CrossRef]
- Sinha, A.; Wu, L.X.; Lu, X.B.; Chen, J.P.; Jain, R. Advances in sensing and biosensing of bisphenols: A review. Anal. Chim. Acta. 2018, 998, 1–27. [Google Scholar]
- Ellington, A.D.; Szostak, J.W. Invitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment-RNA ligands to bacteriophage-T4 DNA-polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef]
- Zhou, J.H.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xu, S.J.; Yan, H.; Li, X.W.; Yazd, H.S.; Li, X.; Huang, T.; Cui, C.; Jiang, J.H.; Tan, W.H. Nucleic acid aptamers for molecular diagnostics and therapeutics: Advances and Perspectives. Angew. Chem. Int. Edit. 2021, 60, 2221–2231. [Google Scholar] [CrossRef]
- Prante, M.; Segal, E.; Scheper, T.; Bahnemann, J.; Walter, J. Aptasensors for point-of-care detection of small molecules. Biosensors 2020, 10, 108. [Google Scholar] [CrossRef]
- McConnell, E.M.; Cozma, I.; Morrison, D.; Li, Y.F. Biosensors made of synthetic functional nucleic acids toward better human health. Anal. Chem. 2020, 92, 327–344. [Google Scholar] [CrossRef]
- Li, F.; Zhang, H.Q.; Wang, Z.X.; Newbigging, A.M.; Reid, M.S.; Li, X.F.; Le, X.C. Aptamers facilitating amplified detection of biomolecules. Anal. Chem. 2015, 87, 274–292. [Google Scholar] [CrossRef] [PubMed]
- McConnell, E.M.; Nguyen, J.; Li, Y.F. Aptamer-based biosensors for environmental monitoring. Front. Chem. 2020, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.; Ahn, J.Y.; Lee, J.; Lee, S.; Hong, S.W.; Yoo, J.W.; Kang, J.; Dua, P.; Lee, D.K.; Hong, S.; et al. Development of single-stranded DNA aptamers for specific Bisphenol A detection. Oligonucleotides 2011, 21, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiano, M.E.; Abduvakhidov, A.; Varra, M.; Albrizio, S. Aptamer-based biosensors for the analytical determination of Bisphenol A in foodstuffs. Appl. Sci. Basel. 2022, 12, 3752. [Google Scholar] [CrossRef]
- Rajabnejad, S.H.; Badibostan, H.; Verdian, A.; Karimi, G.R.; Fooladi, E.; Feizy, J. Aptasensors as promising new tools in bisphenol A detection-An invisible pollution in food and environment. Microchem. J. 2020, 155, 104722. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Yavari, K.; Liu, J.W. Critical evaluation of aptamer binding for biosensor designs. Trac-Trends Anal. Chem. 2022, 146, 116480. [Google Scholar] [CrossRef]
- Bottari, F.; Daems, E.; de Vries, A.M.; Van Wielendaele, P.; Trashin, S.; Blust, R.; Sobott, F.; Madder, A.; Martins, J.C.; De Wael, K. Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds. J. Am. Chem. Soc. 2020, 142, 19622–19630. [Google Scholar] [CrossRef]
- Akki, S.U.; Werth, C.J. Critical Review: DNA Aptasensors, Are they ready for monitoring organic pollutants in natural and teated water sources? Environ. Sci. Technol. 2018, 52, 8989–9007. [Google Scholar] [CrossRef]
- Liu, L.Y.; Zhao, Q. A simple fluorescence anisotropy assay for detection of bisphenol A using fluorescently labeled aptamer. J. Environ. Sci. 2020, 97, 19–24. [Google Scholar] [CrossRef]
- Lubin, A.A.; Plaxco, K.W. Folding-based electrochemical biosensors: The case for responsive nucleic acid architectures. Acc. Chem. Res. 2010, 43, 496–505. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.T.; Ge, B.X.; Sen, D.; Yu, H.Z. Functional DNA switches: Rational design and electrochemical signaling. Chem. Soc. Rev. 2014, 43, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, L.; Zhao, Q. Low temperature greatly enhancing responses of aptamer electrochemical sensor for aflatoxin B1 using aptamer with short stem. ACS Sensors 2020, 5, 3246–3253. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.-i.; Miyoshi, D.; Sugimoto, N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem. Rev. 2014, 114, 2733–2758. [Google Scholar] [CrossRef]
- Gosai, A.; Hau Yeah, B.S.; Nilsen-Hamilton, M.; Shrotriya, P. Label free thrombin detection in presence of high concentration of albumin using an aptamer-functionalized nanoporous membrane. Biosens. Bioelectron. 2019, 126, 88–95. [Google Scholar] [CrossRef]
- Bao, Y.; Ye, S.; Zhou, C.; Chen, L. Molybdenum (IV) sulfide nanosheet-based aptasensor for the label-free determination of bisphenol A (BPA) by electrochemical impedance spectroscopy (EIS). Anal. Lett. 2022, 55, 1971–1979. [Google Scholar] [CrossRef]
- Kazane, I.; Gorgy, K.; Gondran, C.; Spinelli, N.; Zazoua, A.; Defrancq, E.; Cosnier, S. Highly sensitive bisphenol-A electrochemical aptasensor based on poly(pyrrole-nitrilotriacetic acid)-aptamer film. Anal. Chem. 2016, 88, 7268–7273. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Liu, B. A dual-signaling strategy for ultrasensitive detection of bisphenol A by aptamer-based electrochemical biosensor. J. Electroanal. Chem. 2016, 781, 265–271. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, J.; Li, D.; Li, Y. An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol A in milk samples. Food Chem. 2014, 162, 34–40. [Google Scholar] [CrossRef]
- Guo, X.; Wu, S.; Duan, N.; Wang, Z. Mn2+-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Anal. Bioanal. Chem. 2016, 408, 3823–3831. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Y.; Zhang, X.; Zhou, J.; Xiong, E.; Li, X.; Chen, J. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy. Biosens. Bioelectron. 2016, 79, 22–28. [Google Scholar] [CrossRef] [PubMed]
Name | Sequences | Kd/μM |
---|---|---|
BP60 | 5′-CCGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGGCGCACAGCTGTTATAGACGTCTCCAGC-3′ | 15.8 ± 2.0 |
BP55 | 5′-CCGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGGCGCACAGCTGTTATAGACGTCT-3′ | 11.6 ± 1.0 |
BP50 | 5′-CCGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGGCGCACAGCTGTTATAGA-3′ | 9.5 ± 0.5 |
BP45 | 5′-CCGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGGCGCACAGCTGTT-3′ | 12.5 ± 0.8 |
BP40 | 5′-CCGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGGCGCACAG-3′ | 15.4 ± 0.9 |
BP35 | 5′-CCGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGGCG -3′ | 20.2 ± 1.0 |
BP34 | 5′-CGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGGCG-3′ | 307 ± 249 |
BP33 | 5′-CCGCCGTTGGTGTGGTGGGCCTAGGGCCGGCGG -3′ | 10.5 ± 1.5 |
BP31 | 5′-CG CCG TTG GTG TGG TGG GCC TAG GGC CGG CG -3′ | 13.4 ± 1.5 |
BP29 | 5′-G CCG TTG GTG TGG TGG GCC TAG GGC CGG C -3′ | 12.4 ± 3.4 |
BP27 | 5′-CCG TTG GTG TGG TGG GCC TAG GGC CGG -3′ | 56 ± 9.0 |
BP25 | 5′-CG TTG GTG TGG TGG GCC TAG GGC CG -3′ | NB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Yu, H.; Zhao, Q. The Characterization of Binding between Aptamer and Bisphenol A and Developing Electrochemical Aptasensors for Bisphenol A with Rationally Engineered Aptamers. Biosensors 2022, 12, 913. https://doi.org/10.3390/bios12110913
Liu L, Yu H, Zhao Q. The Characterization of Binding between Aptamer and Bisphenol A and Developing Electrochemical Aptasensors for Bisphenol A with Rationally Engineered Aptamers. Biosensors. 2022; 12(11):913. https://doi.org/10.3390/bios12110913
Chicago/Turabian StyleLiu, Liying, Hao Yu, and Qiang Zhao. 2022. "The Characterization of Binding between Aptamer and Bisphenol A and Developing Electrochemical Aptasensors for Bisphenol A with Rationally Engineered Aptamers" Biosensors 12, no. 11: 913. https://doi.org/10.3390/bios12110913
APA StyleLiu, L., Yu, H., & Zhao, Q. (2022). The Characterization of Binding between Aptamer and Bisphenol A and Developing Electrochemical Aptasensors for Bisphenol A with Rationally Engineered Aptamers. Biosensors, 12(11), 913. https://doi.org/10.3390/bios12110913