Demonstrating a Filter-Free Wavelength Sensor with Double-Well Structure and Its Application
Abstract
:1. Introduction
2. Design and Principle
3. Fabrication
3.1. Device Simulation
3.2. Process Simulation and Fabrication
4. Experimental Results
4.1. Sensor Characteristics
4.1.1. Single Wavelength
4.1.2. Multiple Wavelength
4.2. Fluorescence Reagent
4.2.1. Measurement Configuration
4.2.2. Measurement Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pace, C.N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to Measure and Predict the Molar Absorption Coefficient of a Protein. Protein Sci. 1995, 4, 2411–2423. [Google Scholar] [CrossRef] [Green Version]
- Warner, I.M.; Callis, J.B.; Davidson, E.R.; Gouterman, M.; Christian, G.D. Fluorescence Analysis: A New Approach. Anal. Lett. 1975, 8, 665–681. [Google Scholar] [CrossRef]
- Richter, D.; Richter, A.; Dornich, K. Lexsyg—A New System for Luminescence Research. Geochronometria 2013, 40, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Bremer, C.; Ntziachristos, V.; Weissleder, R. Optical-Based Molecular Imaging: Contrast Agents and Potential Medical Ap-plications. Eur. Radiol. 2003, 13, 231–243. [Google Scholar] [CrossRef] [PubMed]
- González-Martínez, M.A.; Puchades, R.; Maquieira, A. Optical Immunosensors for Environmental Monitoring: How Far Have We Come? Anal. Bioanal. Chem. 2007, 387, 205–218. [Google Scholar] [CrossRef]
- Lee, B.; Roh, S.; Park, J. Current Status of Micro- and Nano-Structured Optical Fiber Sensors. Opt. Fiber Technol. 2009, 15, 209–221. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Pulkrabova, J.; Hajslova, J. Optical Screening Methods for Pesticide Residue Detection in Food Matrices: Advances and Emerging Analytical Trends. Foods 2021, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Takahashi, T.; Taki, M.; Sawada, K.; Takahashi, K. Label-Free Attomolar Protein Detection Using a MEMS Optical Interferometric Surface-Stress Immunosensor with a Freestanding PMMA/Parylene-C Nanosheet. Biosens. Bioelectron. 2021, 172, 112778. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Dhanapala, L.; Kankanamage, R.N.T.; Kumar, C.V.; Rusling, J.F. Multiplexed Immunosensors and Immunoarrays. Anal. Chem. 2020, 92, 345–362. [Google Scholar] [CrossRef]
- Briottet, X.; Boucher, Y.; Dimmeler, A.; Malaplate, A.; Cini, A.; Diani, M.; Bekman, H.; Schwering, P.; Skauli, T.; Kasen, I.; et al. Military Applications of Hyperspectral Imagery. In Targets and Backgrounds XII: Characterization and Representation; Watkins, W.R., Clement, D., Eds.; SPIE: Bellingham, WA, USA, 2006; p. 62390B. [Google Scholar]
- Zhou, W.; Zheng, L.; Ning, Z.; Cheng, X.; Wang, F.; Xu, K.; Xu, R.; Liu, Z.; Luo, M.; Hu, W.; et al. Silicon: Quantum Dot Pho-tovoltage Triodes. Nat. Commun. 2021, 12, 2–10. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, W.; Ning, Z.; Wang, G.; Cheng, X.; Hu, W.; Zhou, W.; Liu, Z.; Yang, S.; Xu, K.; et al. Ambipolar Graphene–Quantum Dot Phototransistors with CMOS Compatibility. Adv. Opt. Mater. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Lawaetz, A.J.; Stedmon, C.A. Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water. Appl. Spectrosc. 2009, 63, 936–940. [Google Scholar] [CrossRef]
- Clegg, R.M. Fluorescence Resonance Energy Transfer. Curr. Opin. Biotechnol. 1995, 6, 103–110. [Google Scholar] [CrossRef]
- Smith, D.S.; Eremin, S.A. Fluorescence Polarization Immunoassays and Related Methods for Simple, High-Throughput Screening of Small Molecules. Anal. Bioanal. Chem. 2008, 391, 1499–1507. [Google Scholar] [CrossRef]
- Suhling, K.; French, M.W.; Phillips, D. Time-Resolved Fluorescence Microscopy. Photochem. Photobiol. Sci. 2005, 4, 13–22. [Google Scholar] [CrossRef]
- DeRose, P.C.; Early, E.A.; Kramer, G.W. Qualification of a Fluorescence Spectrometer for Measuring True Fluorescence Spectra. Rev. Sci. Instrum. 2007, 78, 033107. [Google Scholar] [CrossRef]
- Wego, A. Accuracy Simulation of an LED Based Spectrophotometer. Optik 2013, 124, 644–649. [Google Scholar] [CrossRef]
- Lichtman, J.W.; Conchello, J.A. Fluorescence Microscopy. Nat. Methods 2005, 2, 910–919. [Google Scholar] [CrossRef]
- Aswani, K.; Jinadasa, T.; Brown, C.M. Fluorescence Microscopy Light Sources. Micros. Today 2012, 20, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.; Guerra, J.; Slhessarenko, N.; Scartezini, M.; Franca, C.; Colombini, M.; Berlitz, F.; Machado, A.; Campana, G.; Faulhaber, A.; et al. Point-of-Care Testing: General Aspects. Clin. Lab. 2018, 64, 1–9. [Google Scholar] [CrossRef]
- Luppa, P.B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-Care Testing (POCT): Current Techniques and Future Per-spectives. TrAC Trends Anal. Chem. 2011, 30, 887–898. [Google Scholar] [CrossRef]
- Sasagawa, K.; Rustami, E.; Ohta, Y.; Haruta, M.; Takehara, H.; Tashiro, H.; Ohta, J. Image Sensor with Hybrid Emission Filter for in Vivo Fluorescent Imaging. Electron. Commun. 2021, 104, 1–7. [Google Scholar] [CrossRef]
- Kulmala, N.; Sasagawa, K.; Treepetchkul, T.; Takehara, H.; Haruta, M.; Tashiro, H.; Ohta, J. Lensless Dual-Color Fluorescence Imaging Device Using Hybrid Filter. Jpn. J. Appl. Phys. 2022, 61, SC1020. [Google Scholar] [CrossRef]
- Richard, C.; Courcier, T.; Pittet, P.; Martel, S.; Ouellet, L.; Lu, G.-N.; Aimez, V.; Charette, P.G. CMOS Buried Quad P-n Junction Photodetector for Multi-Wavelength Analysis. Opt. Express 2012, 20, 2053. [Google Scholar] [CrossRef] [Green Version]
- Feruglio, S.; Courcier, T.; Tsiakaka, O.; Karami, A.; Alexandre-Gauthier, A.; Romain, O.; Aimez, V.; Charette, P.G.; Pittet, P.; Lu, G.N. A CMOS Buried Quad P-n Junction Photodetector Model. IEEE Sens. J. 2016, 16, 1611–1620. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, Y.; Sawada, K.; Takao, H.; Ishida, M. A Novel Filterless Fluorescence Detection Sensor for DNA Analysis. IEEE Trans. Electron Devices 2006, 53, 553–558. [Google Scholar] [CrossRef]
- Choi, Y.J.; Takahashi, K.; Misawa, N.; Hizawa, T.; Iwata, T.; Sawada, K. Multi-Wavelength Fluorescence Detection of Submi-cromolar Concentrations Using a Filter-Free Fluorescence Sensor. Sens. Actuators B Chem. 2018, 256, 38–47. [Google Scholar] [CrossRef]
- Green, M.A.; Keevers, M.J. Optical Properties of Intrinsic Silicon at 300 K. Prog. Photovolt. Res. Appl. 1995, 3, 189–192. [Google Scholar] [CrossRef]
- Shin, D.-J.; Park, S.; Jeong, K.-L.; Lee, D.-H. Dual-Photodiode Radiometer Design for Simultaneous Measurement of Irradiance and Centroid Wavelength of Light Sources with Finite Spectral Bandwidth. Appl. Opt. 2019, 58, 8262. [Google Scholar] [CrossRef]
- Li, M.C.; Chang, Y.F.; Wang, H.Y.; Lin, Y.X.; Kuo, C.C.; Annie Ho, J.A.; Lee, C.C.; Su, L.C. An Innovative Application of Time-Domain Spectroscopy on Localized Surface Plasmon Resonance Sensing. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Soler, M.; Özdemir, C.I.; Belushkin, A.; Yesilköy, F.; Altug, H. Plasmonic Nanohole Array Biosensor for Label-Free and Real-Time Analysis of Live Cell Secretion. Lab Chip 2017, 17, 2208–2217. [Google Scholar] [CrossRef]
Deep n-Well | p-Well | |
---|---|---|
Types of impurities | Phosphorus | Boron |
Dose [cm−2] | 1.0 × 1012 | 2.0 × 1012 |
Acceleration voltage [keV] | 150 | 80 |
Injection angle [deg] | 7 | 7 |
Drive-in time [min] | 1530 | 270 |
Drive-in temperature [°C] | 1150 | 1150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-J.; Nakano, K.; Ide, T.; Sakae, T.; Ichikawa, R.; Hizawa, T.; Akai, D.; Takahashi, K.; Noda, T.; Sawada, K. Demonstrating a Filter-Free Wavelength Sensor with Double-Well Structure and Its Application. Biosensors 2022, 12, 1033. https://doi.org/10.3390/bios12111033
Choi Y-J, Nakano K, Ide T, Sakae T, Ichikawa R, Hizawa T, Akai D, Takahashi K, Noda T, Sawada K. Demonstrating a Filter-Free Wavelength Sensor with Double-Well Structure and Its Application. Biosensors. 2022; 12(11):1033. https://doi.org/10.3390/bios12111033
Chicago/Turabian StyleChoi, Yong-Joon, Kakeru Nakano, Tomoya Ide, Tsugumi Sakae, Ryosuke Ichikawa, Takeshi Hizawa, Daisuke Akai, Kazuhiro Takahashi, Toshihiko Noda, and Kazuaki Sawada. 2022. "Demonstrating a Filter-Free Wavelength Sensor with Double-Well Structure and Its Application" Biosensors 12, no. 11: 1033. https://doi.org/10.3390/bios12111033
APA StyleChoi, Y. -J., Nakano, K., Ide, T., Sakae, T., Ichikawa, R., Hizawa, T., Akai, D., Takahashi, K., Noda, T., & Sawada, K. (2022). Demonstrating a Filter-Free Wavelength Sensor with Double-Well Structure and Its Application. Biosensors, 12(11), 1033. https://doi.org/10.3390/bios12111033