Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electropolishing of Al Foils
2.2. Fabrication of Ag-AAO SERS Substrates
2.3. Raman Measurement
3. Results and Discussion
3.1. Fabrication of Anodic Alumina
3.2. Characterization of Ag-AAO SERS Substrate
3.3. SERS Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suëtaka, W. Surface Infrared and Raman Spectroscopy: Methods and Applications; Plenum: New York, NY, USA, 1995. [Google Scholar]
- Huang, C.W.; Shiue, R.J.; Chui, H.C.; Wang, W.H.; Wang, J.K.; Tzeng, Y.H.; Liu, C.Y. Revealing anisotropic strain in exfoliated graphene by polarized Raman spectroscopy. Nanoscale 2013, 5, 9626–9632. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969. [Google Scholar] [CrossRef]
- Chen, S.T.; Chu, Y.C.; Liu, C.Y.; Huang, C.H.; Tzeng, Y. Surface-enhanced Raman spectroscopy for characterization of nanodiamond seeded substrates and ultrananocrystalline diamond at the early-stage of plasma CVD growth process. Diam. Relat. Mat. 2012, 24, 161–166. [Google Scholar] [CrossRef]
- Huang, C.W.; Lin, B.J.; Lin, H.Y.; Huang, C.H.; Shih, F.Y.; Wang, W.H.; Liu, C.Y.; Chui, H.C. Surface-enhanced Raman scattering of suspended monolayer graphene. Nanoscale Res. Lett. 2013, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.C.; Zhou, R.; Takei, K.; Hong, M.H. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925. [Google Scholar] [CrossRef]
- Chen, G.J.; Zhang, K.L.; Luo, B.B.; Hong, W.; Chen, J.; Chen, X.D. Plasmonic-3D photonic crystals microchip for surface enhanced Raman spectroscopy. Biosens. Bioelectron. 2019, 143, 111596. [Google Scholar] [CrossRef]
- Nie, S.M.; Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Fang, Y.; Seong, N.H.; Dlott, D.D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388–392. [Google Scholar] [CrossRef]
- Choi, H.K.; Lee, K.S.; Shin, H.H.; Koo, J.J.; Yeon, G.J.; Kim, Z.H. Single-molecule surface-enhanced Raman scattering as a probe of single-molecule surface reactions: Promises and current challenges. Accounts Chem. Res. 2019, 52, 3008–3017. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A. Review on SERS of Bacteria. Biosensors 2017, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Samek, O.; Bernatova, S.; Dohnal, F. The potential of SERS as an AST methodology in clinical settings. Nanophotonics 2021, 10, 2537–2561. [Google Scholar] [CrossRef]
- Wang, K.S.; Tseng, Z.L.; Liu, C.Y.; Kuan, T.Y.; Jeng, R.J.; Yang, M.C.; Wang, Y.L.; Liu, T.Y. Novel strategy for flexible and super-hydrophobic SERS substrate fabricated by deposited gold nanoislands on organic semiconductor nanostructures for bio-detection. Surf. Coat. Technol. 2022, 435, 128251. [Google Scholar] [CrossRef]
- Liu, C.Y.; Han, Y.Y.; Shih, P.H.; Lian, W.N.; Wang, H.H.; Lin, C.H.; Hsueh, P.R.; Wang, J.K.; Wang, Y.L. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci. Rep. 2016, 6, 23375. [Google Scholar] [CrossRef] [PubMed]
- Losic, D.; Santos, A. Nanoporous Alumina: Fabrication, Structure, Properties and Applications; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Liu, C.Y.; Wang, Y.L. Creating anodic alumina nanochannel arrays with custom-made geometry. J. Chin. Chem. Soc. 2020, 67, 11–24. [Google Scholar] [CrossRef]
- Liu, C.Y.; Lai, M.Y.; Tsai, K.T.; Chang, H.H.; He, J.H.; Shiue, J.; Wang, Y.L. A novel vertical fan-out platform based on an array of curved anodic alumina nanochannels. Nanotechnology 2013, 24, 055306. [Google Scholar] [CrossRef]
- Liu, C.Y.; Biring, S. Nanoplatform based on ideally ordered arrays of short straight and long beer bottle-shaped nanochannels. Microporous Mesoporous Mat. 2019, 287, 71–76. [Google Scholar] [CrossRef]
- Lin, M.N.; Lin, M.T.; Liu, C.Y.; Lai, M.Y.; Liu, N.W.; Peng, C.Y.; Wang, H.H.; Wang, Y.L. Long-range ordered nanoaperture array with uniform diameter and interpore spacing. Appl. Phys. Lett. 2005, 87, 173116. [Google Scholar] [CrossRef]
- Mistura, G.; Bruschi, L.; Lee, W. Adsorption on highly ordered porous alumina. J. Low Temp. Phys. 2016, 185, 138–160. [Google Scholar] [CrossRef]
- Peng, C.Y.; Liu, C.Y.; Liu, N.W.; Wang, H.H.; Datta, A.; Wang, Y.L. Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-bearn patterned aluminum. J. Vac. Sci. Technol. B 2005, 23, 559–562. [Google Scholar] [CrossRef]
- Tsai, K.T.; Huang, Y.R.; Lai, M.Y.; Liu, C.Y.; Wang, H.H.; He, J.H.; Wang, Y.L. Identical-length nanowire arrays in anodic alumina templates. J. Nanosci. Nanotechnol. 2010, 10, 8293–8297. [Google Scholar] [CrossRef]
- Sousa, C.T.; Leitao, D.C.; Proenca, M.P.; Ventura, J.; Pereira, A.M.; Araujo, J.P. Nanoporous alumina as templates for multifunctional applications. Appl. Phys. Rev. 2014, 1, 031102. [Google Scholar] [CrossRef]
- Law, C.S.; Lim, S.Y.; Abel, A.D.; Voelcker, N.H.; Santos, A. Nanoporous anodic alumina photonic crystals for optical chemo- and biosensing: Fundamentals, advances, and perspectives. Nanomaterials 2018, 8, 788. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.; Wang, W.J.; Fan, Y.N.; Dong, L. Recent progressive preparations and applications of silver-based SERS substrates. Trac-Trends Anal. Chem. 2018, 106, 246–258. [Google Scholar] [CrossRef]
- Okeil, S.; Pashchanka, M.; Heinschke, S.; Bruns, M.; Schneider, J.J. Synergistic physical and chemical enhancement effects observed on surface-enhanced Raman spectroscopy substrates of silver-coated, barrier-type anodic alumina. J. Phys. Chem. C 2020, 124, 13316–13328. [Google Scholar] [CrossRef]
- Hu, X.Y.; Zheng, P.; Meng, G.W.; Huang, Q.; Zhu, C.H.; Han, F.M.; Huang, Z.L.; Li, Z.B.; Wang, Z.M.; Wu, N.Q. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide. Nanotechnology 2016, 27, 384001. [Google Scholar] [CrossRef]
- Lang, X.Z.; Qiu, T.; Yin, Y.; Kong, F.; Si, L.F.; Hao, Q.; Chu, P.K. Silver nanovoid arrays for surface-enhanced Raman scattering. Langmuir 2012, 28, 8799–8803. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.Q.; Yuan, L.; Zhao, L.H.; Feng, X.H.; Zhang, W.W.; Zhai, L.P.; Zhu, J. Silver nanostructure arrays abundant in sub-5 nm gaps as highly Raman-enhancing substrates. Appl. Surf. Sci. 2012, 258, 3519–3523. [Google Scholar] [CrossRef]
- Qiu, T.; Zhang, W.J.; Lang, X.Z.; Zhou, Y.J.; Cui, T.J.; Chu, P.K. Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. Small 2009, 5, 2333–2337. [Google Scholar] [CrossRef]
- Wang, H.H.; Liu, C.Y.; Wu, S.B.; Liu, N.W.; Peng, C.Y.; Chan, T.H.; Hsu, C.F.; Wang, J.K.; Wang, Y.L. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 2006, 18, 491–495. [Google Scholar] [CrossRef]
- Huang, C.H.; Lin, H.Y.; Chen, S.T.; Liu, C.Y.; Chui, H.C.; Tzeng, Y.H. Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors. Opt. Express 2011, 19, 11441–11450. [Google Scholar] [CrossRef]
- Malinovskis, U.; Poplausks, R.; Erts, D.; Ramser, K.; Tamulevicius, S.; Tamuleviciene, A.; Gu, Y.S.; Prikulis, J. High-density plasmonic nanoparticle arrays deposited on nanoporous anodic alumina templates for optical sensor applications. Nanomaterials 2019, 9, 531. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Zhao, L.A.; Jiang, C.H.; Lu, J.G. Formation of anodic aluminum oxide with serrated nanochannels. Nano Lett. 2010, 10, 2766–2771. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Jiang, C.H.; Jiang, J.H.; Lu, J.G. Self-assembly of periodic serrated nanostructures. Chem. Mat. 2009, 21, 253–258. [Google Scholar] [CrossRef]
- Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5, 741–747. [Google Scholar] [CrossRef]
- Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770–2772. [Google Scholar] [CrossRef]
- Li, A.P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 1998, 84, 6023–6026. [Google Scholar] [CrossRef]
- Sooraj, K.P.; Ranjan, M.; Rao, R.; Mukherjee, S. SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays. Appl. Surf. Sci. 2018, 447, 576–581. [Google Scholar] [CrossRef]
- Yilmaz, M.; Babur, E.; Ozdemir, M.; Gieseking, R.L.; Dede, Y.; Tamer, U.; Schatz, G.C.; Facchetti, A.; Usta, H.; Demirel, G. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat. Mater. 2017, 16, 918–925. [Google Scholar] [CrossRef]
- Cigarroa-Mayorga, O.E.; Gallardo-Hernandez, S.; Talamas-Rohana, P. Tunable Raman scattering enhancement due to self-assembled au nanoparticles layer on porous aao: The influence of the alumina support. Appl. Surf. Sci. 2021, 536, 147674. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Wu, L.; Yan, H.; Lu, Z.C.; Yin, W.M.; Han, H.Y. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin. Anal. Chim. Acta 2020, 1101, 111–119. [Google Scholar] [CrossRef]
- Muhammad, M.; Shao, C.S.; Huang, Q. Label-free SERS diagnostics of radiation-induced injury via detecting the biomarker Raman signal in the serum and urine bio-samples based on Au-NPs array substrates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117282. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Y.; Chung, C.K. Novel irregular pore peripheral plasmonic mechanism of nanocomposite metal-nanoporous AAO using new facile one-step anodization and pore widening for high SERS enhancement. Appl. Surf. Sci. 2022, 580, 152252. [Google Scholar] [CrossRef]
- Xiao, D.F.; Jie, Z.S.; Ma, Z.Y.; Ying, Y.; Guo, X.Y.; Wen, Y.; Yang, H.F. Fabrication of homogeneous waffle-like silver composite substrate for Raman determination of trace chloramphenicol. Mikrochim Acta 2020, 187, 593. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.T.; Ly, N.H.; Kim, M.K.; Lim, S.H.; Son, S.J.; Zoh, K.D.; Joo, S.W. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. J. Hazard. Mater. 2021, 402, 123499. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Yan, H.; Tan, X.C.; Lu, Z.C.; Han, H.Y. Cauliflower-inspired 3d SERS substrate for multiple mycotoxins detection. Anal. Chem. 2019, 91, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.C.; Zhu, Y.; Chen, L.; Zhou, S.X.; Su, Y.Q.; Ji, X.; Chen, A.Q.; Gui, X.C.; Tang, Z.K.; Liu, Z.W. Multi-layer nanoarrays sandwiched by anodized aluminium oxide membranes: An approach to an inexpensive, reproducible, highly sensitive SERS substrate. Nanoscale 2018, 10, 16278–16283. [Google Scholar] [CrossRef]
- Muhammad, M.; Yan, B.; Yao, G.H.; Chao, K.L.; Zhu, C.H.; Huang, Q. Surface-enhanced Raman spectroscopy for trace detection of tetracycline and dicyandiamide in milk using transparent substrate of Ag nanoparticle arrays. ACS Appl. Nano Mater. 2020, 3, 7066–7075. [Google Scholar] [CrossRef]
- Lin, B.Y.; Chen, J.M.; Kannan, P.; Zeng, Y.B.; Qiu, B.; Guo, L.H.; Lin, Z.Y. Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine. Mikrochim. Acta 2019, 186, 260. [Google Scholar] [CrossRef]
- Lin, B.Y.; Kannan, P.; Qiu, B.; Lin, Z.Y.; Guo, L.H. On-spot surface enhanced Raman scattering detection of Aflatoxin B-1 in peanut extracts using gold nanobipyramids evenly trapped into the AAO nanoholes. Food Chem. 2020, 307, 125528. [Google Scholar] [CrossRef]
Element | Atomic Concentration (%) | Weight Concentration (%) |
---|---|---|
Aluminum | 48.79 | 57.84 |
Oxygen | 49.68 | 34.93 |
Silver | 1.52 | 7.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-Y.; Ram, R.; Kolaru, R.B.; Jana, A.S.; Sadhu, A.S.; Chu, C.-S.; Lin, Y.-N.; Pal, B.N.; Chang, S.-H.; Biring, S. Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules. Biosensors 2022, 12, 807. https://doi.org/10.3390/bios12100807
Liu C-Y, Ram R, Kolaru RB, Jana AS, Sadhu AS, Chu C-S, Lin Y-N, Pal BN, Chang S-H, Biring S. Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules. Biosensors. 2022; 12(10):807. https://doi.org/10.3390/bios12100807
Chicago/Turabian StyleLiu, Chih-Yi, Rahul Ram, Rahim Bakash Kolaru, Anindya Sundar Jana, Annada Sankar Sadhu, Cheng-Shane Chu, Yi-Nan Lin, Bhola Nath Pal, Shih-Hsin Chang, and Sajal Biring. 2022. "Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules" Biosensors 12, no. 10: 807. https://doi.org/10.3390/bios12100807
APA StyleLiu, C. -Y., Ram, R., Kolaru, R. B., Jana, A. S., Sadhu, A. S., Chu, C. -S., Lin, Y. -N., Pal, B. N., Chang, S. -H., & Biring, S. (2022). Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules. Biosensors, 12(10), 807. https://doi.org/10.3390/bios12100807