Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules
Abstract
1. Introduction
2. Materials and Methods
2.1. Electropolishing of Al Foils
2.2. Fabrication of Ag-AAO SERS Substrates
2.3. Raman Measurement
3. Results and Discussion
3.1. Fabrication of Anodic Alumina
3.2. Characterization of Ag-AAO SERS Substrate
3.3. SERS Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suëtaka, W. Surface Infrared and Raman Spectroscopy: Methods and Applications; Plenum: New York, NY, USA, 1995. [Google Scholar]
- Huang, C.W.; Shiue, R.J.; Chui, H.C.; Wang, W.H.; Wang, J.K.; Tzeng, Y.H.; Liu, C.Y. Revealing anisotropic strain in exfoliated graphene by polarized Raman spectroscopy. Nanoscale 2013, 5, 9626–9632. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969. [Google Scholar] [CrossRef]
- Chen, S.T.; Chu, Y.C.; Liu, C.Y.; Huang, C.H.; Tzeng, Y. Surface-enhanced Raman spectroscopy for characterization of nanodiamond seeded substrates and ultrananocrystalline diamond at the early-stage of plasma CVD growth process. Diam. Relat. Mat. 2012, 24, 161–166. [Google Scholar] [CrossRef]
- Huang, C.W.; Lin, B.J.; Lin, H.Y.; Huang, C.H.; Shih, F.Y.; Wang, W.H.; Liu, C.Y.; Chui, H.C. Surface-enhanced Raman scattering of suspended monolayer graphene. Nanoscale Res. Lett. 2013, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.C.; Zhou, R.; Takei, K.; Hong, M.H. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6, 1900925. [Google Scholar] [CrossRef]
- Chen, G.J.; Zhang, K.L.; Luo, B.B.; Hong, W.; Chen, J.; Chen, X.D. Plasmonic-3D photonic crystals microchip for surface enhanced Raman spectroscopy. Biosens. Bioelectron. 2019, 143, 111596. [Google Scholar] [CrossRef]
- Nie, S.M.; Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef]
- Fang, Y.; Seong, N.H.; Dlott, D.D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388–392. [Google Scholar] [CrossRef]
- Choi, H.K.; Lee, K.S.; Shin, H.H.; Koo, J.J.; Yeon, G.J.; Kim, Z.H. Single-molecule surface-enhanced Raman scattering as a probe of single-molecule surface reactions: Promises and current challenges. Accounts Chem. Res. 2019, 52, 3008–3017. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A. Review on SERS of Bacteria. Biosensors 2017, 7, 51. [Google Scholar] [CrossRef]
- Samek, O.; Bernatova, S.; Dohnal, F. The potential of SERS as an AST methodology in clinical settings. Nanophotonics 2021, 10, 2537–2561. [Google Scholar] [CrossRef]
- Wang, K.S.; Tseng, Z.L.; Liu, C.Y.; Kuan, T.Y.; Jeng, R.J.; Yang, M.C.; Wang, Y.L.; Liu, T.Y. Novel strategy for flexible and super-hydrophobic SERS substrate fabricated by deposited gold nanoislands on organic semiconductor nanostructures for bio-detection. Surf. Coat. Technol. 2022, 435, 128251. [Google Scholar] [CrossRef]
- Liu, C.Y.; Han, Y.Y.; Shih, P.H.; Lian, W.N.; Wang, H.H.; Lin, C.H.; Hsueh, P.R.; Wang, J.K.; Wang, Y.L. Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci. Rep. 2016, 6, 23375. [Google Scholar] [CrossRef] [PubMed]
- Losic, D.; Santos, A. Nanoporous Alumina: Fabrication, Structure, Properties and Applications; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Liu, C.Y.; Wang, Y.L. Creating anodic alumina nanochannel arrays with custom-made geometry. J. Chin. Chem. Soc. 2020, 67, 11–24. [Google Scholar] [CrossRef]
- Liu, C.Y.; Lai, M.Y.; Tsai, K.T.; Chang, H.H.; He, J.H.; Shiue, J.; Wang, Y.L. A novel vertical fan-out platform based on an array of curved anodic alumina nanochannels. Nanotechnology 2013, 24, 055306. [Google Scholar] [CrossRef][Green Version]
- Liu, C.Y.; Biring, S. Nanoplatform based on ideally ordered arrays of short straight and long beer bottle-shaped nanochannels. Microporous Mesoporous Mat. 2019, 287, 71–76. [Google Scholar] [CrossRef]
- Lin, M.N.; Lin, M.T.; Liu, C.Y.; Lai, M.Y.; Liu, N.W.; Peng, C.Y.; Wang, H.H.; Wang, Y.L. Long-range ordered nanoaperture array with uniform diameter and interpore spacing. Appl. Phys. Lett. 2005, 87, 173116. [Google Scholar] [CrossRef]
- Mistura, G.; Bruschi, L.; Lee, W. Adsorption on highly ordered porous alumina. J. Low Temp. Phys. 2016, 185, 138–160. [Google Scholar] [CrossRef]
- Peng, C.Y.; Liu, C.Y.; Liu, N.W.; Wang, H.H.; Datta, A.; Wang, Y.L. Ideally ordered 10 nm channel arrays grown by anodization of focused-ion-bearn patterned aluminum. J. Vac. Sci. Technol. B 2005, 23, 559–562. [Google Scholar] [CrossRef]
- Tsai, K.T.; Huang, Y.R.; Lai, M.Y.; Liu, C.Y.; Wang, H.H.; He, J.H.; Wang, Y.L. Identical-length nanowire arrays in anodic alumina templates. J. Nanosci. Nanotechnol. 2010, 10, 8293–8297. [Google Scholar] [CrossRef]
- Sousa, C.T.; Leitao, D.C.; Proenca, M.P.; Ventura, J.; Pereira, A.M.; Araujo, J.P. Nanoporous alumina as templates for multifunctional applications. Appl. Phys. Rev. 2014, 1, 031102. [Google Scholar] [CrossRef]
- Law, C.S.; Lim, S.Y.; Abel, A.D.; Voelcker, N.H.; Santos, A. Nanoporous anodic alumina photonic crystals for optical chemo- and biosensing: Fundamentals, advances, and perspectives. Nanomaterials 2018, 8, 788. [Google Scholar] [CrossRef] [PubMed]
- Tong, Q.; Wang, W.J.; Fan, Y.N.; Dong, L. Recent progressive preparations and applications of silver-based SERS substrates. Trac-Trends Anal. Chem. 2018, 106, 246–258. [Google Scholar] [CrossRef]
- Okeil, S.; Pashchanka, M.; Heinschke, S.; Bruns, M.; Schneider, J.J. Synergistic physical and chemical enhancement effects observed on surface-enhanced Raman spectroscopy substrates of silver-coated, barrier-type anodic alumina. J. Phys. Chem. C 2020, 124, 13316–13328. [Google Scholar] [CrossRef]
- Hu, X.Y.; Zheng, P.; Meng, G.W.; Huang, Q.; Zhu, C.H.; Han, F.M.; Huang, Z.L.; Li, Z.B.; Wang, Z.M.; Wu, N.Q. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide. Nanotechnology 2016, 27, 384001. [Google Scholar] [CrossRef]
- Lang, X.Z.; Qiu, T.; Yin, Y.; Kong, F.; Si, L.F.; Hao, Q.; Chu, P.K. Silver nanovoid arrays for surface-enhanced Raman scattering. Langmuir 2012, 28, 8799–8803. [Google Scholar] [CrossRef]
- Wang, J.; Huang, L.Q.; Yuan, L.; Zhao, L.H.; Feng, X.H.; Zhang, W.W.; Zhai, L.P.; Zhu, J. Silver nanostructure arrays abundant in sub-5 nm gaps as highly Raman-enhancing substrates. Appl. Surf. Sci. 2012, 258, 3519–3523. [Google Scholar] [CrossRef]
- Qiu, T.; Zhang, W.J.; Lang, X.Z.; Zhou, Y.J.; Cui, T.J.; Chu, P.K. Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. Small 2009, 5, 2333–2337. [Google Scholar] [CrossRef]
- Wang, H.H.; Liu, C.Y.; Wu, S.B.; Liu, N.W.; Peng, C.Y.; Chan, T.H.; Hsu, C.F.; Wang, J.K.; Wang, Y.L. Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 2006, 18, 491–495. [Google Scholar] [CrossRef]
- Huang, C.H.; Lin, H.Y.; Chen, S.T.; Liu, C.Y.; Chui, H.C.; Tzeng, Y.H. Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors. Opt. Express 2011, 19, 11441–11450. [Google Scholar] [CrossRef]
- Malinovskis, U.; Poplausks, R.; Erts, D.; Ramser, K.; Tamulevicius, S.; Tamuleviciene, A.; Gu, Y.S.; Prikulis, J. High-density plasmonic nanoparticle arrays deposited on nanoporous anodic alumina templates for optical sensor applications. Nanomaterials 2019, 9, 531. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Zhao, L.A.; Jiang, C.H.; Lu, J.G. Formation of anodic aluminum oxide with serrated nanochannels. Nano Lett. 2010, 10, 2766–2771. [Google Scholar] [CrossRef] [PubMed]
- Li, D.D.; Jiang, C.H.; Jiang, J.H.; Lu, J.G. Self-assembly of periodic serrated nanostructures. Chem. Mat. 2009, 21, 253–258. [Google Scholar] [CrossRef]
- Lee, W.; Ji, R.; Gösele, U.; Nielsch, K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 2006, 5, 741–747. [Google Scholar] [CrossRef]
- Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770–2772. [Google Scholar] [CrossRef]
- Li, A.P.; Müller, F.; Birner, A.; Nielsch, K.; Gösele, U. Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 1998, 84, 6023–6026. [Google Scholar] [CrossRef]
- Sooraj, K.P.; Ranjan, M.; Rao, R.; Mukherjee, S. SERS based detection of glucose with lower concentration than blood glucose level using plasmonic nanoparticle arrays. Appl. Surf. Sci. 2018, 447, 576–581. [Google Scholar] [CrossRef]
- Yilmaz, M.; Babur, E.; Ozdemir, M.; Gieseking, R.L.; Dede, Y.; Tamer, U.; Schatz, G.C.; Facchetti, A.; Usta, H.; Demirel, G. Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nat. Mater. 2017, 16, 918–925. [Google Scholar] [CrossRef]
- Cigarroa-Mayorga, O.E.; Gallardo-Hernandez, S.; Talamas-Rohana, P. Tunable Raman scattering enhancement due to self-assembled au nanoparticles layer on porous aao: The influence of the alumina support. Appl. Surf. Sci. 2021, 536, 147674. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Wu, L.; Yan, H.; Lu, Z.C.; Yin, W.M.; Han, H.Y. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin. Anal. Chim. Acta 2020, 1101, 111–119. [Google Scholar] [CrossRef]
- Muhammad, M.; Shao, C.S.; Huang, Q. Label-free SERS diagnostics of radiation-induced injury via detecting the biomarker Raman signal in the serum and urine bio-samples based on Au-NPs array substrates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117282. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.Y.; Chung, C.K. Novel irregular pore peripheral plasmonic mechanism of nanocomposite metal-nanoporous AAO using new facile one-step anodization and pore widening for high SERS enhancement. Appl. Surf. Sci. 2022, 580, 152252. [Google Scholar] [CrossRef]
- Xiao, D.F.; Jie, Z.S.; Ma, Z.Y.; Ying, Y.; Guo, X.Y.; Wen, Y.; Yang, H.F. Fabrication of homogeneous waffle-like silver composite substrate for Raman determination of trace chloramphenicol. Mikrochim Acta 2020, 187, 593. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.T.; Ly, N.H.; Kim, M.K.; Lim, S.H.; Son, S.J.; Zoh, K.D.; Joo, S.W. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. J. Hazard. Mater. 2021, 402, 123499. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Yan, H.; Tan, X.C.; Lu, Z.C.; Han, H.Y. Cauliflower-inspired 3d SERS substrate for multiple mycotoxins detection. Anal. Chem. 2019, 91, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.C.; Zhu, Y.; Chen, L.; Zhou, S.X.; Su, Y.Q.; Ji, X.; Chen, A.Q.; Gui, X.C.; Tang, Z.K.; Liu, Z.W. Multi-layer nanoarrays sandwiched by anodized aluminium oxide membranes: An approach to an inexpensive, reproducible, highly sensitive SERS substrate. Nanoscale 2018, 10, 16278–16283. [Google Scholar] [CrossRef]
- Muhammad, M.; Yan, B.; Yao, G.H.; Chao, K.L.; Zhu, C.H.; Huang, Q. Surface-enhanced Raman spectroscopy for trace detection of tetracycline and dicyandiamide in milk using transparent substrate of Ag nanoparticle arrays. ACS Appl. Nano Mater. 2020, 3, 7066–7075. [Google Scholar] [CrossRef]
- Lin, B.Y.; Chen, J.M.; Kannan, P.; Zeng, Y.B.; Qiu, B.; Guo, L.H.; Lin, Z.Y. Rapid synthesis of a highly active and uniform 3-dimensional SERS substrate for on-spot sensing of dopamine. Mikrochim. Acta 2019, 186, 260. [Google Scholar] [CrossRef]
- Lin, B.Y.; Kannan, P.; Qiu, B.; Lin, Z.Y.; Guo, L.H. On-spot surface enhanced Raman scattering detection of Aflatoxin B-1 in peanut extracts using gold nanobipyramids evenly trapped into the AAO nanoholes. Food Chem. 2020, 307, 125528. [Google Scholar] [CrossRef]
Element | Atomic Concentration (%) | Weight Concentration (%) |
---|---|---|
Aluminum | 48.79 | 57.84 |
Oxygen | 49.68 | 34.93 |
Silver | 1.52 | 7.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-Y.; Ram, R.; Kolaru, R.B.; Jana, A.S.; Sadhu, A.S.; Chu, C.-S.; Lin, Y.-N.; Pal, B.N.; Chang, S.-H.; Biring, S. Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules. Biosensors 2022, 12, 807. https://doi.org/10.3390/bios12100807
Liu C-Y, Ram R, Kolaru RB, Jana AS, Sadhu AS, Chu C-S, Lin Y-N, Pal BN, Chang S-H, Biring S. Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules. Biosensors. 2022; 12(10):807. https://doi.org/10.3390/bios12100807
Chicago/Turabian StyleLiu, Chih-Yi, Rahul Ram, Rahim Bakash Kolaru, Anindya Sundar Jana, Annada Sankar Sadhu, Cheng-Shane Chu, Yi-Nan Lin, Bhola Nath Pal, Shih-Hsin Chang, and Sajal Biring. 2022. "Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules" Biosensors 12, no. 10: 807. https://doi.org/10.3390/bios12100807
APA StyleLiu, C.-Y., Ram, R., Kolaru, R. B., Jana, A. S., Sadhu, A. S., Chu, C.-S., Lin, Y.-N., Pal, B. N., Chang, S.-H., & Biring, S. (2022). Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules. Biosensors, 12(10), 807. https://doi.org/10.3390/bios12100807