Amperometric Sensing of Carbon Monoxide: Improved Sensitivity and Selectivity via Nanostructure-Controlled Electrodeposition of Gold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Electrodeposition of Au Structures
2.3. Physical and Electrochemical Characterization
3. Results and Discussion
3.1. Au Nanostructures Depending on the Deposition Potentials
3.2. Electrochemical Characterization of Au Nanostructures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kajimura, M.; Fukuda, R.; Bateman, R.M.; Yamamoto, T.; Suematsu, M. Interactions of multiple gas-transducing systems: Hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid. Redox Signal. 2010, 13, 157–192. [Google Scholar] [CrossRef] [Green Version]
- Ryter, S.W.; Choi, A.M. Carbon monoxide: Present and future indications for a medical gas. Korean J. Intern. Med. 2013, 28, 123. [Google Scholar] [CrossRef]
- Zhou, G.-F.; Ma, J.; Bai, S.; Wang, L.; Guo, Y. CO catalytic oxidation over Pd/CeO2 with different chemical states of Pd. Rare Met. 2020, 39, 800–805. [Google Scholar] [CrossRef]
- Pathirana, S.; Van Der Veen, C.; Popa, M.; Röckmann, T. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry. Atmos. Meas. Tech. 2015, 8, 5315–5324. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Li, Z.; Liu, W.; Deng, T.; Yang, J.; Yang, R.; Li, J. Upconversion nanoprobes for in vitro and ex vivo measurement of carbon monoxide. ACS Appl. Mater. Interfaces 2019, 11, 26684–26689. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, H.; Zhan, T.; Zhang, J.; Chen, B.; Qian, Z.; Zhang, G.; Zhang, W.; Zhou, J. A new mitochondrion targetable fluorescent probe for carbon monoxide-specific detection and live cell imaging. Chem. Commun. 2019, 55, 9444–9447. [Google Scholar] [CrossRef]
- Lin, C.; Xian, X.; Qin, X.; Wang, D.; Tsow, F.; Forzani, E.; Tao, N. High performance colorimetric carbon monoxide sensor for continuous personal exposure monitoring. ACS Sens. 2018, 3, 327–333. [Google Scholar] [CrossRef]
- Guan, Y.; Liu, F.; Wang, B.; Yang, X.; Liang, X.; Suo, H.; Sun, P.; Sun, Y.; Ma, J.; Zheng, J. Highly sensitive amperometric Nafion-based CO sensor using Pt/C electrodes with different kinds of carbon materials. Sens. Actuators B Chem. 2017, 239, 696–703. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Xu, T.; Scafa, N.; Xu, L.P.; Su, L.; Li, C.; Zhou, S.; Liu, Y.; Zhang, X. Electrochemical sensors for nitric oxide detection in biological applications. Electroanalysis 2014, 26, 449–468. [Google Scholar] [CrossRef]
- Seto, H.; Kondo, T.; Yuasa, M. Sensitive and selective electrochemical detection of carbon monoxide in saline at a Pt-Ru/Nafion/MnO2-modified electrode. Anal. Sci. 2012, 28, 115. [Google Scholar] [CrossRef] [Green Version]
- Park, S.S.; Kim, J.; Lee, Y. Improved electrochemical microsensor for the real-time simultaneous analysis of endogenous nitric oxide and carbon monoxide generation. Anal. Chem. 2012, 84, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Katz, E.; Willner, I.; Wang, J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2004, 16, 19–44. [Google Scholar] [CrossRef]
- Criscuolo, F.; Taurino, I.; Dam, V.A.; Catthoor, F.; Zevenbergen, M.; Carrara, S.; De Micheli, G. Fast procedures for the electrodeposition of platinum nanostructures on miniaturized electrodes for improved ion sensing. Sensors 2019, 19, 2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, C.; Bi, T.; Ding, Q.; Cui, Z.; Yu, N.; Xu, X.; Geng, B. High-density Pd nanorod arrays on Au nanocrystals for high-performance ethanol electrooxidation. ACS Appl. Mater. Interfaces 2019, 11, 20117–20124. [Google Scholar] [CrossRef]
- Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuan, X.-L.; Lyu, F.-L.; Wang, X.-C.; Jiang, X.-J.; Cao, M.-H.; Zhang, Q. Facile one-step synthesis of PdPb nanochains for high-performance electrocatalytic ethanol oxidation. Rare Met. 2020, 39, 792–799. [Google Scholar] [CrossRef]
- Shipway, A.N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000, 1, 18–52. [Google Scholar] [CrossRef]
- Guo, S.; Wang, E. Functional micro/nanostructures: Simple synthesis and application in sensors, fuel cells, and gene delivery. Acc. Chem. Res. 2011, 44, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Mieszawska, A.J.; Jalilian, R.; Sumanasekera, G.U.; Zamborini, F.P. The synthesis and fabrication of one-dimensional nanoscale heterojunctions. Small 2007, 3, 722–756. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kweon, S.; Kim, J. Electrodeposition of Pt nanostructures with reproducible SERS activity and superhydrophobicity. Phys. Chem. Chem. Phys. 2015, 17, 23547–23553. [Google Scholar] [CrossRef]
- Kim, S.; Ha, Y.; Kim, S.-j.; Lee, C.; Lee, Y. Selectivity enhancement of amperometric nitric oxide detection via shape-controlled electrodeposition of platinum nanostructures. Analyst 2019, 144, 258–264. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, J. Electrodeposition of nanoflake Pd structures: Structure-dependent wettability and SERS activity. ACS Appl. Mater. Interfaces 2015, 7, 7129–7135. [Google Scholar] [CrossRef]
- Hau, N.Y.; Yang, P.; Liu, C.; Wang, J.; Lee, P.-H.; Feng, S.-P. Aminosilane-assisted electrodeposition of gold nanodendrites and their catalytic properties. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Elbourne, A.; Coyle, V.E.; Truong, V.K.; Sabri, Y.M.; Kandjani, A.E.; Bhargava, S.K.; Ivanova, E.P.; Crawford, R.J. Multi-directional electrodeposited gold nanospikes for antibacterial surface applications. Nanoscale Adv. 2019, 1, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Lafuma, A.; Quéré, D. Superhydrophobic states. Nat. Mater. 2003, 2, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, S.; Hu, X.; Dong, S. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface. Electrochem. Commun. 2008, 10, 95–99. [Google Scholar] [CrossRef]
- Angerstein-Kozlowska, H.; Conway, B.; Hamelin, A.; Stoicoviciu, L. Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane. J. Electroanal. Chem. Interfacial Electrochem. 1987, 228, 429–453. [Google Scholar] [CrossRef]
- Plowman, B.; Ippolito, S.J.; Bansal, V.; Sabri, Y.M.; O’Mullane, A.P.; Bhargava, S.K. Gold nanospikes formed through a simple electrochemical route with high electrocatalytic and surface enhanced Raman scattering activity. Chem. Commun. 2009, 5039–5041. [Google Scholar] [CrossRef] [Green Version]
- Sabri, Y.; Ippolito, S.; O’Mullane, A.; Tardio, J.; Bansal, V.; Bhargava, S. Creating gold nanoprisms directly on quartz crystal microbalance electrodes for mercury vapor sensing. Nanotechnology 2011, 22, 305501. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, L. Definition of superhydrophobic states. Adv. Mater. 2007, 19, 3423–3424. [Google Scholar] [CrossRef]
- Song, J.; Xu, L.; Xing, R.; Li, Q.; Zhou, C.; Liu, D.; Song, H. Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Huang, F.; Xu, S.; Xia, Y.; Huang, W.; Li, Z. Fabrication of nanoflower-like dendritic Au and polyaniline composite nanosheets at gas/liquid interface for electrocatalytic oxidation and sensing of ascorbic acid. Electrochem. Commun. 2013, 30, 46–50. [Google Scholar] [CrossRef]
- Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M.M. Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles–β-cyclodextrin–graphene-modified electrode by square wave voltammetry. Talanta 2012, 93, 79–85. [Google Scholar] [CrossRef]
- Park, S.S.; Hong, M.; Ha, Y.; Sim, J.; Jhon, G.-J.; Lee, Y.; Suh, M. The real-time in vivo electrochemical measurement of nitric oxide and carbon monoxide release upon direct epidural electrical stimulation of the rat neocortex. Analyst 2015, 140, 3415–3421. [Google Scholar] [CrossRef] [PubMed]
x | Deposition Potential | ||||
---|---|---|---|---|---|
0.05 V | 0.15 V | 0.20 V | 0.25 V | 0.45 V | |
AA | −0.714 | −0.294 | −0.141 | 0.517 | 0.942 |
AP | −3.944 | −2.512 | −2.511 | −2.146 | −1.602 |
GABA | −3.768 | −2.335 | −1.968 | −1.845 | −1.757 |
NO2− | −3.665 | −3.233 | −2.513 | −2.146 | −1.601 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, T.; Mun, H.Y.; Seo, S.; Yu, A.; Lee, C.; Lee, Y. Amperometric Sensing of Carbon Monoxide: Improved Sensitivity and Selectivity via Nanostructure-Controlled Electrodeposition of Gold. Biosensors 2021, 11, 334. https://doi.org/10.3390/bios11090334
Kwon T, Mun HY, Seo S, Yu A, Lee C, Lee Y. Amperometric Sensing of Carbon Monoxide: Improved Sensitivity and Selectivity via Nanostructure-Controlled Electrodeposition of Gold. Biosensors. 2021; 11(9):334. https://doi.org/10.3390/bios11090334
Chicago/Turabian StyleKwon, Taehui, Hee Young Mun, Sunghwa Seo, Areum Yu, Chongmok Lee, and Youngmi Lee. 2021. "Amperometric Sensing of Carbon Monoxide: Improved Sensitivity and Selectivity via Nanostructure-Controlled Electrodeposition of Gold" Biosensors 11, no. 9: 334. https://doi.org/10.3390/bios11090334
APA StyleKwon, T., Mun, H. Y., Seo, S., Yu, A., Lee, C., & Lee, Y. (2021). Amperometric Sensing of Carbon Monoxide: Improved Sensitivity and Selectivity via Nanostructure-Controlled Electrodeposition of Gold. Biosensors, 11(9), 334. https://doi.org/10.3390/bios11090334