A Portable, Label-Free, Reproducible Quartz Crystal Microbalance Immunochip for the Detection of Zearalenone in Food Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of the QCM Chip
2.3. Measuring Procedure for ZEN Contaminant
2.4. Regeneration of the QCM Immunochip
2.5. Cross-Reactivity of the QCM Immunochip
2.6. Sample Pretreatment and Spiked Method
3. Results and Discussions
3.1. Functionalization of the QCM Immunochip
3.2. Optimization of the Anti-ZEN Ab Concentration
3.3. Regeneration of QCM Immunochip
3.4. Measuring ZEN Using the Developed QCM Immunochip
3.5. Analysis of Practical Food Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Golge, O.; Kabak, B. Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey. Food Control 2020, 110, 106982. [Google Scholar] [CrossRef]
- Rocha, M.E.B.D.; Freire, F.D.C.O.; Maia, F.E.F.; Guedes, M.I.F.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Alassane-Kpembi, I.; Schatzmayr, G.; Taranu, I.; Marin, D.; Puel, O.; Oswald, I.P. Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Crit. Rev. Food Sci. 2017, 57, 3489–3507. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. 2019, 60, 2773–2789. [Google Scholar] [CrossRef]
- Viegas, S.; Assuncao, R.; Twaruzek, M.; Kosicki, R.; Grajewski, J.; Viegas, C. Mycotoxins feed contamination in a dairy farm—Potential implications for milk contamination and workers’ exposure in a One Health approach. J. Sci. Food Agric. 2020, 100, 1118–1123. [Google Scholar] [CrossRef]
- Anater, A.; Manyes, L.; Meca, G.; Ferrer, E.; Luciano, F.B.; Pimpao, C.T.; Font, G. Mycotoxins and their consequences in aquaculture: A review. Aquaculture 2016, 451, 1–10. [Google Scholar] [CrossRef]
- Llorent-Martinez, E.J.; Fernandez-Poyatos, M.P.; Ruiz-Medina, A. Automated fluorimetric sensor for the determination of zearalenone mycotoxin in maize and cereals feedstuff. Talanta 2019, 191, 89–93. [Google Scholar] [CrossRef]
- Braun, D.; Ezekiel, C.N.; Abia, W.A.; Wisgrill, L.; Degen, G.H.; Turner, P.C.; Marko, D.; Warth, B. Monitoring early life mycotoxin exposures via LC-MS/MS breast milk analysis. Anal. Chem. 2018, 90, 14569–14577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.C.; Jiang, X.W.; Sun, J.X.; Li, X.; Li, X.S.; Jiao, R.; Peng, Z.Y.; Li, Y.Q.; Bai, W.B. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food Chem. Toxicol. 2018, 119, 24–30. [Google Scholar] [CrossRef]
- Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. Toxicon 2019, 162, 46–56. [Google Scholar] [CrossRef]
- Huang, L.C.; Zheng, N.; Zheng, B.Q.; Wen, F.; Cheng, J.B.; Han, R.W.; Xu, X.M.; Li, S.L.; Wang, J.Q. Simultaneous determination of aflatoxin M-1, ochratoxin A, zearalenone and alpha-zearalenol in milk by UHPLC-MS/MS. Food Chem. 2014, 146, 242–249. [Google Scholar] [CrossRef]
- Lecomte, S.; Demay, F.; Pham, T.H.; Moulis, M.; Efstathiou, T.; Chalmel, F.; Pakdel, F. Deciphering the molecular mechanisms sustaining the estrogenic activity of the two major dietary compounds zearalenone and apigenin in ER-positive breast cancer cell lines. Nutrients 2019, 11, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tittlemier, S.A.; Cramer, B.; Dall’Asta, C.; Iha, M.H.; Lattanzio, V.M.T.; Maragos, C.; Solfrizzo, M.; Stranska, M.; Stroka, J.; Sumarah, M. Developments in mycotoxin analysis: An update for 2018-19. World Mycotoxin J. 2020, 13, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.J.; Yao, K.; Zhao, S.J.; Zheng, P.M.; Wang, S.H.; Zeng, Y.Y.; Liang, D.M.; Ke, Y.B.; Jiang, H.Y. Determination of aflatoxin and zearalenone analogs in edible and medicinal herbs using a group-specific immunoaffinity column coupled to ultra-high-performance liquid chromatography with tandem mass spectrometry. J. Chromatogr. B 2018, 1092, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Jiang, K.Q.; Fan, Z.C.; Mavungu, J.D.D.; Dong, M.F.; Guo, W.B.; Fan, K.; Campbell, K.; Zhao, Z.H.; Wu, Y.J. Multi-walled carbon nanotubes-based magnetic solid-phase extraction for the determination of zearalenone and its derivatives in maize by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Control 2017, 79, 177–184. [Google Scholar] [CrossRef]
- Qian, M.R.; Zhang, H.; Wu, L.Q.; Jin, N.; Wang, J.M.; Jiang, K.Z. Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography-triple quadrupole mass spectrometry. Food Chem. 2015, 166, 23–28. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, J.P.; Sheng, W.; Wen, W.J.; Gu, Y.; Wang, S. Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Microchim. Acta 2018, 185, 388. [Google Scholar] [CrossRef] [PubMed]
- Peltomaa, R.; Farka, Z.; Mickert, M.J.; Brandmeier, J.C.; Pastucha, M.; Hlaváček, A.; Martínez-Orts, M.; Canales, Á.; Skládal, P.; Benito-Peña, E.; et al. Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosens. Bioelectron. 2020, 170, 112683. [Google Scholar] [CrossRef]
- Bessaire, T.; Mujahid, C.; Mottier, P.; Desmarchelier, A. Multiple mycotoxins determination in food by LC-MS/MS: An international collaborative study. Toxins 2019, 11, 658. [Google Scholar] [CrossRef] [Green Version]
- Romera, D.; Mateo, E.M.; Mateo-Castro, R.; Gomez, J.V.; Gimeno-Adelantadob, J.V.; Jimenez, M. Determination of multiple mycotoxins in feedstuffs by combined use of UPLC-MS/MS and UPLC-QTOF-MS. Food Chem. 2018, 267, 140–148. [Google Scholar] [CrossRef]
- Li, R.; Jia, L.Z.; Yang, J.Y.; Xu, Z.L.; Wang, H.; Lei, H.T.; Sun, Y.M.; Shen, Y.D. An indirect competitive enzyme-linked immunosorbent assay for simultaneous determination of florfenicol and thiamphenicol in animal meat and urine. Chin. J. Anal. Chem. 2018, 46, 1321–1328. [Google Scholar] [CrossRef]
- Pan, M.; Ma, T.; Yang, J.; Li, S.; Liu, S.; Wang, S. Development of lateral flow immunochromatographic assays using colloidal Au sphere and nanorods as signal marker for the determination of zearalenone in Cereals. Foods 2020, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Zheng, P.M.; Wang, J.Y.; He, S.; Ren, Z.H.; Zhang, Y.F.; Xiong, J.C.; Jiang, H.Y. Indirect competitive enzyme-linked immunosorbent assay based on a broad-spectrum monoclonal antibody for tropane alkaloids detection in pig urine, pork and cereal flours. Food Chem. 2021, 337, 127617. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Yang, J.; Li, S.; Wen, W.; Wang, J.; Ding, Y.M.; Wang, S. A reproducible surface plasmon resonance immunochip for the label-free detection of amantadine in animal-derived foods. Food Anal. Method 2019, 12, 1007–1016. [Google Scholar] [CrossRef]
- Wei, T.; Ren, P.P.; Huang, L.L.; Ouyang, Z.C.; Wang, Z.Y.; Kong, X.F.; Li, T.J.; Yin, Y.L.; Wu, Y.N.; He, Q.H. Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem. 2019, 300, 125176. [Google Scholar] [CrossRef]
- Yun, Y.; Pan, M.; Wang, L.; Li, S.; Wang, Y.; Gu, Y.; Yang, J.; Wang, S. Fabrication and evaluation of a label-free piezoelectric immunosensor for sensitive and selective detection of amantadine in foods of animal origin. Anal. Bioanal. Chem. 2019, 411, 5745–5753. [Google Scholar] [CrossRef]
- Hou, S.L.; Ma, J.J.; Cheng, Y.Q.; Wang, H.G.; Sun, J.H.; Yan, Y.X. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B-1, dexyonivalenol, and zearalenone in grains. Food Control 2020, 117, 107331. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Liu, B.; Liu, G.Z.; Sheng, W.; Zhang, Y.; Liu, Q.; Wang, S. Novel magnetic nanobeads-based fluoroimmunoassays for zearalenone detection in cereals using protein G as the recognition linker. Sens. Actuat. B Chem. 2018, 270, 149–157. [Google Scholar] [CrossRef]
- Riberi, W.I.; Tarditto, L.V.; Zon, M.A.; Arévalo, F.J.; Fernández, H. Development of an electrochemical immunosensor to determine zearalenone in maize using carbon screen printed electrodes modified with multi-walled carbon nanotubes/polyethyleneimine dispersions. Sens. Actuat. B Chem. 2018, 254, 1271–1277. [Google Scholar] [CrossRef]
- Goud, K.Y.; Kumar, V.S.; Hayat, A.; Gobi, K.V.; Song, H.; Kim, K.H.; Marty, J.L. A highly sensitive electrochemical immunosensor for zearalenone using screen-printed disposable electrodes. Electroanal. Chem. 2019, 832, 336–342. [Google Scholar] [CrossRef]
- Funari, R.; Terracciano, I.; Della Ventura, B.; Ricci, S.; Cardi, T.; D’Agostino, N.; Velotta, R. Label-Free Detection of gliadin in food by quartz crystal microbalance-based immunosensor. Food Chem. 2017, 65, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Niloofar, A.; Pedram, F. Adsorption characteristics of carboxymethylated lignin on rigid and soft surfaces probed by quartz crystal microbalance. Langmuir 2018, 34, 15293–15303. [Google Scholar]
- Akter, R.; Rhee, C.K.; Rahman, M.A. A highly sensitive quartz crystal microbalance immunosensor based on magnetic bead-supported bienzymes catalyzed mass enhancement strategy. Biosens. Bioelectron. 2015, 66, 539–546. [Google Scholar] [CrossRef]
- Deng, X.D.; Chen, M.S.; Fu, Q.; Smeets, N.M.B.; Xu, F.; Zhang, Z.Y.; Filipe, C.D.M.; Hoare, T. A highly sensitive immunosorbent assay based on biotinylated graphene oxide and the quartz crystal microbalance. ACS Appl. Mater. Interfaces 2016, 8, 1893–1902. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, O.D.; Chertovich, J.O.; Zherdev, A.V.; Sveshnikov, P.G.; Dzantiev, B.B. Ultrasensitive magnetic ELISA of zearalenone with pre-concentration and chemiluminescent detection. Food Control 2018, 84, 330–338. [Google Scholar] [CrossRef]
- Li, S.J.; Sheng, W.; Wen, W.J.; Gu, Y.; Wang, J.P.; Wang, S. Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Microchim. Acta 2018, 185, 238. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Liu, L.H.; Duan, N.; Li, Q.; Zhou, Y.; Wang, Z.P. An aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J. Agr. Food Chem. 2018, 66, 1949–1954. [Google Scholar] [CrossRef]
Sample | Spiked Levels (μg kg−1 or μg L−1) | QCM Immunochip | HPLC–MS/MS | ||
---|---|---|---|---|---|
Recovery (%) | SD (n = 3) | Recovery (%) | SD (n = 3) | ||
Corn powder | 5.0 | 86.3 | 4.2 | 87.8 | 4.8 |
50.0 | 89.0 | 3.9 | 90.5 | 2.6 | |
100.0 | 90.6 | 3.3 | 92.3 | 3.9 | |
Wheat flour | 5.0 | 85.8 | 4.5 | 87.8 | 6.6 |
50.0 | 91.4 | 3.9 | 92.2 | 4.7 | |
100.0 | 92.5 | 2.7 | 93.5 | 5.2 | |
Soy sauce | 5.0 | 76.6 | 4.9 | 79.0 | 4.0 |
50.0 | 81.0 | 4.7 | 83.3 | 4.3 | |
100.0 | 86.8 | 6.3 | 87.2 | 6.3 | |
Milk | 5.0 | 78.8 | 5.6 | 80.1 | 4.2 |
50.0 | 86.4 | 3.4 | 86.7 | 3.9 | |
100.0 | 89.0 | 6.2 | 90.5 | 3.8 |
Methods | LOD (μg L−1 or μg kg−1) | Required Time | Reuse Times | Samples | Reference |
---|---|---|---|---|---|
Ultra HPLC-MS/MS | 0.05 | 7 min | - | Chinese yam, coix seed | [15] |
GC-MS | 0.01 | 1 h | - | Vegetable oil | [17] |
Fluorescent -ICAs | 0.1 | 20 min | 1 | Maize, wheat, vegetable oil | [18] |
AuSP-ICA and AuNRs-ICA | 5.0 and 3.0 | 10 min | 1 | Corn; wheat | [23] |
Electrochemical immunosensor | 1.5 × 10−4/0.25 | >1 h | Maize/Beer, wine | [30,31] | |
ELISA | 0.15/0.03–0.05 | 15–30 min | 1 | Chicken, pork, beef/Wine | [22,36] |
Colloidal Au-based ICA | 10 | 15 min | 1 | Maize, wheat, rice | [37] |
Aptamer-based lateral flow test strip | 20 | 5 min | 1 | Corn | [38] |
QCM immunochip | 0.37 | 5 min | ≥6 | Corn; wheat flour; soy sauce; milk | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, X.; Pan, Q.; Dai, Z.; Pan, M.; Wang, S. A Portable, Label-Free, Reproducible Quartz Crystal Microbalance Immunochip for the Detection of Zearalenone in Food Samples. Biosensors 2021, 11, 53. https://doi.org/10.3390/bios11020053
Liu S, Liu X, Pan Q, Dai Z, Pan M, Wang S. A Portable, Label-Free, Reproducible Quartz Crystal Microbalance Immunochip for the Detection of Zearalenone in Food Samples. Biosensors. 2021; 11(2):53. https://doi.org/10.3390/bios11020053
Chicago/Turabian StyleLiu, Shengmiao, Xinyu Liu, Qianwen Pan, Zhihan Dai, Mingfei Pan, and Shuo Wang. 2021. "A Portable, Label-Free, Reproducible Quartz Crystal Microbalance Immunochip for the Detection of Zearalenone in Food Samples" Biosensors 11, no. 2: 53. https://doi.org/10.3390/bios11020053
APA StyleLiu, S., Liu, X., Pan, Q., Dai, Z., Pan, M., & Wang, S. (2021). A Portable, Label-Free, Reproducible Quartz Crystal Microbalance Immunochip for the Detection of Zearalenone in Food Samples. Biosensors, 11(2), 53. https://doi.org/10.3390/bios11020053