A DNA Electrochemical Sensor via Terminal Protection of Small-Molecule-Linked DNA for Highly Sensitive Protein Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.1.1. Materials
2.1.2. Electrochemical Measurements
2.2. Experimental Procedures
2.2.1. Sensor Preparation
2.2.2. SA Detection Procedure
3. Results and Discussion
3.1. Detection Strategy
3.2. Modified Electrode Characterization
3.3. Detection Feasibility Assay
3.4. Experimental Parameter Optimization
3.5. Detection Performance
3.6. Biosensor Specificity
3.7. Anti-Interference
3.8. Detection Ability of Other Proteins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawashima, Y.; Fukutomi, T.; Tomonaga, T.; Takahashi, H.; Nomura, F.; Maeda, T.; Kodera, Y. High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples. J. Proteome Res. 2010, 9, 1694–1705. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, W.; Yao, S.; Wu, S.; Zhang, H.; Zhang, J.; Jing, F.; Mao, H.; Jin, Q.; Cong, H.J.A. Highly sensitive detection of multiple tumor markers for lung cancer using gold nanoparticle probes and microarrays. Anal. Chim. Acta 2017, 958, 77–84. [Google Scholar] [CrossRef]
- Gotthardt, M.; Trommsdorff, M.; Nevitt, M.F.; Shelton, J.; Richardson, J.A.; Stockinger, W.; Nimpf, J.; Herz, J. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 2000, 275, 25616–25624. [Google Scholar] [CrossRef] [Green Version]
- Michnick, S.W.; Ear, P.H.; Manderson, E.N.; Remy, I.; Stefan, E. Universal strategies in research and drug discovery based on protein-fragment complementation assays. Nat. Rev. Drug Discov. 2007, 6, 569–582. [Google Scholar] [CrossRef]
- Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 2010, 14, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Meehan, A.M.; Saenz, D.T.; Morrison, J.; Hu, C.; Peretz, M.; Poeschla, E.M. LEDGF dominant interference proteins demonstrate prenuclear exposure of HIV-1 integrase and synergize with LEDGF depletion to destroy viral infectivity. J. Virol. 2011, 85, 3570–3583. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Parolo, C.; Sun, S.; Ogden, N.E.; Dahlquist, F.W.; Plaxco, K.W. Expanding the scope of protein-detecting electrochemical DNA “scaffold” sensors. ACS Sens. 2018, 3, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wang, Q.; Yang, W.; Zhao, M.; Zhang, Y.; Guo, L.; Qiu, B.; Lin, Z.; Yang, H.-H. Immobilization free electrochemical biosensor for folate receptor in cancer cells based on terminal protection. Biosens. Bioelectron. 2016, 86, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-B.; Zhang, H.-D.; Xu, S.-P.; Gan, T.; Huang, K.-J.; Liu, Y.-M. A sensitive and label-free electrochemical impedance biosensor for protein detection based on terminal protection of small molecule-linked DNA. Sens. Actuators B Chem. 2014, 194, 478–483. [Google Scholar] [CrossRef]
- Xiang, X.; Shi, J.; Huang, F.; Zheng, M.; Deng, Q.; Xu, J. MoS2 nanosheet-based fluorescent biosensor for protein detection via terminal protection of small-molecule-linked DNA and exonuclease III-aided DNA recycling amplification. Biosens. Bioelectron. 2015, 74, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, B.; Xie, J.; Xiang, Y.; Yuan, R.; Chai, Y. Coupling of background reduction with rolling circle amplification for highly sensitive protein detection via terminal protection of small molecule-linked DNA. Analyst 2013, 138, 5751–5756. [Google Scholar] [CrossRef]
- Li, R.; Wang, C.; Hu, Y.; Zheng, O.; Guo, L.; Lin, Z.; Qiu, B.; Chen, G. Electrochemiluminescence biosensor for folate receptor based on terminal protection of small-molecule-linked DNA. Biosens. Bioelectron. 2014, 58, 226–231. [Google Scholar] [CrossRef]
- Wang, Y.; Ning, G.; Wu, Y.; Wu, S.; Zeng, B.; Liu, G.; He, X.; Wang, K. Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A. Biosens. Bioelectron. 2019, 124, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Xue, N.; Wu, S.; Li, Z.; Miao, X. Ultrasensitive and label-free detection of ATP by using gold nanorods coupled with enzyme assisted target recycling amplification. Anal. Chim. Acta 2020, 1104, 117–124. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, C.; Zhou, G.; Xue, Q.; Xian, Y. One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing. Anal. Chim. Acta 2017, 957, 63–69. [Google Scholar] [CrossRef]
- Schmidt, T.G.; Skerra, A.J.J. One-step affinity purification of bacterially produced proteins by means of the “Strep tag” and immobilized recombinant core streptavidin. J. Chromatogr. A 1994, 676, 337–345. [Google Scholar] [CrossRef]
- Cong, Y.; Huang, K.; Li, Y.; Zhong, S.; Zhang, J.Z.; Duan, L.J.N. Entropic effect and residue specific entropic contribution to the cooperativity in streptavidin–biotin binding. Nanoscale 2020, 12, 7134–7145. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, S.; Yoon, J.; Song, J.; Park, H.G. Bioelectronics, CRISPR/Cas12a collateral cleavage activity for simple and rapid detection of protein/small molecule interaction. Biosens. Bioelectron. 2021, 194, 113587. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-B.; Zhang, H.-D.; Chen, Y.; Liu, Y.-M. A fluorescent biosensor for protein detection based on poly (thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens. Bioelectron. 2015, 74, 581–586. [Google Scholar] [CrossRef]
- Chang, Y.; Wu, Z.; Sun, Q.; Zhuo, Y.; Chai, Y.; Yuan, R. Simply constructed and highly efficient classified cargo-discharge DNA robot: A DNA walking nanomachine platform for ultrasensitive multiplexed sensing. Anal. Chem. 2019, 91, 8123–8128. [Google Scholar] [CrossRef] [PubMed]
- Kerman, K.; Ozkan, D.; Kara, P.; Meric, B.; Gooding, J.J.; Ozsoz, M. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal. Chim. Acta 2002, 462, 39–47. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, Z.; Jin, H. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. Biosens. Bioelectron. 2016, 77, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Xiong, E.; Wu, L.; Zhou, J.; Yu, P.; Zhang, X.; Chen, J. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine–Hg2+–thymine structure. Anal. Chim. Acta 2015, 853, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Wang, Y.; Su, C.; Lakshmipriya, T.; Gopinath, S.C.; Pandian, K.; Perumal, V.; Liu, Y. Human papilloma virus DNA-biomarker analysis for cervical cancer: Signal enhancement by gold nanoparticle-coupled tetravalent streptavidin-biotin strategy. Int. J. Biol. Macromol. 2019, 134, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhen, Z.; Jiang, J.-H.; Shen, G.-L.; Yu, R.-Q. Terminal protection of small-molecule-linked DNA for sensitive electrochemical detection of protein binding via selective carbon nanotube assembly. J. Am. Chem. Soc. 2009, 131, 12325–12332. [Google Scholar] [CrossRef] [PubMed]
- Crane, L.M.; Arts, H.J.; Van Oosten, M.; Low, P.S.; Van Der Zee, A.G.; Van Dam, G.M.; Bart, J. The effect of chemotherapy on expression of folate receptor-alpha in ovarian cancer. Cell. Oncol. 2012, 35, 9–18. [Google Scholar] [CrossRef] [Green Version]
- González-Garcıa, M.; Fernandez-Sanchez, C.; Costa-Garcıa, A. Colloidal gold as an electrochemical label of streptavidin–biotin interaction. Biosens. Bioelectron. 2000, 15, 315–321. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, D.-M.; Wu, Z.; Tang, L.-J.; Jiang, J.-H. Terminal protection of small molecule-linked ssDNA-SWNT nanoassembly for sensitive detection of small molecule and protein interaction. Chin. Chem. Lett. 2013, 24, 107–110. [Google Scholar] [CrossRef]
- Wei, X.; Lin, W.; Ma, N.; Luo, F.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Sensitive fluorescence biosensor for folate receptor based on terminal protection of small-molecule-linked DNA. Chem. Commun. 2012, 48, 6184–6186. [Google Scholar] [CrossRef]
- Lisdat, F.; Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008, 391, 1555–1567. [Google Scholar] [CrossRef]
- Fan, J.; Tang, Y.; Yang, W.; Yu, Y. Disposable multiplexed electrochemical sensors based on electro-triggered selective immobilization of probes for simultaneous detection of DNA and proteins. J. Mater. Chem. B 2020, 8, 7501–7510. [Google Scholar] [CrossRef] [PubMed]
- Abnous, K.; Danesh, N.M.; Alibolandi, M.; Ramezani, M.; Taghdisi, S.M.; Emrani, A.S. A novel electrochemical aptasensor for ultrasensitive detection of fluoroquinolones based on single-stranded DNA-binding protein. Sens. Actuators B Chem. 2017, 240, 100–106. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Huang, Y.; Xiong, M.; Wang, F.; Li, C. A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens. Bioelectron. 2019, 142, 111531. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, S.; Easley, C.J. A nucleic acid nanostructure built through on-electrode ligation for electrochemical detection of a broad range of analytes. J. Am. Chem. Soc. 2019, 141, 11721–11726. [Google Scholar] [CrossRef] [PubMed]
Name | Sequence (5′-3′) |
---|---|
B1-DNA | 5′-HS(CH2)6-TTACCACTGACGCAACTTGCACTACGCAATCCACTTAG-biotin-3′ |
S1-DNA | 5′-CTAAGTGGATTGTCACGTGGAACTACTACCAAT-MB-3′ |
S2-DNA | 5′-AGTAGTTCCACGCTGCGTAGTGCAAGTTGCAAGTCA-MB-3′ |
Methods | Linear Range | Detection Limit | Refs |
---|---|---|---|
Fluorescence | 0.5 nM to 1 μM | 0.1 nM | [19] |
Electrochemistry | - | 0.22 nM | [31] |
Electrochemistry | 0.8 nM to 0.5 μM | 263 pM | [32] |
Electrochemistry | 5 pM to 10 nM | 5 pM | [33] |
Electrochemistry | 1 μM to 8 μM | 177 nM | [34] |
Electrochemistry | 0.5 nM to 5 μM | 18.8 pM | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, P.; Fang, C.; Han, J.; Zhang, J.; Yang, Y.; Qing, Y.; Chen, Y.; Shang, W.; Du, J. A DNA Electrochemical Sensor via Terminal Protection of Small-Molecule-Linked DNA for Highly Sensitive Protein Detection. Biosensors 2021, 11, 451. https://doi.org/10.3390/bios11110451
Ouyang P, Fang C, Han J, Zhang J, Yang Y, Qing Y, Chen Y, Shang W, Du J. A DNA Electrochemical Sensor via Terminal Protection of Small-Molecule-Linked DNA for Highly Sensitive Protein Detection. Biosensors. 2021; 11(11):451. https://doi.org/10.3390/bios11110451
Chicago/Turabian StyleOuyang, Ping, Chenxin Fang, Jialun Han, Jingjing Zhang, Yuxing Yang, Yang Qing, Yubing Chen, Wenyan Shang, and Jie Du. 2021. "A DNA Electrochemical Sensor via Terminal Protection of Small-Molecule-Linked DNA for Highly Sensitive Protein Detection" Biosensors 11, no. 11: 451. https://doi.org/10.3390/bios11110451
APA StyleOuyang, P., Fang, C., Han, J., Zhang, J., Yang, Y., Qing, Y., Chen, Y., Shang, W., & Du, J. (2021). A DNA Electrochemical Sensor via Terminal Protection of Small-Molecule-Linked DNA for Highly Sensitive Protein Detection. Biosensors, 11(11), 451. https://doi.org/10.3390/bios11110451