Survey of Saliva Components and Virus Sensors for Prevention of COVID-19 and Infectious Diseases
Abstract
:1. Introduction
2. Components of Saliva
2.1. Organic Components
2.1.1. Amylase
2.1.2. Cholesterol
2.1.3. Cortisol
2.1.4. Glucose
2.1.5. Lysozyme
2.1.6. Mucin
2.1.7. Peroxidase
2.1.8. Urea
2.2. Inorganic Components
2.3. Water
3. Sensors for Organic and Inorganic Components of Human Saliva
3.1. Electrochemical Sensors
3.1.1. Enzyme Modified Alpha Amylase Sensor
3.1.2. Platinum Nano-Cluster Combination as a Cholesterol Sensor
3.1.3. Immunosensor: Interdigitated Microelectrodes-Based Cortisol Sensor
3.1.4. Antibody Modified Gold Microarray Electrode Cortisol Sensor
3.1.5. Single-Walled Carbon Nanotube Sensor
3.1.6. Mouthguard Cavitas Sensor
3.2. Chemical Colorimetric Sensors
3.2.1. Colorimetric Urea Sensor
3.2.2. Colorimetric Glucose Sensor
3.2.3. Chemical Peroxidase Sensor
3.3. Optical
3.3.1. Optical Urea Sensor
3.3.2. Optical Amylase Sensor
3.4. Capacitive
Complementary Metal-Oxide Semiconductor Mucin Biosensors
3.5. Fluorescence
Fluorescence Lysozyme Biosensor
3.6. Sensors for Inorganic Components of Human Saliva
4. Humidity Sensors
4.1. Capacitive
4.1.1. Capacitive-Based Humidity Sensor
4.1.2. Alumina-Based Cross-Capacitive Humidity Sensor
4.1.3. Multi-Walled Carbon Nanotube Capacitive Humidity Sensor
4.2. Optical
4.2.1. Tungsten Disulfide Sensor
4.2.2. Tin Oxide-Doped Optical Sensor
4.2.3. Agarose-Doped Polymethyl Methacrylate (PMMA) Sensor
4.3. Electrochemical
Single-Walled Carbon Nanotube-Based Humidity Sensor
4.4. Chemical
Electroceramic-Based Sensor
5. Sensors for Virus Detection
5.1. Electrochemical Virus Sensors
5.1.1. Paper-Based H1N1 Influenza Sensor
5.1.2. Reduced Graphene Oxide-Based H1N1 Influenza Sensor
5.1.3. Boron-Doped Diamond Surface H1N1 Influenza Sensor
5.1.4. Electrochemical MERS-CoV Sensor
5.1.5. DNA Aptamer Immobilized Hybrid Nanomaterial-Modified Electrode H5N1 Avian Influenza Sensor
5.1.6. Copper-Mediated Amplification H1N1 Avian Influenza Sensor
5.2. Chemical Virus Sensor
5.2.1. Gold-Carbon Nanotube Nanohybrid H3N2 Sensor
5.2.2. Field Effect Transistor COVID-19 Biosensor
5.3. Capacitive
CMOS Capacitive-Based Array H5N1 Influenza Sensor
5.4. Chemiresistive
Chemiresistive Carbon Nanotube H5N1 Sensor
5.5. Electrical
5.5.1. Gold/Iron-Oxide Nanoparticle-CNT H1N1 Influenza/Norovirus Sensor
5.5.2. Amperometric Bioaffinity H5N1 Avian Influenza Sensor
5.6. Optical
Fiber-Optic Surface Plasmon Resonance H6N1 Avian Influenza Sensor
5.7. Current Method for SARS-CoV-2 Detection: Real-Time RT-PCR
6. Discussion and Future Work
6.1. Discussion
6.2. Future Work
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- How COVID-19 Is Changing the World. Available online: https://data.unicef.org/resources/how-covid-19-is-changing-the-world-a-statistical-perspective/ (accessed on 1 November 2020).
- Weintraub, K. How Contagious? Likely Before You Know You’re Sick. Available online: https://www.webmd.com/lung/news/20200428/how-contagious-likely-before-you-know-youre-sick (accessed on 1 November 2020).
- COVID-19 Overview and Infection Prevention and Control Priorities in Non-US Healthcare Settings. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/overview/index.html (accessed on 1 November 2020).
- CDC Updates COVID-19 Transmission Webpage to Clarify Information about Types of Spread. Available online: https://www.cdc.gov/media/releases/2020/s0522-cdc-updates-covid-transmission.html (accessed on 1 November 2020).
- De Almeida, P.D.V.; Gregio, A.; Machado, M.; De Lima, A.; Azevedo, L.R. Saliva composition and functions: A comprehensive review. J. Contemp. Dent. Pr. 2008, 9, 72–80. [Google Scholar]
- Dawes, C. Effects of diet on salivary secretion and composition. J. Dent. Res. 1970, 49, 1263–1272. [Google Scholar] [CrossRef]
- Young, J.; Schneyer, C.A. Composition of saliva in mammalia. Aust. J. Exp. Biol. Med. Sci. 1981, 59, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Lenander-Lumikari, M.; Loimaranta, V. Saliva and dental caries. Adv. Dent. Res. 2000, 14, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Kidd, E.A.; Fejerskov, O. Dental Caries: The Disease and Its Clinical Management; Blackwell Munksgaard: Oxford, UK, 2003. [Google Scholar]
- Castagnola, M.; Picciotti, P.M.; Messana, I.; Fanali, C.; Fiorita, A.; Cabras, T.; Calo, L.; Pisano, E.; Passali, G.C.; Iavarone, F.; et al. Potential applications of human saliva as diagnostic fluid. Acta Otorhinolaryngol. Ital. 2011, 31, 347. [Google Scholar] [PubMed]
- Dawes, C.; Pedersen, A.M.L.; Villa, A.; Ekström, J.; Proctor, G.; Vissink, A.; Aframian, D.; McGowan, R.; Aliko, A.; Narayana, N.; et al. The functions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI. Arch. Oral Biol. 2015, 60, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Hamid, H.; Khurshid, Z.; Adanir, N.; Zafar, M.S.; Zohaib, S. COVID-19 Pandemic and Role of Human Saliva as a Testing Biofluid in Point-of-Care Technology. Eur. J. Dent. 2020. [Google Scholar] [CrossRef]
- Coronavirus (COVID-19) Update: FDA Authorizes First Diagnostic Test Using At-Home Collection of Saliva Specimens. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-diagnostic-test-using-home-collection-saliva (accessed on 1 November 2020).
- Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization to Yale School of Public Health for SalivaDirect, Which Uses a New Method of Saliva Sample Processing. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-emergency-use-authorization-yale-school-public-health (accessed on 1 November 2020).
- Akiba, U.; Anzai, J.I. Recent progress in electrochemical biosensors for glycoproteins. Sensors 2016, 16, 2045. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, E.P.; Hinson, S.R.; Lennon, V.A.; Fang, B.; Aksamit, A.J.; Morris, P.P.; Basal, E.; Honorat, J.A.; Alfugham, N.B.; Linnoila, J.J.; et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients. Ann. Neurol. 2017, 81, 298–309. [Google Scholar] [CrossRef]
- Van Nieuw Amerongen, A.; Bolscher, J.G.; Veerman, E.C. Salivary proteins: Protective and diagnostic value in cariology? Caries Res. 2004, 38, 247–253. [Google Scholar] [CrossRef]
- Virella, G.; Goudswaard, J. Measurement of salivary lysozyme. J. Dent. Res. 1978, 57, 326–328. [Google Scholar] [CrossRef] [PubMed]
- Kraus, F.W.; Nickerson, J.F.; Perry, W.I.; Walker, A.P. Peroxide and peroxidogenic bacteria in human saliva. J. Bacteriol. 1957, 73, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Xie, G.; Chen, C. An alpha-Amylase Biosensor with 1, 1-Dimethyl-3-(2-Amino-1-Hydroxyethyl) Ferrocene as an Electron Transfer Mediator. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–5. [Google Scholar]
- Eom, K.S.; Lee, Y.J.; Seo, H.W.; Kang, J.Y.; Shim, J.S.; Lee, S.H. Sensitive and non-invasive cholesterol determination in saliva via optimization of enzyme loading and platinum nano-cluster composition. Analyst 2020, 145, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Pasha, S.K.; Kaushik, A.; Vasudev, A.; Snipes, S.A.; Bhansali, S. Electrochemical immunosensing of saliva cortisol. J. Electrochem. Soc. 2013, 161, B3077. [Google Scholar] [CrossRef]
- Arya, S.K.; Chornokur, G.; Venugopal, M.; Bhansali, S. Antibody modified gold micro array electrode based electrochemical immunosensor for ultrasensitive detection of cortisol in saliva and ISF. Procedia Eng. 2010, 5, 804–807. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, W.; Wang, M.L. Sensing of salivary glucose using nano-structured biosensors. Biosensors 2016, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, T.; Kuroki, Y.; Nitta, H.; Chouhan, P.; Toma, K.; Sawada, S.i.; Takeuchi, S.; Sekita, T.; Akiyoshi, K.; Minakuchi, S.; et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor. Biosens. Bioelectron. 2016, 84, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.D.; Cooke, W.; Hemmila, U.; Calice-Silva, V.; Raimann, J.; Craik, A.; Mandula, C.; Mvula, P.; Msusa, A.; Dreyer, G.; et al. A salivary urea nitrogen dipstick to detect obstetric-related acute kidney disease in Malawi. Kidney Int. Rep. 2018, 3, 178–184. [Google Scholar] [CrossRef]
- Agrawal, R.; Sharma, N.; Rathore, M.; Gupta, V.; Jain, S.; Agarwal, V.; Goyal, S. Noninvasive method for glucose level estimation by saliva. J. Diabetes Metab. 2013, 4, 2–5. [Google Scholar]
- Vučićević-Boras, V.; Topić, B.; Cekić-Arambašin, A.; Stavljenić-Rukavina, A.; Zadro, R.; Devčić, T. Measurement of Salivary Peroxidase Values in Unstimulated and Stimulated Whole Saliva in a Dental Student Population. Acta Stomatol. Croat. 2001, 35, 357–359. [Google Scholar]
- Soni, A.; Jha, S.K. Smartphone based non-invasive salivary glucose biosensor. Anal. Chim. Acta 2017, 996, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Malon, R.S.; Sadir, S.; Balakrishnan, M.; Córcoles, E.P. Saliva-based biosensors: Noninvasive monitoring tool for clinical diagnostics. BioMed Res. Int. 2014, 2014, 962903. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, W.; Wang, M.L. An on-chip disposable salivary glucose sensor for diabetes control. J. Diabetes Sci. Technol. 2016, 10, 1344–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, R.B.; Orozco, M.A.; Chávez, G.; Márquez-Lucero, A. The evaluation of a low-cost colorimeter for glucose detection in salivary samples. Sensors 2017, 17, 2495. [Google Scholar] [CrossRef] [Green Version]
- Della Ventura, B.; Sakač, N.; Funari, R.; Velotta, R. Flexible immunosensor for the detection of salivary α-amylase in body fluids. Talanta 2017, 174, 52–58. [Google Scholar] [CrossRef]
- Kim, D.M.; Moon, J.M.; Lee, W.C.; Yoon, J.H.; Choi, C.S.; Shim, Y.B. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens. Bioelectron. 2017, 91, 276–283. [Google Scholar] [CrossRef]
- Santana-Jiménez, L.A.; Márquez-Lucero, A.; Osuna, V.; Estrada-Moreno, I.; Dominguez, R.B. Naked-Eye detection of glucose in saliva with bienzymatic paper-based sensor. Sensors 2018, 18, 1071. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I. Non-Invasive Quantum Dot Based Sensors for the Detection of Glucose and Cholesterol in Saliva. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2017. [Google Scholar]
- Surendran, V.; Chiulli, T.; Manoharan, S.; Knisley, S.; Packirisamy, M.; Chandrasekaran, A. Acoustofluidic Micromixing Enabled Hybrid Integrated Colorimetric Sensing, for Rapid Point-of-Care Measurement of Salivary Potassium. Biosensors 2019, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Soni, A.; Jha, S.K. Saliva based noninvasive optical urea biosensor. In Proceedings of the 2017 IEEE Sensors, Glasgow, UK, 29 October–1 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–3. [Google Scholar]
- Yazid, F.; Zain, M.; Yusof, Z.; Ghazali, F.; Zulkifli, S.; Nadri, N.; Ariffin, S.; Wahab, R. Caries detection analysis in human saliva alpha amylase. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2203, p. 020014. [Google Scholar]
- Guha, S.; Ramaker, K.; Krause, T.; Wenger, C. A CMOS radio frequency biosensor for rapid detection and screening of sputum-mucin viscosity. In Proceedings of the 2017 IEEE Sensors, Glasgow, UK, 29 October–1 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–3. [Google Scholar]
- Soltani Zarrin, P.; Jamal, F.I.; Guha, S.; Wessel, J.; Kissinger, D.; Wenger, C. Design and fabrication of a BiCMOS dielectric sensor for viscosity measurements: A possible solution for early detection of COPD. Biosensors 2018, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, Q.; Gu, P.; Su, S.; Huang, Y.; Feng, X.; Fan, Q.; Huang, W. Highly sensitive fluorometric turn-on detection of lysozyme based on a graphene oxide/ssDNA assembly. IEEE Sens. J. 2017, 17, 5431–5436. [Google Scholar] [CrossRef]
- Khan, N.I.; Maddaus, A.G.; Song, E. A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Biosensors 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasilescu, A.; Wang, Q.; Li, M.; Boukherroub, R.; Szunerits, S. Aptamer-based electrochemical sensing of lysozyme. Chemosensors 2016, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Giuffrida, M.C.; Cigliana, G.; Spoto, G. Ultrasensitive detection of lysozyme in droplet-based microfluidic devices. Biosens. Bioelectron. 2018, 104, 8–14. [Google Scholar] [CrossRef]
- Rumenjak, V.; Milardović, S.; Vranić, L.; Kruhak, I.; Rajić, Z. Determination of Electrolyte Concentration in Saliva by Potentiometrie Method. Acta Stomatol. Croat. 1996, 30, 189–195. [Google Scholar]
- Urbanowicz, M.; Pijanowska, D.G.; Jasiński, A.; Ekman, M.; Bocheńska, M.K. A miniaturized solid-contact potentiometric multisensor platform for determination of ionic profiles in human saliva. J. Solid State Electrochem. 2019, 23, 3299–3308. [Google Scholar] [CrossRef] [Green Version]
- Soni, A.; Surana, R.K.; Jha, S.K. Smartphone based optical biosensor for the detection of urea in saliva. Sens. Actuators B Chem. 2018, 269, 346–353. [Google Scholar] [CrossRef]
- Hernández-Rivera, D.; Rodríguez-Roldán, G.; Mora-Martínez, R.; Suaste-Gómez, E. A capacitive humidity sensor based on an electrospun PVDF/graphene membrane. Sensors 2017, 17, 1009. [Google Scholar] [CrossRef] [Green Version]
- Zargar, Z.H.; Islam, T. A Thin Film Porous Alumina-Based Cross-Capacitive Humidity Sensor. IEEE Trans. Instrum. Meas. 2019, 69, 2269–2276. [Google Scholar] [CrossRef]
- Chen, W.P.; Zhao, Z.G.; Liu, X.W.; Zhang, Z.X.; Suo, C.G. A capacitive humidity sensor based on multi-wall carbon nanotubes (MWCNTs). Sensors 2009, 9, 7431–7444. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, C.; Xia, K.; Peng, S.; Guan, H.; Tang, J.; Lu, H.; Yu, J.; Zhang, J.; Xiao, Y.; et al. Tungsten disulfide (WS 2) based all-fiber-optic humidity sensor. Opt. Express 2016, 24, 8956–8966. [Google Scholar] [CrossRef] [PubMed]
- Ascorbe, J.; Corres, J.; Matias, I.; Arregui, F. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Irawati, N.; Rahman, H.A.; Yasin, M.; Al-Askari, S.; Hamida, B.A.; Ahmad, H.; Harun, S.W. Relative humidity sensing using a PMMA doped agarose gel microfiber. J. Light. Technol. 2017, 35, 3940–3944. [Google Scholar] [CrossRef]
- Turkani, V.; Narakathu, B.; Maddipatla, D.; Bazuin, B.; Atashbar, M. A fully printed CNT based humidity sensor on flexible PET substrate. In Proceedings of the 17th Intern. Meeting on Chem. Sens. (IMCS), Viena, Austria, 15–19 July 2018; pp. 519–552. [Google Scholar]
- Tripathy, A.; Pramanik, S.; Manna, A.; Bhuyan, S.; Azrin Shah, N.F.; Radzi, Z.; Abu Osman, N.A. Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 2016, 16, 1135. [Google Scholar] [CrossRef] [PubMed]
- Devarakonda, S.; Singh, R.; Bhardwaj, J.; Jang, J. Cost-effective and handmade paper-based immunosensing device for electrochemical detection of influenza virus. Sensors 2017, 17, 2597. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Hong, S.; Jang, J. Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci. Rep. 2017, 7, 42771. [Google Scholar] [CrossRef] [Green Version]
- Nidzworski, D.; Siuzdak, K.; Niedziałkowski, P.; Bogdanowicz, R.; Sobaszek, M.; Ryl, J.; Weiher, P.; Sawczak, M.; Wnuk, E.; Goddard, W.A.; et al. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Layqah, L.A.; Eissa, S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta 2019, 186, 224. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cheng, Z.; Fan, H.; Ai, S.; Han, R. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode. Electrochim. Acta 2011, 56, 6266–6270. [Google Scholar] [CrossRef]
- Li, Y.; Hong, M.; Lin, Y.; Bin, Q.; Lin, Z.; Cai, Z.; Chen, G. Highly sensitive electrochemical immunoassay for H1N1 influenza virus based on copper-mediated amplification. Chem. Commun. 2012, 48, 6562–6564. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Kim, J.; Suzuki, T.; Lee, J.; Park, E.Y. Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens. Bioelectron. 2016, 85, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.M.; Lu, M.S.C. A CMOS capacitive biosensor array for highly sensitive detection of pathogenic avian influenza DNA. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1632–1635. [Google Scholar]
- Fu, Y.; Romay, V.; Liu, Y.; Ibarlucea, B.; Baraban, L.; Khavrus, V.; Oswald, S.; Bachmatiuk, A.; Ibrahim, I.; Rümmeli, M.; et al. Chemiresistive biosensors based on carbon nanotubes for label-free detection of DNA sequences derived from avian influenza virus H5N1. Sens. Actuators B Chem. 2017, 249, 691–699. [Google Scholar] [CrossRef]
- Lee, J.; Morita, M.; Takemura, K.; Park, E.Y. A multi-functional gold/iron-oxide nanoparticle-CNT hybrid nanomaterial as virus DNA sensing platform. Biosens. Bioelectron. 2018, 102, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Diba, F.S.; Kim, S.; Lee, H.J. Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens. Bioelectron. 2015, 72, 355–361. [Google Scholar] [CrossRef]
- Zhao, X.; Tsao, Y.C.; Lee, F.J.; Tsai, W.H.; Wang, C.H.; Chuang, T.L.; Wu, M.S.; Lin, C.W. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies. J. Virol. Methods 2016, 233, 15–22. [Google Scholar] [CrossRef]
- Quest Diagnostics. SARS-CoV-2 RNA, Qualitative Real-Time RT-PCR (Test Code 39433); Food and Drug Administration (FDA): Silver Spring, MD, USA; AIP Publishing LLC: Melville, NY, USA, 2020. [Google Scholar]
- Wang, W.; Sun, T.; Peng, J.; Dai, J.; Yang, M. Humidity Sensor Based on Fiber Bragg Grating Coated With Different Pore-Foaming Agent Doped Polyimides. IEEE Photonics Technol. Lett. 2017, 29, 1963–1966. [Google Scholar] [CrossRef]
- Smith, A.D.; Elgammal, K.; Fan, X.; Lemme, M.C.; Delin, A.; Råsander, M.; Bergqvist, L.; Schröder, S.; Fischer, A.C.; Niklaus, F.; et al. Graphene-based CO2 sensing and its cross-sensitivity with humidity. RSC Adv. 2017, 7, 22329–22339. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, J.H.; Park, S.Y.; Kang, J.H.; Kim, S.J.; Choi, Y.B.; Shin, U.S. Carbon nanotubes immobilized on gold electrode as an electrochemical humidity sensor. Sens. Actuators B Chem. 2019, 300, 127049. [Google Scholar] [CrossRef]
- Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Recent advances in graphene-based humidity sensors. Nanomaterials 2019, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Ye, Q.; Zeng, R.; Zhang, J.; Yue, L.; Xu, M.; Qiu, Z.J.; Wu, D. Stable and fast-response capacitive humidity sensors based on a ZnO nanopowder/PVP-RGO multilayer. Sensors 2017, 17, 2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Tong, R.j.; Chen, M.Q.; Xia, F. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA. Sens. Actuators B Chem. 2019, 284, 96–102. [Google Scholar] [CrossRef]
- Li, N.; Chen, X.D.; Chen, X.P.; Ding, X.; Zhao, X. Ultra-high sensitivity humidity sensor based on MoS 2/Ag composite films. IEEE Electron Device Lett. 2017, 38, 806–809. [Google Scholar] [CrossRef]
- He, P.; Brent, J.; Ding, H.; Yang, J.; Lewis, D.; O’Brien, P.; Derby, B. Fully printed high performance humidity sensors based on two-dimensional materials. Nanoscale 2018, 10, 5599–5606. [Google Scholar] [CrossRef] [PubMed]
- Saylan, Y.; Erdem, Ö.; Ünal, S.; Denizli, A. An alternative medical diagnosis method: Biosensors for virus detection. Biosensors 2019, 9, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C.S. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem. 2017, 89, 5428–5435. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Kim, J.; Tran, V.T.; Lee, D.K.; Ahmed, S.R.; Hong, J.C.; Lee, J.; Park, E.Y.; Lee, J. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza A virus detection. ACS Appl. Mater. Interfaces 2018, 10, 12534–12543. [Google Scholar] [CrossRef]
- Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 2020, 14, 5268–5277. [Google Scholar] [CrossRef] [Green Version]
- Afzal, A.; Mujahid, A.; Schirhagl, R.; Bajwa, S.Z.; Latif, U.; Feroz, S. Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors 2017, 5, 7. [Google Scholar] [CrossRef]
- Nuzaihan, M.; Hashim, U.; Arshad, M.M.; Kasjoo, S.; Rahman, S.; Ruslinda, A.; Fathil, M.; Adzhri, R.; Shahimin, M. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. Biosens. Bioelectron. 2016, 83, 106–114. [Google Scholar] [CrossRef]
- Xu, L.; Wang, R.; Kelso, L.C.; Ying, Y.; Li, Y. A target-responsive and size-dependent hydrogel aptasensor embedded with QD fluorescent reporters for rapid detection of avian influenza virus H5N1. Sens. Actuators B Chem. 2016, 234, 98–108. [Google Scholar] [CrossRef]
- Nasrin, F.; Chowdhury, A.D.; Takemura, K.; Lee, J.; Adegoke, O.; Deo, V.K.; Abe, F.; Suzuki, T.; Park, E.Y. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosens. Bioelectron. 2018, 122, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, C.; Matzeu, G.; Diamond, D. A potentiometric disposable sensor strip for measuring pH in saliva. Electrochimica Acta 2014, 132, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Pasha, S.; Inui, T.; Chapple, I.; Harris, S.; Holcombe, L.; Grant, M.M. The saliva proteome of dogs: Variations within and between breeds and between species. Wiley Proteom. 2018, 18, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomonaco, T.; Ghimenti, S.; Biagini, D.; Bramanti, E.; Onor, M.; Bellagambi, F.; Fuoco, R.; Di Francesco, F. The effect of sampling procedures on the urate and lactate concentration in oral fluid. Microchem. J. 2018, 136, 255–262. [Google Scholar] [CrossRef]
- González-Hernández, J.M.; Franco, L.; Colomer-Poveda, D.; Martinez-Subiela, S.; Cugat, R.; Cerón, J.J.; Márquez, G.; Martínez-Aranda, L.M.; Jimenez-Reyes, P.; Tvarijonaviciute, A. Influence of sampling conditions, salivary flow, and total protein content in uric acid measurements in Saliva. Antioxidants 2019, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Lomonaco, T.; Ghimenti, S.; Piga, I.; Biagini, D.; Onor, M.; Fuoco, R.; Di Francesco, F. Influence of sampling on the determination of warfarin and warfarin alcohols in oral fluid. PLoS ONE 2014, 9, e114430. [Google Scholar] [CrossRef] [Green Version]
- Savinov, S.; Anisimov, A. Effect of Conditions for Sampling of Human Saliva on the Results of Determination of Macro-and Micronutrients. J. Anal. Chem. 2020, 75, 453–458. [Google Scholar] [CrossRef]
- Fedorenko, A.; Grinberg, M.; Orevi, T.; Kashtan, N. Virus survival in evaporated saliva microdroplets deposited on inanimate surfaces. bioRxiv 2020. [Google Scholar] [CrossRef]
Components | Concentration (g/mL) | Percentage (%) |
---|---|---|
Amylase | 476 | 42 |
Mucin | 200 | 17 |
Urea | 200 | 17 |
Lysozyme | 9.5 | 1 |
Glucose | 10 | 1 |
Cholesterol | 0.14 | ≈0 |
Cortisol | 0.2 | ≈0 |
Peroxidase | 50 | 4 |
Working Principle | Saliva Components | Sensor Name | Sensitivity | Sample Size |
---|---|---|---|---|
Electrochemical | Amylase | Alpha Amylase Biosensor [20] | NA | 1 mL |
Cholesterol | Platinum Nano-cluster Combination Cholesterol Sensor [21] | 132 A/mMcm | 50 L | |
Electrolyte | Potentiometric Sensor [47] | NA | 50 L | |
Cortisol | Immunosensor [22] | 6 A/(pg/mL) | NA | |
Antibody Modified Gold Microarray Electrode Sensor [23] | 1 pM | NA | ||
Glucose | Single-walled Carbon Nanotube Sensor [24] | 0.24 A.s.dL./mg | NA | |
Mouthguard Cavitas Sensor [25] | 0.05–1.0 mmol/L | NA | ||
Capacitive | Mucin | CMOS Mucin Biosensors [41,42] | NA | NA |
Optical | Urea | Optical Urea Sensor [39] | 10.9 mg/dL | 10 L |
Amylase | Optical Amylase Sensor [40] | NA | 2 mL | |
Chemical | Urea | Colorimetric Urea Sensor [26] | 12.82% | NA |
Glucose | Colorimetric Glucose Sensor [27] | NA | NA ± 1.16 mg/dL and the mean FSG of the subjects in the diabetic group was 10.93 ± 1.93 mg/dL | |
Peroxidase | ABTS Peroxidase Sensor [28] | NA | 0.5 mL | |
Fluorescence | Lysozyme | Flourescence Lysozyme Biosensor [43] | 21.8 pM | NA |
Working Principle | Sensor Name | Sensitivity (%RH) |
---|---|---|
Optical | Tungsten Disulfide Sensor [53] | 35–85 |
Tin Oxide-doped Optical Sensor [54] | 20–90 | |
Agarose-doped Polymethyl Methacrylate (PMMA) Sensor [55] | 50–80 | |
Electrochemical | Single-walled Carbon Nanotube-based Humidity Sensor [56] | 20–80 |
Chemical | Electroceramic-Based Sensor [57] | 33–95 |
Capacitive | Capacitive-based Humidity Sensor [50] | NA |
Alumina-based Cross-capacitive Humidity Sensor [51] | 0–90 | |
Multi-walled Carbon Nanotube Capacitive Humidity Sensor [52] | 11–97 |
Working Principle | Virus | Sensor Name | Detection Element | Sensitivity |
---|---|---|---|---|
Chemical | H3N2 Influenza virus | Au-CNT Nanohybrids HN Sensor [64] | Monoclonal antibodies specific to H3N2 virus | 3.4 PFU/mL |
COVID-19 (SARS-CoV-2) | Field Effect Transistor COVID-19 Biosensor [65] | SARS-CoV-2 antibody | 1 fg/mL | |
Electrochemical | H1N1 Infiuenza virus | Paper-based H1N1 Infiuenza Sensor [58] | Anti Infiuenza H1N1 antibody | 113 PFU/mL |
Reduced Graphene Oxide-based H1N1 Infiuenza Sensor [59] | Monoclonal antibodies specific to H1N1 virus | 0.5 PFU/mL | ||
Boron-doped Diamond Surface H1N1 Influenza Sensor [60] | Polyclonal anti-M1 antibodies specific to H1N1 | 1 fg/mL | ||
Copper-mediated Amplification H1N1 Sensor [63] | CuO labeled polyclonal antibody specific to H1N1 | 1.0 g/mL | ||
Corona Virus (MERS) | Electrochemical MERS-CoV Sensor [61] | MERS-CoV antibody | 0.4 to 1.0 pg/mL | |
H5N1 Avian influenza virus | DNA Aptamer Immobilized Hybrid Nanomaterial-modified Electrode H5N1 Avian infiuenza Sensor [62] | DNA Aptamer specific to H5N1 | 4.3 M | |
Capacitive | H5N1 Infiuenza DNA | Infiuenza CMOS capacitive-based Array H5N1 Infiuenza Sensor [66] | DNA Probe specific to H5N1 | 10 aM level |
Chemiresistive | H5N1 Influenza DNA | Chemiresistive Carbon Nanotube H5N1 Sensor [67] | DNA Probe specific to H5N1 | 2 pM to 2 nM |
Electrical | H1N1 Infiuenza virus and Norovirus DNA | Gold/Iron-oxide Nanoparticle CNT Infiuenza/Norovirus Sensor [68] | DNA probe specific to H1N1 and Norovirus | 8.4 pM to 8.8 pM |
H5N1 Avian Influenza virus | Amperometric Bioaffinity H5N1 Avian Influenza Sensor [69] | DNA aptamer specific to H5N1 | 100 fM | |
Optical | H6N1 Avian Infiuenza virus | Fiber-optic Surface Plasmon Resonance (SPR) H6N1 Avian Infiuenza Sensor [70] | EB2-B3 monoclonal antibodies specific to H6N1 | 5.14 EID/0.1 mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dave, P.K.; Rojas-Cessa, R.; Dong, Z.; Umpaichitra, V. Survey of Saliva Components and Virus Sensors for Prevention of COVID-19 and Infectious Diseases. Biosensors 2021, 11, 14. https://doi.org/10.3390/bios11010014
Dave PK, Rojas-Cessa R, Dong Z, Umpaichitra V. Survey of Saliva Components and Virus Sensors for Prevention of COVID-19 and Infectious Diseases. Biosensors. 2021; 11(1):14. https://doi.org/10.3390/bios11010014
Chicago/Turabian StyleDave, Priya Kishor, Roberto Rojas-Cessa, Ziqian Dong, and Vatcharapan Umpaichitra. 2021. "Survey of Saliva Components and Virus Sensors for Prevention of COVID-19 and Infectious Diseases" Biosensors 11, no. 1: 14. https://doi.org/10.3390/bios11010014
APA StyleDave, P. K., Rojas-Cessa, R., Dong, Z., & Umpaichitra, V. (2021). Survey of Saliva Components and Virus Sensors for Prevention of COVID-19 and Infectious Diseases. Biosensors, 11(1), 14. https://doi.org/10.3390/bios11010014