Synthesis of Bamboo-like Multiwall Carbon Nanotube–Poly(Acrylic Acid-co-Itaconic Acid)/NaOH Composite Hydrogel and its Potential Application for Electrochemical Detection of Cadmium(II)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of PAA-co-IA/NaOH/B-MWCNTs
2.3. Characterization
2.4. Electrode Preparation
2.5. Electrochemical Equipment
2.6. Electroanalytical Procedure
3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. Morphological Analysis
3.3. Water-Absorbing Capability
3.4. Thermal Properties of PAA-co-IA/NaOH/B-MWCNT Composite Hydrogel
3.5. Voltammetric Behavior of Cd(II) on CPE Modified with Hydrogels
3.6. Effect of Accumulation Time of Cd(II) in the PAA-co-IA/NaOH and PAA-co-IA/NaOH/B-MWCNT Hydrogels
3.7. Calibration Plot, Limit of Detection and Reproducibility
3.8. Interference Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Hamon, M.A.; Chen, J.; Hu, H.; Chen, Y. Dissolution of single-walled carbon nanotubes. Adv. Mater. 1999, 11, 834–840. [Google Scholar] [CrossRef]
- Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 2003, 125, 8566–8580. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, B.; Hamon, M.A.; Kamaras, K.; Itkis, M.E.; Haddon, R.C. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J. Am. Chem. Soc. 2003, 125, 14893–14900. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, M.J.; Boul, P.; Ericson, L.M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K.D.; Smalley, R.E. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 2001, 342, 265–271. [Google Scholar] [CrossRef]
- Liu, J.; Rinzler, A.; Dai, H.; Hafner, J.; Bradley, R.; Boul, P.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C.; et al. Fullerene pipes. Science 1998, 280, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, T.; Sreekumar, T.V.; Kumar, S.; Moore, V.C.; Hauge, R.H.; Smalley, R.E. Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 2003, 3, 1285–1288. [Google Scholar] [CrossRef]
- Kim, O.K.; Je, J.; Baldwin, J.W.; Kooi, S.; Pehrsson, P.E.; Buckley, L.J. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J. Am. Chem. Soc. 2003, 125, 4426–4427. [Google Scholar] [CrossRef]
- Carrillo, A.; Swartz, J.A.; Gamba, J.M.; Kane, R.S.; Chakrapani, N.; Wei, B.; Ajayan, P.M. Noncovalent functionalization of graphite and carbon nanotubes with polymer multilayers and gold nanoparticles. Nano Lett. 2003, 3, 1437–1440. [Google Scholar] [CrossRef]
- Liu, A.; Honma, I.; Ichihara, M.; Zhou, H. Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: Definitive spectroscopic properties. Nanotechnology 2006, 17, 2845–2849. [Google Scholar] [CrossRef]
- Liu, A.; Watanabe, T.; Honma, I.; Wang, J.; Zhou, H. Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor. Biosens. Bioelectron. 2006, 22, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Bellingeri, R.; Alustiza, F.; Picco, N.; Acevedo, D.; Molina, M.A.; Rivero, R.; Grosso, C.; Motta, C.; Barbero, C.; Vivas, A. In vitro toxicity evaluation of hydrogel-carbon nanotubes composites on intestinal cells. J. Appl. Polym. Sci. 2015, 132, 41370. [Google Scholar] [CrossRef]
- Fox, R.J.; Yu, D.; Hegde, M.; Kumbhar, A.S.; Madsen, L.A.; Dingemans, T.J. Nanofibrillar Ionic Polymer Composites Enable High-Modulus Ion-Conducting Membranes. ACS Appl. Mater. Interfaces 2019, 11, 40551–40563. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R. Ionic polymer–metal composite mechanoelectric transduction: Effect of impedance. Int. J. Smart Nano Mater. 2012, 3, 275–295. [Google Scholar] [CrossRef]
- Swarrup, J.S.; Ganguli, R.; Madras, G. Analysis on enhancing the sensing behavior of ionic polymer metal composite-based sensors. J. Intell. Mater. Syst. Struct. 2020, 1045389X20952538. [Google Scholar] [CrossRef]
- Wang, H.S.; Cho, J.; Song, D.S.; Jang, J.H.; Jho, J.Y.; Park, J.H. High-performance electroactive polymer actuators based on ultrathick ionic polymer–metal composites with nanodispersed metal electrodes. ACS Appl. Mater. Interfaces 2017, 9, 21998–22005. [Google Scholar] [CrossRef]
- Banks, C.E.; Ji, X.; Crossley, A.; Compton, R.G. Understanding the electrochemical reactivity of bamboo multiwalled carbon nanotubes: The presence of oxygenated species at tube e nds may not increase electron transfer kinetics. Electroanalysis 2006, 18, 2137–2140. [Google Scholar] [CrossRef]
- Ayala, P.T.; Arenal, R.; Rümmeli, M.; Rubio, A. The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 2010, 48, 575–586. [Google Scholar] [CrossRef]
- Luong, J.H.T.; Hrapovic, S. Multiwall carbon nanotube (MWCNT) based electrochemical biosensors for mediatorless detection of putrescine. Electroanalysis 2005, 17, 47–53. [Google Scholar] [CrossRef]
- Osikoya, A.O.; Wankasi, D.; Vala, R.M.K.; Dikio, C.W.; Ayawei, N.; Dikio, E.D. Synthesis, characterization and sorption studies of nitrogen–doped carbon nanotubes. Dig. J. Nanomater. Bios. 2015, 10, 125–134. [Google Scholar]
- Perez-Aguilar, N.V.; Muñoz-Sandoval, E.; Diaz-Flores, P.E.; Rangel-Mendez, J.R. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: Equilibrium and kinetics. J. Nanopart. Res. 2009, 12, 467–480. [Google Scholar] [CrossRef]
- World Health Organization. Ten Chemicals of Major Public Health Concern; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- World Health Organization. Exposure to Cadmium: A Major Public Health Concern; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- EPA. Engineering Bulletin: Technology Alternatives for the Remediation of Soils Contaminated with As, Cd, Cr, Hg, and Pb; EPA: Washington, DC, USA, 24 January 2013.
- Wang, X.; Jia, B.; Zhang, W.; Lin, B.; Wang, Q.; Ding, J. Developing modified graphene oxide based sensor for lead ions detection in water. ChemistrySelect 2016, 1, 1751–1755. [Google Scholar] [CrossRef]
- Brett, C.M.A. Electrochemical sensors for environmental monitoring. Strategy and examples. Pure Appl. Chem. 2001, 73, 1969–1977. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.C.; Chen, J.M.; Marken, F. Simple cast-deposited multi-walled carbon nanotube/nafionTM thin film electrodes for electrochemical stripping analysis. Microchim. Acta 2005, 150, 269–276. [Google Scholar] [CrossRef]
- Ouyang, R.; Zhu, Z.; Tatum, C.E.; Chambers, J.Q.; Xue, Z.L. Simultaneous stripping detection of Pb(II), Cd(II) and Zn(II) using a bimetallic Hg-Bi/single-walled carbon nanotubes composite electrode. J. Electroanal. Chem. 2011, 656, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, H.D.; Nguyen, L.H.; Nguyen, T.D.; Nguyen, H.B.; Nguyen, T.L.; Tran, D.L. Anodic stripping voltammetric determination of Cd2+ and Pb2+ using interpenetrated MWCNT/P1,5-DAN as an enhanced sensing interface. Ionics 2014, 21, 571–578. [Google Scholar] [CrossRef]
- Ivan Švancara, K.S. Testing of unmodified carbon paste electrodes. Chem. List. 1999, 93, 490–499. [Google Scholar]
- Rodríguez, E.; Katime, I. Behavior of acrylic acid-itaconic acid hydrogels in swelling, shrinking, and uptakes of some metal ions from aqueous solution. J. Appl. Polym. Sci. 2003, 90, 530–536. [Google Scholar] [CrossRef]
- Bejarano-Jiménez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Ortíz-Ledón, C.A.; Cházaro-Ruiz, L.F. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium. J. Appl. Polym. Sci. 2014, 131, 40846. [Google Scholar] [CrossRef]
- Olvera-Sosa, M.; Guerra-Contreras, A.; Gómez-Durán, C.F.; González-García, R.; Palestino, G. Tuning the pH-responsiveness capability of poly (acrylic acid-co-itaconic acid)/NaOH hydrogel: Design, swelling, and rust removal evaluation. J. Appl. Polym. Sci. 2020, 137, 48403. [Google Scholar] [CrossRef]
- Dong, J.; Ozaki, Y.; Nakashima, K. Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules 1997, 30, 1111–1117. [Google Scholar] [CrossRef]
- Moharram, A.; Balloomal, S. Infrared study of the complexation of poly(acrylic acid) with poly(acry1amide). J. Appl. Polym. Sci. 1996, 59, 987–990. [Google Scholar] [CrossRef]
- Saraydin, D.; Karada, E.; Gven, O. Use of superswelling acrylamide/maleic acid hydrogels for monovalent cationic dye adsorption. J. Appl. Polym. Sci. 2001, 79, 1809–1815. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.S.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Kurdtabar, M.; Mahdavinia, G.R.; Hosseinzadeh, H. Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polym. Bull. 2006, 57, 813–824. [Google Scholar] [CrossRef]
- Park, S.E.; Nho, Y.C.; Lim, Y.M.; Kim, H.I. Preparation of pH-sensitive poly (vinyl alcohol-g-methacrylic acid) and poly (vinyl alcohol-g-acrylic acid) hydrogels by gamma ray irradiation and their insulin release behavior. J. Appl. Polym. Sci. 2004, 91, 636–643. [Google Scholar] [CrossRef]
- Lee, W.F.; Lin, G.H. Superabsorbent polymeric materials VIII: Swelling behavior of crosslinked poly [sodium acrylate-co-trimethyl methacryloyloxyethyl ammonium iodide] in aqueous salt solutions. J. Appl. Polym. Sci. 2001, 79, 1665–1674. [Google Scholar] [CrossRef]
- Moharram, M.A.; Allam, M.A. Study of the interaction of poly (acrylic acid) and poly (acrylic acid-poly acrylamide) complex with bone powders and hydroxyapatite by using TGA and DSC. J. Appl. Polym. Sci. 2007, 105, 3220–3227. [Google Scholar] [CrossRef]
- Ashter, S.A. Thermoforming of Single and Multilayer Laminates: Plastic Films Technologies, Testing, and Applications; William Andrew: Norwich, NY, USA, 2013. [Google Scholar]
- Jayaprakash, G.K.; Swamy, B.K.; Ramírez, H.N.G.; Ekanthappa, M.T.; Flores-Moreno, R. Quantum chemical and electrochemical studies of lysine modified carbon paste electrode surfaces for sensing dopamine. New J. Chem. 2018, 42, 4501–4506. [Google Scholar] [CrossRef]
- Morlay, C.; Cromer, M.; Vittori, A. The removal of copper(II) and nickel(II) from dilute aqueous solution by a synthetic flocculant: A polarographic study of the complexation with a high molecular weight poly(acrylic acid) for different pH values. Water Res. 2000, 34, 455–462. [Google Scholar] [CrossRef]
- Wang, B.; Yang, D.; Zhang, J.Z.; Xi, C.; Hu, J. Stimuli-responsive polymer covalent functionalization of graphene oxide by Ce(IV)-induced redox polymerization. J. Phys. Chem. C 2011, 115, 24636–24641. [Google Scholar] [CrossRef]
- Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. Mechanical, thermal and swelling properties of poly(acrylic acid)–graphene oxide composite hydrogels. Soft Matter 2012, 8, 1831–1836. [Google Scholar] [CrossRef]
- Perez-Aguilar, N.V.; Diaz-Flores, P.E.; Rangel-Mendez, J.R. The adsorption kinetics of cadmium by three different types of carbon nanotubes. J. Colloid Interface Sci. 2011, 364, 279–287. [Google Scholar] [CrossRef]
- Ramesha, G.K.; Sampath, S. Electrochemical reduction of oriented graphene oxide films: An in situ Raman spectroelectrochemical study. J. Phys. Chem. C. 2009, 113, 7985–7989. [Google Scholar] [CrossRef]
- Perret, S.; Morlay, C.; Cromer, M.; Vittori, O. Polarographic study of the removal of cadmium(II) and lead(II) from dilute aqueous solution by a synthetic flocculant. Comparison with copper(II) and nickel(II). Water Res. 2000, 34, 3614–3620. [Google Scholar] [CrossRef]
- Ding, Z.W.; Ravikumar, R.; Zhao, C.L.; Chen, L.H.; Chan, C.C. Chitosan/Poly(acrylic acid) based fiber-optic surface plasmon resonance sensor for Cu2+ ions detection. J. Light. Technol. 2019, 37, 2246–2252. [Google Scholar] [CrossRef]
- Oyagi, M.O.; Onyatta, J.O.; Kamau, G.N.; Guto, P.M. Validation of the polyacrylic acid/glassy carbon differential pulse anodic stripping voltammetric sensor for simultaneous analysis of lead (II), cadmium (II) and cobalt (II) ions. Int. J. Electrochem. Sci. 2016, 11, 3852–3861. [Google Scholar] [CrossRef]
- Kiani, M.; Bagherzadeh, M.; Meghdadi, S.; Rabiee, N.; Abbasi, A.; Schenk-Joß, K.; Tahriri, M.; Tayebi, L.; Webster, T.J. Development of a novel carboxamide-based off–on switch fluorescence sensor: Hg2+, Zn2+ and Cd2+. New J. Chem. 2020, 44, 11841–11852. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Yang, Y.; Gaskin, P.; Teng, K.S. Recent advances on electrochemical sensors for the detection of organic disinfection by-products in water. ACS Sens. 2019, 4, 1138–1150. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Samavat, S.; Deganello, D.; Teng, K.S. Vertically aligned graphene biosensor prepared by photonic annealing for ultra-sensitive biosensor. ACS Appl. Mater. Interfaces 2020, 12, 35328–35336. [Google Scholar] [CrossRef]
- Zhang, W.; Dixon, M.B.; Saint, C.; Teng, K.S.; Furumai, H. Electrochemical biosensing of algal toxins in water: The current state-of-art. ACS Sens. 2018, 3, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jia, B.; Furumai, H. Fabrication of graphene film composite electrochemical biosensor as a pre-screening algal toxin detection tool in the event of water contamination. Sci. Rep. 2018, 8, 10686. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chazaro-Ruiz, L.F.; Olvera-Sosa, M.; Vidal, G.; Rangel-Mendez, J.R.; Palestino, G.; Perez, F.; Zhang, W. Synthesis of Bamboo-like Multiwall Carbon Nanotube–Poly(Acrylic Acid-co-Itaconic Acid)/NaOH Composite Hydrogel and its Potential Application for Electrochemical Detection of Cadmium(II). Biosensors 2020, 10, 147. https://doi.org/10.3390/bios10100147
Chazaro-Ruiz LF, Olvera-Sosa M, Vidal G, Rangel-Mendez JR, Palestino G, Perez F, Zhang W. Synthesis of Bamboo-like Multiwall Carbon Nanotube–Poly(Acrylic Acid-co-Itaconic Acid)/NaOH Composite Hydrogel and its Potential Application for Electrochemical Detection of Cadmium(II). Biosensors. 2020; 10(10):147. https://doi.org/10.3390/bios10100147
Chicago/Turabian StyleChazaro-Ruiz, Luis F., Miguel Olvera-Sosa, Gabriela Vidal, J. Rene Rangel-Mendez, Gabriela Palestino, Fatima Perez, and Wei Zhang. 2020. "Synthesis of Bamboo-like Multiwall Carbon Nanotube–Poly(Acrylic Acid-co-Itaconic Acid)/NaOH Composite Hydrogel and its Potential Application for Electrochemical Detection of Cadmium(II)" Biosensors 10, no. 10: 147. https://doi.org/10.3390/bios10100147
APA StyleChazaro-Ruiz, L. F., Olvera-Sosa, M., Vidal, G., Rangel-Mendez, J. R., Palestino, G., Perez, F., & Zhang, W. (2020). Synthesis of Bamboo-like Multiwall Carbon Nanotube–Poly(Acrylic Acid-co-Itaconic Acid)/NaOH Composite Hydrogel and its Potential Application for Electrochemical Detection of Cadmium(II). Biosensors, 10(10), 147. https://doi.org/10.3390/bios10100147