Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Materials Structure and Morphology
3.2. Amorphous Sb2S3/CNT Nanocomposites as an Anode for NIBs
3.3. Amorphous Sb2S3/CNT Nanocomposites as an Anode for KIBs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Deng, J.; Luo, W.-B.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Adv. Energy Mater. 2018, 8, 1701428. [Google Scholar] [CrossRef]
- Wu, X.; Leonard, D.P.; Ji, X. Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. Chem. Mater. 2017, 29, 5031–5042. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [PubMed]
- Hosaka, T.; Shimamura, T.; Kubota, K.; Komaba, S. Polyanionic Compounds for Potassium-Ion Batteries. Chem. Rec. 2019, 19, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Luo, W.-B.; Lu, X.; Yao, Q.; Wang, Z.; Liu, H.-K.; Zhou, H.; Dou, S.-X. High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode. Adv. Energy Mater. 2018, 8, 1701610. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Niu, C.; Meng, J.; Huang, M.; Liu, X.; Liu, Z.; Mai, L. Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. Nano Lett. 2017, 17, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675. [Google Scholar] [CrossRef]
- Lin, X.; Huang, J.; Tan, H.; Huang, J.; Zhang, B. K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries. Energy Storage Mater. 2019, 16, 97–101. [Google Scholar] [CrossRef]
- Lee, H.-W.; Wang, R.Y.; Pasta, M.; Woo Lee, S.; Liu, N.; Cui, Y. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 2014, 5, 5280. [Google Scholar] [CrossRef]
- Pei, Y.; Mu, C.; Li, H.; Li, F.; Chen, J. Low-Cost K4Fe(CN)6 as a High-Voltage Cathode for Potassium-Ion Batteries. ChemSusChem 2018, 11, 1285–1289. [Google Scholar] [CrossRef]
- Liu, P.; Li, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 13046–13052. [Google Scholar] [CrossRef]
- Jian, Z.; Luo, W.; Ji, X. Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wen, Y.; van Aken, P.A.; Maier, J.; Yu, Y. Facile Synthesis of Highly Porous Ni–Sn Intermetallic Microcages with Excellent Electrochemical Performance for Lithium and Sodium Storage. Nano Lett. 2014, 14, 6387–6392. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhao, X.; Ni, C.; Tian, H.; Li, J.; Zhang, Z.; Mao, S.X.; Wang, J.; Xu, Y. Reaction and Capacity-Fading Mechanisms of Tin Nanoparticles in Potassium-Ion Batteries. J. Phys. Chem. C 2017, 121, 12652–12657. [Google Scholar] [CrossRef]
- Yu, D.Y.W.; Prikhodchenko, P.V.; Mason, C.W.; Batabyal, S.K.; Gun, J.; Sladkevich, S.; Medvedev, A.G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, V.; Chen, Y.; Mikhaylov, A.A.; Medvedev, A.G.; Sultana, I.; Rahman, M.M.; Lev, O.; Prikhodchenko, P.V.; Glushenkov, A.M. Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272–8275. [Google Scholar] [CrossRef]
- Li, W.; Chou, S.-L.; Wang, J.-Z.; Kim, J.H.; Liu, H.-K.; Dou, S.-X. Sn4+xP3@Amorphous Sn-P Composites as Anodes for Sodium-Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability. Adv. Mater. 2014, 26, 4037–4042. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, J.; Li, S.; Chen, Z.; Guo, Z. Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. J. Am. Chem. Soc. 2017, 139, 3316–3319. [Google Scholar] [CrossRef]
- Hwang, S.M.; Kim, J.; Kim, Y.; Kim, Y. Na-ion storage performance of amorphous Sb2S3 nanoparticles: Anode for Na-ion batteries and seawater flow batteries. J. Mater. Chem. A 2016, 4, 17946–17951. [Google Scholar] [CrossRef]
- Hou, H.; Jing, M.; Huang, Z.; Yang, Y.; Zhang, Y.; Chen, J.; Wu, Z.; Ji, X. One-Dimensional Rod-Like Sb2S3-Based Anode for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 19362–19369. [Google Scholar] [CrossRef]
- Shi, Y.; Li, F.; Zhang, Y.; He, L.; Ai, Q.; Luo, W. Sb2S3@PPy Coaxial Nanorods: A Versatile and Robust Host Material for Reversible Storage of Alkali Metal Ions. Nanomaterials 2019, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, D.; Zhang, X.; Hou, S.; Li, D.; Lu, T.; Yao, Y.; Pan, L. In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochimica Acta 2017, 228, 436–446. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J. Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance. Sci. China Chem. 2017, 60, 1533–1539. [Google Scholar] [CrossRef]
- Liu, Y.; Tai, Z.; Zhang, J.; Pang, W.K.; Zhang, Q.; Feng, H.; Konstantinov, K.; Guo, Z.; Liu, H.K. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nat. Commun. 2018, 9, 3645. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yuan, S.; Yin, Y.-B.; Zhu, Y.-H.; Zhang, X.-B.; Yan, J.-M. Green and Facile Fabrication of MWNTs@Sb2S3@PPy Coaxial Nanocables for High-Performance Na-Ion Batteries. Part. Part. Syst. Charact. 2016, 33, 493–499. [Google Scholar] [CrossRef]
- Zhao, Y.; Manthiram, A. Amorphous Sb2S3 embedded in graphite: A high-rate, long-life anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 13205–13208. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, G.; Lin, Y.; Wang, Y.; Ou, X.; Zheng, F.; Yang, C.; Wang, J.-H.; Liu, M. Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured Sb2S3 on Sulfur-Doped Graphene Sheets. ACS Nano 2016, 10, 10953–10959. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, M.; Fu, L.; Tang, A.; Mann, S. Controlled Assembly of Sb2S3 Nanoparticles on Silica/Polymer Nanotubes: Insights into the Nature of Hybrid Interfaces. Sci. Rep. 2013, 3, 1336. [Google Scholar] [CrossRef]
- Li, C.-Y.; Patra, J.; Yang, C.-H.; Tseng, C.-M.; Majumder, S.B.; Dong, Q.-F.; Chang, J.-K. Electrolyte Optimization for Enhancing Electrochemical Performance of Antimony Sulfide/Graphene Anodes for Sodium-Ion Batteries–Carbonate-Based and Ionic Liquid Electrolytes. ACS Sustain. Chem. Eng. 2017, 5, 8269–8276. [Google Scholar] [CrossRef]
- Ge, P.; Hou, H.; Ji, X.; Huang, Z.; Li, S.; Huang, L. Enhanced stability of sodium storage exhibited by carbon coated Sb2S3 hollow spheres. Mater. Chem. Phys. 2018, 203, 185–192. [Google Scholar] [CrossRef]
- Zheng, T.; Li, G.; Zhao, L.; Shen, Y. Flowerlike Sb2S3/PPy Microspheres Used as Anode Material for High-Performance Sodium-Ion Batteries. Eur. J. Inorg. Chem. 2018, 2018, 1224–1228. [Google Scholar] [CrossRef]
- Bag, S.; Roy, A.; Mitra, S. Sulfur, Nitrogen Dual Doped Reduced Graphene Oxide Supported Two-Dimensional Sb2S3 Nanostructures for the Anode Material of Sodium-Ion Battery. ChemistrySelect 2019, 4, 6679–6686. [Google Scholar] [CrossRef]
- Deng, M.; Li, S.; Hong, W.; Jiang, Y.; Xu, W.; Shuai, H.; Li, H.; Wang, W.; Hou, H.; Ji, X. Natural stibnite ore (Sb2S3) embedded in sulfur-doped carbon sheets: Enhanced electrochemical properties as anode for sodium ions storage. RSC Adv. 2019, 9, 15210–15216. [Google Scholar] [CrossRef]
- Xie, J.; Liu, L.; Xia, J.; Zhang, Y.; Li, M.; Ouyang, Y.; Nie, S.; Wang, X. Template-Free Synthesis of Sb2S3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries. Nano-Micro Lett. 2017, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhao, J.; Zhao, Y.; Xu, T.; Xu, J. Reduced graphene oxide (RGO) decorated Sb2S3 nanorods as anode material for sodium-ion batteries. Chem. Phys. Lett. 2019, 716, 171–176. [Google Scholar] [CrossRef]
- Choi, J.-H.; Ha, C.-W.; Choi, H.-Y.; Shin, H.-C.; Lee, S.-M. High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries. Met. Mater. Int. 2017, 23, 1241–1249. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, L.; Gu, Q.; Chao, D.; Jaroniec, M.; Qiao, S.-Z. Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. Nano Energy 2019, 60, 591–599. [Google Scholar] [CrossRef]
- Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode. Adv. Energy Mater. 2016, 6, 1501874. [Google Scholar] [CrossRef]
- Sultana, I.; Ramireddy, T.; Rahman, M.M.; Chen, Y.; Glushenkov, A.M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279–9282. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, Q.; McCulloch, W.D.; Wu, Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321. [Google Scholar] [CrossRef]
- Li, D.; Sun, Q.; Zhang, Y.; Chen, L.; Wang, Z.; Liang, Z.; Si, P.; Ci, L. Surface-Confined SnS2@C@rGO as High-Performance Anode Materials for Sodium- and Potassium-Ion Batteries. ChemSusChem 2019, 12, 2689–2700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, L.; Yang, M.; Wu, J.; Chen, F.; Huang, W.; Han, N.; Ye, H.; Zhao, F.; Li, Y.; et al. Hierarchical VERSUS2 Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions. Adv. Mater. 2017, 29, 1702061. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Cui, C.; Wu, M.; Zhang, M.; Gao, T.; Fan, X.; Chen, J.; Wang, T.; Ma, J.; Wang, C. Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 2018, 45, 346–352. [Google Scholar] [CrossRef]





| Anode Materials | Initial Coulomb Efficiency | Current Density (mA g−1) | Charge Capacity (mAh g−1) | Rate Capability (mAhg−1/mAg−1) | Voltage Cange (V) |
|---|---|---|---|---|---|
| Amorphous Sb2S3 [19] | 65% | 50 | 647 | 534/3000 | 0.01–2.5 |
| Sb2S3@PPy [21] | 63.7% | 100 | 860 | 290/2000 | 0.01–3.0 |
| MWNTs@Sb2S3@PPy [25] | 75% | 50 | 626 | 376/2000 | 0–2.0 |
| Sb2S3-graphite [26] | 84% | 100 | 733 | 631/3000 | 0.01–3.0 |
| Sb2S3/graphene [29] | 65% | 50 | 660 | 240/1500 | 0.01–2.0 |
| HS Sb2S3/C [30] | 64.8% | 200 | 693 | 220/3200 | 0.01–3.0 |
| Sb2S3/PPy [31] | 70% | 100 | 605 | 236/800 | 0.01–2.5 |
| SN-rGO/Sb2S3 [32] | 57% | 100 | 592 | 365/2000 | 0.01–2.0 |
| Sb2S3/SCS [33] | 68.8% | 100 | 642.8 | 263/1000 | 0.01–2.5 |
| Sb2S3 HMS [34] | 62% | 200 | 616 | 314/3000 | 0.01–2.0 |
| RGO/Sb2S3 nanorods [35] | 52.6% | 100 | 673 | 381/2000 | 0.01–2.0 |
| Sb2S3/C [36] | 78% | 50 | 642 | 520/2000 | 0.005–2.0 |
| Multi-shell Sb2S3 [37] | 55% | 100 | 901 | 604/2000 | 0.01–2.0 |
| Amorphous Sb2S3/CNT (this work) | 77.8% | 100 | 870 | 441/3000 | 0.01–1.5 |
| Anode Materials | Charge Capacity (mA h g−1/mA g−1) | Cycling Performance (mA h g−1/n) | Rate Capability (mA h g−1/mA g−1) | Voltage Range (V) | Ref. |
|---|---|---|---|---|---|
| Sb2S3@PPy coaxial nanorods | 628/100 | 487/18 | 690/100 280/1000 | 0.01–3.0 | [21] |
| Sb2S3-SNG composite | 537/100 | 480/100 | 548/25 340/1000 | 0.1–3.0 | [23] |
| Amorphous Sb2S3/CNT | 286.5/500 | 212.4/50 | 451/25 166.6/1000 | 0.01–2.5 | this work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Huang, F.; Pan, J.; Li, L.; Zhang, Y.; Yao, Q.; Zhou, H.; Deng, J. Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs. Nanomaterials 2019, 9, 1323. https://doi.org/10.3390/nano9091323
Li M, Huang F, Pan J, Li L, Zhang Y, Yao Q, Zhou H, Deng J. Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs. Nanomaterials. 2019; 9(9):1323. https://doi.org/10.3390/nano9091323
Chicago/Turabian StyleLi, Meng, Fengbin Huang, Jin Pan, Luoyang Li, Yifan Zhang, Qingrong Yao, Huaiying Zhou, and Jianqiu Deng. 2019. "Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs" Nanomaterials 9, no. 9: 1323. https://doi.org/10.3390/nano9091323
APA StyleLi, M., Huang, F., Pan, J., Li, L., Zhang, Y., Yao, Q., Zhou, H., & Deng, J. (2019). Amorphous Sb2S3 Nanospheres In-Situ Grown on Carbon Nanotubes: Anodes for NIBs and KIBs. Nanomaterials, 9(9), 1323. https://doi.org/10.3390/nano9091323

