High-Performance Self-Powered Ultraviolet Photodetector Based on Nano-Porous GaN and CoPc p–n Vertical Heterojunction
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Nanoporous GaN
2.3. Device Fabrication
2.4. Characterization
3. Results
3.1. Microstructures of the Nanoporous GaN and CoPc/Porous-GaN Film
3.2. Optical Properties of the Nanoporous GaN and CoPc/Porous-GaN Film
3.3. Device Characterization
3.4. Sensing Mechanism
3.5. Performance Enhancement Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Khan, F.; Khan, W.; Kim, S.D. High-Performance Ultraviolet Light Detection Using Nano-Scale-Fin Isolation AlGaN/GaN Heterostructures with ZnO Nanorods. Nanomaterials 2019, 9, 440. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, S.J.; Cho, S.P.; Hong, B.H.; Jang, D.J. High-performance ultraviolet photodetectors based on solution-grown ZnS nanobelts sandwiched between graphene layers. Sci. Rep. 2015, 5, 12345. [Google Scholar] [CrossRef] [PubMed]
- Anitha, R.; Ramesh, R.; Loganathan, R.; Vavilapalli, D.S.; Baskar, K.; Singh, S. Large area ultraviolet photodetector on surface modified Si: GaN layers. Appl. Surf. Sci. 2018, 435, 1057–1064. [Google Scholar]
- Li, D.B.; Jiang, K.; Sun, X.J.; Guo, C.L. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, W.W.; Yang, D.W.; Chang, W.J.; Kwon, S.S.; Park, W.I. Anomalous Photovoltaic Response of Graphene-on-GaN Schottky Photodiodes. ACS Appl. Mater. Interfaces 2018, 10, 14170–14174. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, B.; Chen, K.J.; Wang, J. Photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes induced by GaN interband excitation. Appl. Phys. Express 2018, 11, 054101. [Google Scholar] [CrossRef]
- Lee, C.J.; Kang, S.B.; Cha, H.G.; Won, C.H.; Hong, S.K.; Cho, B.J.; Park, H.; Lee, J.-H.; Hahm, S.-H. GaN metal–semiconductor–metal UV sensor with multi-layer graphene as Schottky electrodes. Jpn. J. Appl. Phys. 2015, 54, 06FF08. [Google Scholar] [CrossRef]
- Kalita, G.; Kobayashi, M.; Shaarin, M.D.; Mahyavanshi, R.D.; Tanemura, M. Schottky Barrier Diode Characteristics of Graphene-GaN Heterojunction with Hexagonal Boron Nitride Interfacial Layer. Phys. Status Solidi 2018, 215, 1800089. [Google Scholar] [CrossRef]
- Ramesh, C.; Tyagi, P.; Bhattacharyya, B.; Husale, S.; Maurya, K.K.; Kumar, M.S.; Kushvaha, S.S. Laser molecular beam epitaxy growth of porous GaN nanocolumn and nanowall network on sapphire (0001) for high responsivity ultraviolet photodetectors. J. Alloys Copmd. 2019, 770, 572–581. [Google Scholar] [CrossRef]
- Chen, X.X.; Xiao, X.-H.; Shi, Z.F.; Du, R.; Li, X.-J. Self-powered ultraviolet photodetection realized by GaN/Si nanoheterostructure based on silicon nanoporous pillar array. J. Alloys Copmd. 2018, 767, 368–373. [Google Scholar] [CrossRef]
- Zhuo, R.R.; Wang, Y.G.; Wu, D.; Lou, Z.H.; Shi, Z.F.; Xu, T.T.; Xu, J.M.; Tian, Y.T.; Li, X.J. High-performance self-powered deep ultraviolet photodetector based on MoS2/GaN p–n heterojunction. J. Mater. Chem. C 2018, 6, 299–303. [Google Scholar] [CrossRef]
- Xing, C.Y.; Huang, W.C.; Xie, Z.G.; Zhao, J.L.; Ma, D.T.; Fan, T.J.; Liang, W.Y.; Ge, Y.Q.; Dong, B.Q.; Li, J.Q.; et al. Ultrasmall bismuth quantum dots: Facile liquid-phase exfoliation, characterization, and application in high-performance UV–Vis photodetector. ACS Photonics 2018, 5, 621–629. [Google Scholar] [CrossRef]
- Xie, Z.J.; Xing, C.Y.; Huang, W.C.; Fan, T.J.; Li, Z.J.; Zhao, J.L.; Xiang, Y.J.; Guo, Z.N.; Li, J.Q.; Yang, Z.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Xing, C.Y.; Chen, X.; Huang, W.C.; Song, Y.F.; Li, J.H.; Chen, S.; Zhou, Y.H.; Dong, B.Q.; Fan, D.Y.; Zhu, X.; et al. Two-Dimensional Lead Monoxide: Facile Liquid Phase Exfoliation, Excellent Photoresponse Performance, and Theoretical Investigation. ACS Photonics 2018, 5, 5055–5067. [Google Scholar] [CrossRef]
- Kong, W.Y.; Wu, G.A.; Wang, K.Y.; Zhang, T.F.; Zou, Y.F.; Wang, D.D.; Luo, L.B. Graphene-β-Ga2O3 Heterojunction for Highly Sensitive Deep UV Photodetector Application. Adv. Mater. 2016, 28, 10725–10731. [Google Scholar] [CrossRef]
- Geng, X.; Yu, Y.; Zhou, X.; Wang, C.; Xu, K.; Zhang, Y.; Wu, C.; Wang, L.; Jiang, Y.; Yang, Q. Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Nano Res. 2016, 9, 2641–2651. [Google Scholar] [CrossRef]
- Shi, Z.; Li, Y.; Zhang, Y.; Chen, Y.; Li, X.; Wu, D.; Xu, T.; Shan, C.; Du, G. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 2017, 17, 313–321. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.M.; Qiao, X.S.; Wan, X.; Shehzad, K.; Zhang, X.H.; Xu, Y.; Fan, X.P. Facile Synthesis of γ-In2Se3 Nanoflowers toward High Performance Self-Powered Broadband γ-In2Se3/Si Heterojunction Photodiode. Small 2017, 13, 1604033. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Teng, F.; Chen, L.; Li, J.; Zhou, J.; Pan, X.; Xie, E. A photoelectrochemical type self-powered ultraviolet photodetector based on GaN porous films. Mater. Lett. 2016, 162, 117–120. [Google Scholar] [CrossRef]
- Wu, Z.; Jiao, L.; Wang, X.; Guo, D.; Li, W.; Li, L.; Huang, F.; Tang, W. A self-powered deep-ultraviolet photodetector based on an epitaxial Ga 2 O 3/Ga: ZnO heterojunction. J. Mater. Chem. C 2017, 5, 8688–8693. [Google Scholar] [CrossRef]
- Lou, Z.; Zeng, L.; Wang, Y.; Wu, D.; Xu, T.; Shi, Z.; Tian, Y.; Li, X.; Tsang, Y.H. High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared. Opt. Lett. 2017, 42, 3335–3338. [Google Scholar] [CrossRef]
- Liu, L.; Li, G.H.; Wang, Y.; Wang, Y.Y.; Li, T.; Zhang, T.; Qin, S.J. A photovoltaic self-powered gas sensor based on a single-walled carbon nanotube/Si heterojunction. Nanscale 2017, 9, 18579–18583. [Google Scholar] [CrossRef]
- Hoffmann, M.W.; Mayrhofer, L.; Casals, O.; Caccamo, L.; Hernandez-Ramirez, F.; Lilienkamp, G.; Daum, W.; Moseler, M.; Waag, A.; Shen, H.; et al. A Highly Selective and Self-Powered Gas Sensor Via Organic Surface Functionalization of p-Si/n-ZnO Diodes. Adv. Mater. 2014, 26, 8017–8022. [Google Scholar] [CrossRef]
- Hoffmann, M.W.G.; Gad, A.E.; Prades, J.D.; HernandezRamirez, F.; Fiz, R.; Shen, H.; Mathur, S. Solar diode sensor: Sensing mechanism and applications. Nano Energy 2013, 2, 514–522. [Google Scholar] [CrossRef]
- Monroy, E.; Calle, F.; Muñoz, E.; Omnès, F. AlGaN metal–semiconductor–metal photodiodes. Appl. Phys. Lett. 1999, 74, 3401–3403. [Google Scholar] [CrossRef]
- Leahu, G.; Voti, R.L.; Sibilia, C.; Bertolotti, M.; Golubev, V.; Kurdyukov, D.A. Study of thermal and optical properties of SiO2/GaN opals by photothermal deflection technique. Opt. Quant. Electron. 2007, 39, 305–310. [Google Scholar] [CrossRef]
- Zhang, M.X.; Liu, Y.; Yang, M.Q.; Zhang, W.; Zhou, J.Y.; Zhang, Z.X.; Xie, E.Q.; Pan, X.J.; Li, S.B. High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires. Appl. Surf. Sci. 2018, 452, 43–48. [Google Scholar] [CrossRef]
- Aggarwal, N.; Krishna, S.; Sharma, A.; Goswami, L.; Kumar, D.; Husale, S.; Gupta, G. A highly responsive self-driven UV photodetector using GaN nanoflowers. Adv. Electro. Mater. 2017, 3, 1700036. [Google Scholar] [CrossRef]
- Guo, D.; Liu, H.; Li, P.; Wu, Z.; Wang, S.; Cui, C.; Li, C.; Tang, W. Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga2O3/NSTO Heterojunction. ACS Appl. Mater. Interfaces 2017, 2, 1619–1628. [Google Scholar] [CrossRef]
- Bie, Y.Q.; Liao, Z.M.; Zhang, H.Z.; Li, G.R.; Ye, Y.; Zhou, Y.B.; Xu, J.; Qin, Z.X.; Dai, L.; Yu, D.P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 5, 649–653. [Google Scholar] [CrossRef]
- Yang, C.; Xi, X.; Yu, Z.G.; Cao, H.C.; Li, J.; Lin, S.; Ma, Z.H.; Zhao, L.X. Light modulation and water splitting enhancement using a composite porous GaN structure. ACS Appl. Mater. Interfaces 2018, 10, 5492–5497. [Google Scholar] [CrossRef]
- Teng, F.; Hu, K.; Ouyang, W.X.; Fang, X.S. Photoelectric Detectors Based on Inorganic p-Type Semiconductor Materials. Adv. Mater. 2018, 30, 1706262. [Google Scholar] [CrossRef]
- Benedetti, A.; Alam, B.; Esposito, M.; Tasco, V.; Leahu, G.; Belardini, A.; Voti, R.L.; Passaseo, A.; Sibilia, C. Precise detection of circular dichroism in a cluster of nano-helices by photoacoustic measurements. Sci. Rep. 2017, 7, 5257. [Google Scholar] [CrossRef]
- Petronijevic, E.; Leahu, G.; Belardini, A. Photo-Acoustic Spectroscopy Reveals Extrinsic Optical Chirality in GaAs-Based Nanowires Partially Covered with Gold. Int. J. Thermophys. 2018, 39, 46. [Google Scholar] [CrossRef]
- Cai, Y.H.; Tang, L.B.; Xiang, J.Z.; Ji, R.B.; Zhao, J.; Yuan, J.; Duan, Y.; Hu, Y.B.; Tai, Y.J.; Zhao, J.H. Exceptional ultraviolet photovoltaic response of 2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline based detector. J. Appl. Phys. 2015, 118, 124503. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Fu, H.B.; Peng, A.D.; Ma, Y.; Liao, Q.; Yao, J.N. Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc. Chem. Res. 2010, 43, 409–418. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Ren, G.; Li, S.; Bi, C.; Hao, Q.; Liu, H. High-Switching-Ratio Photodetectors Based on Perovskite CH3NH3PbI3 Nanowires. Nanomaterials 2018, 8, 318. [Google Scholar] [CrossRef]
- Zhou, H.; Mei, J.; Xue, M.; Song, Z.; Wang, H. High-Stability, Self-Powered Perovskite Photodetector Based on a CH3NH3PbI3/GaN Heterojunction with C60 as an Electron Transport Layer. J. Phys. Chem. C 2017, 121, 21541–21545. [Google Scholar] [CrossRef]
- Park, C.; Park, J.E.; Choi, H.C. Crystallization-induced properties from morphology-controlled organic crystals. Acc. Chem. Res. 2014, 47, 2353–2364. [Google Scholar] [CrossRef]
- Leznof, C.C.; Lever, A.B.P. Phthalocyanines: Properties and Applications; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Saini, R.; Mahajan, A.; Bedi, R.K.; Aswal, D.K.; Debnath, K. Solution processed films and nanobelts of substituted zinc phthalocyanine as room temperature ppb level Cl2 sensors. Sens. Actuators B Chem. 2014, 198, 164–172. [Google Scholar] [CrossRef]
- Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv. Mater. 2010, 18, 65–68. [Google Scholar] [CrossRef]
- Wahab, F.; Sayyad, M.H.; Khan, D.N.; Tahir, M.; Aziz, F.; Shahid, M.; Munawar, M.A.; Chaudry, J.A. Electrical characterization of cobalt phthalocyanine/p-silicon heterojunction. Mater. Sci. Semicond. Proc. 2014, 26, 101–106. [Google Scholar] [CrossRef]
- Bohrer, F.I.; Sharoni, A.; Colesniuc, C.; Park, J.; Schuller, I.K.; Kummel, A.C.; Trogler, W.C. Gas sensing mechanism in chemiresistive cobalt and metal-free phthalocyanine thin films. J. Am. Chem. Soc. 2007, 129, 5640–5646. [Google Scholar] [CrossRef]
- Zhang, M.-R.; Qin, S.-J.; Peng, H.-D.; Pan, G.-B. Porous GaN photoelectrode fabricated by photo-assisted electrochemical etching using ionic liquid as etchant. Mater. Lett. 2016, 182, 363–366. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Abd-El-Rahman, K.F.; Farag, A.A.M.; Darwish, A.A.A. Structural and transport properties of thermally evaporated nickel phthalocyanine thin films. Phys. Scr. 2006, 73, 40. [Google Scholar] [CrossRef]
- Deng, W.; Jie, J.S.; Shang, Q.X.; Wang, J.C.; Zhang, X.J.; Yao, S.W.; Zhang, Q.; Zhang, X.H. Organic Nanowire/Crystalline Silicon p–n Heterojunctions for High-Sensitivity, Broadband Photodetectors. ACS Appl. Mater. Interfaces 2015, 7, 2039–2045. [Google Scholar] [CrossRef]
- Azadinia, M.; Fathollahi, M.; Ameri, M.; Shabani, S.; Mohajerani, E. Low noise ultraviolet photodetector with over 100% enhanced lifetime based on polyfluorene copolymer and ZnO nanoparticles. J. Appl. Polym. Sci. 2018, 135, 46533. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, R.S.; Chen, T.T.; Chen, H.Y.; Chen, Y.F.; Chen, K.H.; Chen, L.C. High photocurrent gain in SnO2 nanowires. Appl. Phys. Lett. 2008, 93, 112–115. [Google Scholar] [CrossRef]
- Kim, C.O.; Kim, S.; Shin, D.H.; Kang, S.S.; Kim, J.M.; Jang, C.W.; Joo, S.S.; Lee, J.S.; Kim, J.H.; Choi, S.H.; et al. High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nat. Commun. 2014, 5, 3249. [Google Scholar] [CrossRef]
- Chowdhury, R.K.; Maiti, R.; Ghorai, A.; Midya, A.; Ray, S.K. Novel silicon compatible p-WS2 2D/3D heterojunction devices exhibiting broadband photoresponse and superior detectivity. Nanoscale 2016, 8, 13429–13436. [Google Scholar] [CrossRef]
- Wang, P.; Liu, S.; Luo, W.; Fang, H.; Gong, F.; Guo, N.; Chen, Z.G.; Zou, J.; Huang, Y.; Zhou, X.; et al. Arrayed Van Der Waals Broadband Detectors for Dual-Band Detection. Adv. Mater. 2017, 29, 1604439. [Google Scholar] [CrossRef]
- Li, P.G.; Shi, H.Z.; Chen, K.; Guo, D.Y.; Cui, W.; Zhi, Y.S.; Wang, S.L.; Wu, Z.P.; Chen, Z.W.; Tang, W.H. Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector. J. Mater. Chem. C 2017, 5, 10562–10570. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, H.; Xue, M.N.; Song, Z.H.; Wang, H. A self-powered, visible-blind ultraviolet photodetector based on n-Ga: ZnO nanorods/p-GaN heterojunction. Sens. Actuators A 2017, 267, 76–81. [Google Scholar] [CrossRef]
- Wang, L.; Jie, J.; Shao, Z.; Zhang, Q.; Zhang, X.; Wang, Y.; Sun, Z.; Lee, S.-T. MoS2/Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, High-Detectivity, Self-Driven Visible–Near Infrared Photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919. [Google Scholar] [CrossRef]
- Naderi, N.; Hashim, M.R. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates. J. Alloys Copmd. 2013, 552, 356–362. [Google Scholar] [CrossRef]
- Tseng, W.J.; van Dorp, D.H.; Lieten, R.R.; Vereecken, P.M.; Borghs, G. Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties. J. Phys. Chem. C 2014, 118, 29492–29498. [Google Scholar] [CrossRef]
- Liu, L.; Yang, C.; Patanè, A.; Yu, Z.G.; Yan, F.G.; Wang, K.Y.; Lu, H.X.; Li, J.M.; Zhao, L.X. High-detectivity ultraviolet photodetectors based on laterally mesoporous GaN. Nanoscale 2017, 9, 8142–8148. [Google Scholar] [CrossRef]







| Materials | Light Source | Switch Ratio | Responsivity (mA/W) | Detectivity (Jones) | Reference |
|---|---|---|---|---|---|
| GaN/Si- nanoporous pillar array | 305 nm | ~104 | 29.4 | - | [10] |
| MoS2/GaN | 265 nm | ~105 | 187 | 2.34 × 1013 | [11] |
| Ga2O3/GaN | 365 nm | 152 | 54.49 | 1.23 × 1011 | [53] |
| n-GZO NRs/porous-GaN | 365 nm | ~105 | 230 | 2.32 × 1012 | [54] |
| CH3NH3PbI3/GaN | 365 nm | 5000 | 198 | 7.96 × 1012 | [38] |
| CoPc/porous-GaN | 365 nm | ~105 | 588 | 4.8 × 1012 | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Liu, L.; Ma, Z.-H.; Meng, B.; Qin, S.-J.; Pan, G.-B. High-Performance Self-Powered Ultraviolet Photodetector Based on Nano-Porous GaN and CoPc p–n Vertical Heterojunction. Nanomaterials 2019, 9, 1198. https://doi.org/10.3390/nano9091198
Xiao Y, Liu L, Ma Z-H, Meng B, Qin S-J, Pan G-B. High-Performance Self-Powered Ultraviolet Photodetector Based on Nano-Porous GaN and CoPc p–n Vertical Heterojunction. Nanomaterials. 2019; 9(9):1198. https://doi.org/10.3390/nano9091198
Chicago/Turabian StyleXiao, Yan, Lin Liu, Zhi-Hao Ma, Bo Meng, Su-Jie Qin, and Ge-Bo Pan. 2019. "High-Performance Self-Powered Ultraviolet Photodetector Based on Nano-Porous GaN and CoPc p–n Vertical Heterojunction" Nanomaterials 9, no. 9: 1198. https://doi.org/10.3390/nano9091198
APA StyleXiao, Y., Liu, L., Ma, Z.-H., Meng, B., Qin, S.-J., & Pan, G.-B. (2019). High-Performance Self-Powered Ultraviolet Photodetector Based on Nano-Porous GaN and CoPc p–n Vertical Heterojunction. Nanomaterials, 9(9), 1198. https://doi.org/10.3390/nano9091198
