Next Article in Journal
Carbon Nanofiber-Based Functional Nanomaterials for Sensor Applications
Previous Article in Journal
Zinc Oxide Nanoparticles Induce Autophagy and Apoptosis via Oxidative Injury and Pro-Inflammatory Cytokines in Primary Astrocyte Cultures
Previous Article in Special Issue
Graphene Surface Reinforcement of Iron
Open AccessArticle

Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures

by 1,*, 1, 2, 1,* and 3,*
1
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
2
Reactor Engineering and Safety Research Center, China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518031, China
3
Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48108, USA
*
Authors to whom correspondence should be addressed.
Nanomaterials 2019, 9(7), 1044; https://doi.org/10.3390/nano9071044
Received: 29 June 2019 / Revised: 17 July 2019 / Accepted: 18 July 2019 / Published: 21 July 2019
(This article belongs to the Special Issue Modeling and Experimental Characterization of Nanocomposite Materials)
Boron nitride honeycomb structure is a new three-dimensional material similar to carbon honeycomb, which has attracted a great deal of attention due to its special structure and properties. In this paper, the tensile mechanical properties of boron nitride honeycomb structures in the zigzag, armchair and axial directions are studied at room temperature by using molecular dynamics simulations. Effects of temperature and strain rate on mechanical properties are also discussed. According to the observed tensile mechanical properties, the piezoelectric effect in the zigzag direction was analyzed for boron nitride honeycomb structures. The obtained results showed that the failure strains of boron nitride honeycomb structures under tensile loading were up to 0.83, 0.78 and 0.55 in the armchair, zigzag and axial directions, respectively, at room temperature. These findings indicated that boron nitride honeycomb structures have excellent ductility at room temperature. Moreover, temperature had a significant effect on the mechanical and tensile mechanical properties of boron nitride honeycomb structures, which can be improved by lowering the temperature within a certain range. In addition, strain rate affected the maximum tensile strength and failure strain of boron nitride honeycomb structures. Furthermore, due to the unique polarization of boron nitride honeycomb structures, they possessed an excellent piezoelectric effect. The piezoelectric coefficient e obtained from molecular dynamics was 0.702   C / m 2 , which was lower than that of the monolayer boron nitride honeycomb structures, e = 0.79   C / m 2 . Such excellent piezoelectric properties and failure strain detected in boron nitride honeycomb structures suggest a broad prospect for the application of these new materials in novel nanodevices with ultrahigh tensile mechanical properties and ultralight-weight materials. View Full-Text
Keywords: boron nitride honeycomb; molecular dynamics simulation; mechanical property; piezoelectric property boron nitride honeycomb; molecular dynamics simulation; mechanical property; piezoelectric property
Show Figures

Figure 1

MDPI and ACS Style

Xie, L.; Wang, T.; He, C.; Sun, Z.; Peng, Q. Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures. Nanomaterials 2019, 9, 1044.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop